在前面的篇章中,我们学习了迭代器,这是一个很好的工具,特别是当你需要处理大型数据集时。然而,在Python中构建自己的迭代器有点麻烦和耗时。你必须定义一个实现迭代器协议(__iter__()和__next__()方法)的新类。在这个类中,需要自己管理变量的内部状态并更新它们。此外,当__next__()方法中没有要返回的值时,需要抛出StopIteration异常。
有没有更好的实现方式呢?答案是肯定的!这就是Python的生成器(Generator)解决方案。下面就来盘盘它。
接下来,我们更进一步,轻松学懂Python中生成器是如何工作的以及如何定义它们。
如前一节所述,生成器是Python中一种特殊类型的函数。此函数不返回单个值,而是返回一个迭代器对象。在生成器函数中,返回值使用yield语句而不是return语句。下面定义一个简单的生成器函数,代码清单如下:
代码清单片段-01
在上述清单中,我们定义一个生成器函数。该函数执行yield语句而不是return关键字。yield语句使这个函数成为生成器。当我们调用这个函数时,它将返回(产生)一个迭代器对象。我们再来看看生成器的调用:
代码清单片段-02
调用生成器,通常就跟创建对象类似,调用生成器函数,并赋给变量。
运行程序输出结果如下:
根据规则,此生成器函数不应该包含return关键字。因为如果它包含,那么return语句将终止此函数,也就无从满足迭代器的要求了。
现在,让我们通过for循环的帮助来定义一个更具有实际意义的生成器。在本例中,我们将定义一个生成器,它将连续跟踪生成从0开始的数字序列,直到给定的最大限制。
代码清单如下:
代码清单片段-03
运行程序输出结果类似如下:
有一点需要注意,在定义生成器时,返回值必须是yield语句,并不是说生成器不能出现return语句。只是通常把返回非None值return语句放在生成器最后,为StopIteration异常添加附加信息,以便调用者处理。示例如下:
代码清单片段-04
下面是未进行异常处理时运行程序输出结果类似如下:
如果一个函数至少包含一个yield语句,那么它就是生成器函数。如果需要,还可以包含其他yield或return语句。yield和return关键字都将从函数中返回一些东西。
return和yield关键字之间的差异对于生成器来说非常重要。return语句会完全终止函数,而yield语句会暂停函数,保存它的所有状态,然后在后续的调用中继续执行。
我们调用生成器函数的方式和调用普通函数一样。但在执行过程中,生成器在遇到yield关键字时暂停。它将迭代器流的当前值发送到调用环境,并等待下一次调用。同时,它在内部保存局部变量及其状态。
以下是生成器函数与普通函数不同的关键点:
我们用一个简单的例子来演示普通函数和生成器函数之间的区别。在这个例子中,我们要计算前n个正整数的和。为此,我们将定义一个函数,该函数给出前n个正数的列表。我们将以两种方式实现这个函数,一个普通函数和一个生成器函数。
普通函数代码如下:
代码清单片段-05
现在让我们为相同的操作定义一个生成器函数来实现,代码清单如下:
代码清单片段-06
运行程序结果类似如下:
性能改进的主要原因(当我们使用生成器时)是值的惰性生成。这种按需值生成的方式,会降低内存使用量。生成器的另一个优点是,你不需要等到所有元素都生成后才开始使用它们。
有时候,我们需要简单的生成器来执行代码中相对简单的任务。这正是生成器表达式(GeneratorExpression)用武之地。可以使用生成器表达式轻松地动态创建简单的生成器。
生成器表达式类似于Python中的lambda函数。但要记住,lambda是匿名函数,它允许我们动态地创建单行函数。就像lambda函数一样,生成器表达式创建的是匿名生成器函数。
生成器表达式的语法看起来像一个列表推导式。不同之处在于,我们在生成器表达式中使用圆括号而不是方括号。请看示例:
运行结果类似如下:
运行程序,遍历出的元素项结果是否和列表推导式一样。
我们再看一个例子。来定义一个生成器,将字符串中的字母转换为大写字母。然后调用next()方法打印前两个字母。代码示例如下:
运行输出结果如下:
1)内存效率:
2)延迟计算:
生成器提供了延迟(惰性)计算求值的功能。延迟计算是在真正需要值时计算值,而不是在实例化时计算值。假设你有一个大数据集要计算,延迟计算允许你在整个数据集仍在计算生成中可立即开始使用数据。因为如果使用生成器,则不需要整个数据集。
3)易实现和可读性:
生成器非常容易实现,并且提供了好的代码可读性。记住,如果你使用生成器,你不需要担心__iter__()和__next__()方法。你所需要的只是函数中一个简单的yield语句。
4)处理无限流:
当你需要表示无限的数据流时,生成器是非常棒的工具。例如,一个无限计数器。理论上,你不能在内存中存储无限流的,因为你无法确定存储无限流需要多少的内存大小。这是生成器真正发挥作用的地方,因为它一次只产生一项,它可以表示无限的数据流。它不需要将所有的数据流存储在内存中。
编程怎么学习?编程怎么入门?编程在哪学?编程怎么学才快?不用担心,这里为大家提供了编程速学教程(入门课程),有需要的小伙伴保存下载就能学习啦!