项目案例之决策树在保险行业的应用

中国是世界第二大保险市场,但在保险密度上与世界平均水平仍有明显差距

保险行业2018年保费规模为38万亿,同比增长不足4%,过去“短平快“的发展模式已经不能适应新时代的行业发展需求,行业及用户长期存在难以解决的痛点,限制了行业发展发展环境。

互联网经济的发展,为保险行业带来了增量市场,同时随着网民规模的扩大,用户的行为习惯已发生转变,这些都需要互联网的方式进行触达。

保险科技:当前沿科技不断应用于保险行业,互联网保险的概念将会与保险科技概念高度融合。

中国保险市场持续高速增长。根据银保监会数据,2011~2018年,全国保费收入从1.4万亿增长至3.8万亿,年复合增长率17.2%。2014年,中国保费收入突破2万亿,成为全球仅次于美国、日本的第三大新兴保险市场市场;2016年,中国整体保费收入突破3万亿,超过日本,成为全球第二大保险市场;2019年,中国保费收入有望突破4万亿。

发展现状

受保险行业结构转型时期影响,互联网保险整体发展受阻,2018年行业保费收入为1889亿元,较去年基本持平,不同险种发展呈现分化格局,其中健康险增长迅猛,2018年同比增长108%,主要由短期医疗险驱动

供给端专业互联网保险公司增长迅速,但过高的固定成本及渠道费用使得其盈利问题凸显,加发展现状强自营渠道建设及科技输出是未来的破局方法,渠道端形成第三方平台为主,官网为辅的格局,第三方平台逐渐发展出B2C、B2A、B2B2C等多种创新业务模式。

互联网保险不仅仅局限于渠道创新,其核心优势同样体现在产品设计的创新和服务体验的提升竟合格局:随着入局企业増增多,流量争夺更加激烈,最终保险公司与第三方平台深度合作将成为常态发展趋势

发展趋势

随着入局企业增多,流量争夺更加激烈,最终保险公司与第三方平台深度合作将成为常态。发展趋势

当前沿科技不断应用于保险行业,互联网保险的概念将会与保险科技概念高度融合。

衡量指标

业务目标

数据分析

分析流程框架

导入数据

df=pd.read_csv(r'data.csv',sep=',',header=0)

df.shape

(5000000,50)

数据探索性分析

描述性统计

在我们正式建模型之前,我们需要对我们的数据进行描述性统计,这样我们就能知道整个数据的大致分布是什么样的,做到心里有数,然后能够数据大致的全貌有一定的了解。

type_0=df.dtypes

type_0.to_excel('original.xlsx')

#将KBM_INDV_ID的int64转化为object

df['KBM_INDV_ID']=df['KBM_INDV_ID'].astype('object')

describe=df.describe().T

type(describe)

describe.to_excel('../output/describe_var.xlsx')

#引入画图模块

plt.subplot(1,2,1)

sns.countplot(x='N2NCY',hue='resp_flag',data=df);#设置x,y以及颜色控制的变量,以及画图的数据

plt.xlabel('N2NCY');

plt.ylabel('Frequency');

#了解因变量的分布

Resp_count=df['KBM_INDV_ID'].groupby(df['resp_flag']).count()

print(Resp_count)

str(round(Resp_count[1]/len(df)*100,2))+str('%')#查看购买了

从这个图片我们可以看到,买了保险的用户和未买保险的人所处县的情况。

NextStep:

#检查是否有缺失的行

df.shape[0]-df.dropna().shape[0]###

#检查是否有缺失的列

len(df.columns)-df.dropna(axis=1).shape[1]#626

NA=df.isnull().sum()

print('orginalNA=',NA)

NA=NA.reset_index()

NA.columns=['Var','NA_count']

NA=NA[NA.NA_count>0].reset_index(drop=True)

print(NA)

NA.to_excel('../output/var_incl_na.xls',index=False)

####处理缺失值

var_char_na=[]

#我们对连续型数据进行中位数填补,然后对离散型数据进行特殊值填补,我们这里利用的是N

foriinrange(len(NA)):

ifNA['NA_count'][i]/len(df)>0.75orlen(df[NA['Var'][i]].unique())<=2:

deldf[NA['Var'][i]]

elifdf[NA['Var'][i]].dtypes!="object":

#填充缺失值-中位数

for_na_value=df[NA['Var'][i]].quantile(0.5)

