BCG的研究指出,已有三分之一的海外银行在组织流程中嵌入了匹配大数据的工作方式,识别出更多的商业机会。他们在多年的实践和不断试错后,运用成熟的分析手段,持续地获得有价值的商业洞察。
与此同时,中国金融业也步入了大数据时代的初级阶段。有研究统计,经过多年的发展与积累,国内商业银行的数据量已经达到100TB以上级别,并且正在以更快的速度增长。日渐成熟的大数据技术与金融业务呈现快速融合的趋势,给未来金融业的发展带来重要机遇。
在发展大数据能力方面,银行业堪称是“领军者”。纵观银行业的六个主要业务板块(零售银行、公司银行、资本市场、交易银行、资产管理、财富管理),每个业务板块都可以借助大数据来更深入地了解客户,并为其制定更具针对性的价值主张,同时提升风险管理能力。其中,大数据在零售银行和交易银行业务板块中的应用潜力尤为可观。
以下我们通过几个实际案例来看国内外银行业大数据应用场景都有哪些:
金融行业中大数据应用案例介绍
一、客户管理
1.改善产品,提升服务
巴克莱银行自从发布了新的移动银行应用程序后,便能够从实时社交媒体分析中挖掘出可操作的见解。
预测哪个客户会流失应该成为一个组织客户导向战略的关键部分,因为获取一个新客户的成本远比留住一个现有客户要高得多。
2.降低客户流失率
捷克斯洛伐克的第一家私人银行塔特拉银行通过使用预测模型几乎达到了减少其信用卡客户的流失率到30%的目标。这家银行细分客户,并已经为其客户群选择了高度个性化的留存活动。
通过正确的渠道发送正确的信息就跟正确的信息本身一样重要。
大数据分析可以被用来精确查找客户使用的渠道以及他们使用这些渠道的方式。这种知识可以形成战略优势,以最符合成本效益的方式和最大化市场营销预算来达到特定目标细分。客户使用渠道的方式也会突出显示需要银行集中资源的领域,比如哪个渠道是用来抱怨的,或者哪些渠道主要是用来做研究的。
3.通过不同的渠道提供高质量的服务
总部位于新加坡的华侨银行拥有超过大约590亿英镑的资产。该银行识别出一个显著的细分市场正在转移到在线渠道,同时预计这些渠道将随着技术的快速进步而成长。华侨银行的一个核心原则是把高质量的服务通过所选择的渠道传递出去,以符合客户的期望。
了解每个客户的个人档案以发送个性化的市场营销信息。一个小小的个性化触动能提高客户的参与度、安全感和忠诚度。
市场营销信息里的个性化能被用来实现很多目标。这些可以简单到在信息的开头加上客户的名字以显得更为友好,或者加入只有组织知道的客户细节信息来避免欺诈性营销。更有雄心的银行将在信息里加入个性化的内容,这些内容会直接让客户感兴趣,提高参与度。
1.识别客户
(1)HDFC银行
HDFC银行利用客户生命周期活动来促进信用卡的激活。这个通过用个性化的消息相对HDFC银行确认的每一个生命周期阶段进行有针对性的促销实现。
结果是在信用卡的激活次数上有了显著的提高,降低了每次获得每个客户的成本。
客户使用或不使用一个产品的方式可以是如何调整市场营销信息的一个信号。
了解客户在产品周期中所处的位置可以对所使用的市场营销传播方式有显著的影响。例如:在获取阶段的客户比坚定的老客户更容易受到市场营销和产品研发消息的影响。一个即将流失的客户相比于一个忠诚的客户会是挽留促销更好的候选人。大数据有助于确定客户处在产品生命周期的哪个阶段,有助于相应地调整市场营销方向。
(2)国内某大型商业银行
同样基于外部数据,比如芝麻信用、学信网、房产、运营商等数据,挖掘出哪些用户可能是高价值用户但还不是本行用户。营销部门针对这些高价值的用户数据,做定位的产品营销服务,大数据平台的应用为该行挖掘出大量潜在客户,并已经获得较高的转化。
同样,此类场景也适用于信用卡业务,根据银行内部消费数据,做好用户信用卡分期推荐等。
2.产品周期
奥地利银行利用对产品生命周期的了解来留住客户。当一个客户显示出取消与某个产品的关联的特定行为时,该银行的职员检测到这个信号,并采取相应的行动来做个更新。
根据信用卡的使用习惯,可以容易地把客户分组,使用习惯能被用来给他们提供更个性化的忠诚度促销计划。
在一般交易数据,如支付频率和支付习惯上的细分市场能够揭示生活方式的细分,例如跟随潮流的、家庭导向的或面向旅行的团体。这能让市场营销团队和垂直合作伙伴设计围绕其客户真正所求的忠诚度计划。例如,家庭导向的客户也许喜欢在超市和加油站的回扣。
3.开发特定产品
(1)美国银行
美国银行正在通过其Bankamerideals忠诚度计划,采用有针对性的市场营销方案来增加其客户的信用卡使用率。这个Bankamerideals忠诚度计划包括量身定制的以客户为中心的奖励和选择性的慈善捐赠。
(2)澳大利亚某银行
三、提升内部效率
国内某城市商业银行
比如中国式复杂报表需求,可事先定义众多业务可能会用到的维度和指标,定制好模板,业务部门通过选择灵活生成所需的数据应用。在业务用户逐渐熟悉永洪产品后,可基于永洪快速实现数据探索、自助分析。
四、交易风险控制
国内某大型商业银行
网上银行、手机银行、第三方支付应用等新兴电子渠道的高速发展,给消费者带来便利的同时也带来了一定的威胁。因此通过数据分析了解用户消费支付习惯、规避交易风险成为构建银行风险交易分析系统的关键。
总结
从以上案例来看,数据分析和运营正在为金融业创造巨大价值。正因为数据有巨大的价值,很多金融企业采取数据驱动业绩这样实时交互式的探索式分析方式的模式,在用户审计、系统调优、资源调度、安全控制等方面拥有更多的掌控力。
数据分析咨询请扫描二维码
《Python数据分析极简入门》第2节8-1Pandas数据重塑-数据变形数据重塑(Reshaping)数据重塑,顾名思义就是给数据做各种变...
统计学基础-理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。数...
数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技...
数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数...
数据分析师:洞察力量的引擎数据分析师的兴起数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。...
数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将...
“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、...
一、引言背景介绍随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业...
《Python数据分析极简入门》第2节7Pandas分组聚合分组聚合(groupby)顾名思义就是分2步:先分组:根据某列数据的值进行...
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容:数学和统计学...
数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力:统计...
数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需...
《Python数据分析极简入门》第2节6Pandas合并连接在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc...
《Python数据分析极简入门》第2节5Pandas数学计算importpandasaspdd=np.array([[81,&n...
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面:基础知识:数据分析的基本概念...
数据分析适合在多个单位工作,包括但不限于以下领域:金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经...
数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面:数据收集与整理:数据分析师...
数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能:...