#for_na_value

df[NA['Var'][i]]=df[NA['Var'][i]].fillna(for_na_value)

elifdf[NA['Var'][i]].dtypes=="object"andlen(df[NA['Var'][i]].unique())<=3:

df[NA['Var'][i]]=df[NA['Var'][i]].fillna('N',inplace=True)

else:

var_char_na.append(NA['Var'][i])

var_char_na

处理分类型变量

#DropVariablesthatarenotnecessary

drop_list=['STATE_NAME','KBM_INDV_ID']

forvarindrop_list:

deldf[var]

##检查数据集中数值型变量和字符型变量

var_num=[]

var_char_uniq2=[]

var_char_mul=[]

forvarinlist(df):

ifdf[var].dtypes=="object"andlen(df[var].unique())>2:

var_char_mul.append(var)

elifdf[var].dtypes!="object":

var_num.append(var)

var_char_uniq2.append(var)

##处理多值型字符变量

forvarinvar_char_mul:

temp=pd.get_dummies(df[var],prefix=var,prefix_sep='_')

print(temp)

forvar2inlist(temp):

ifvar2in'_nan':

deltemp[var2]

df=pd.concat([df,temp],axis=1)

deltemp

len(df.columns)##88

df.head(5)

df.to_excel('../output/data.xls',index=False)

##处理二值型的字符变量

fromsklearn.preprocessingimportLabelEncoder

definteger_encode(var):

values=np.array(df[var])

label_encoder=LabelEncoder()

df[var]=label_encoder.fit_transform(values)

forvarinvar_char_uniq2:

iflen(df[var].unique())<2:

else:integer_encode(var)

建模

#引用sklearn模块

fromsklearnimporttree

fromsklearn.model_selectionimporttrain_test_split

fromsklearn.metricsimportclassification_report

#fromsklearnimportcross_validation,metrics

fromsklearnimportmetrics

fromsklearn.model_selectionimportcross_val_score

#fromsklearn.grid_searchimportGridSearchCV

fromsklearn.model_selectionimportGridSearchCV

rcParams['figure.figsize']=12,4

##在模型样本内将数据集7:3分,70%用来建模,30%用来测试

features=list(df.columns[1:])

X=df[features]

y=df['resp_flag']

#将数据集7:3分,70%用来建模,30%用来测试

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=.3)

clf=tree.DecisionTreeClassifier()

param_test={'min_samples_leaf':list(range(1000,6000,100)),'min_samples_split':list(range(4000,6000,100))}

gsearch=GridSearchCV(estimator=clf,

param_grid=param_test,scoring='roc_auc',n_jobs=1,iid=False,cv=5)

gsearch.fit(X_train,y_train)

#gsearch.grid_scores_,gsearch.best_params_,gsearch.best_score_

gsearch.cv_results_,gsearch.best_params_,gsearch.best_score_

验证输出结果

clf=tree.DecisionTreeClassifier(

class_weight=None,

criterion='gini',

max_features=None,

max_leaf_nodes=8,

min_samples_leaf=2000,

min_samples_split=5000,

min_weight_fraction_leaf=0.0,

splitter='best')

results=modelfit(clf,X_train,y_train,X_test,y_test)

importos

importpydotplus

fromIPython.displayimportImage

fromsklearn.externals.siximportStringIO

#os.environ["PATH"]+=os.pathsep+'C:/Users/yacao/Downloads/graphviz-2.38/release/bin'

dot_data=StringIO()

out_file=dot_data)

输出规则

if(df['meda'][i]<=56.5):

if(df['age'][i]<=70.5):

if(df['c210hva'][i]<=312.5):

if(df['ilor'][i]<=10.5):

temp=11

segment.append(temp)

temp=12

temp=8

if(df['tins'][i]<=5.5):

temp=9

temp=10

if(df['pdpe'][i]<=46.5):

if(df['MOBPLUS_M'][i]<=0.5):

temp=13

temp=14

temp=4

业务应用

第一类:

第二类:

这一类人群,是区域内常住的高端小区的用户。这些人群也同样是我们需要重点进行保险营销的对象。

除此之外,我们还可以做什么呢?

了解客户需求

开发新的保险产品

数据分析咨询请扫描二维码

《Python数据分析极简入门》第2节8-1Pandas数据重塑-数据变形数据重塑(Reshaping)数据重塑,顾名思义就是给数据做各种变...

统计学基础-理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。数...

数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技...

数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数...

数据分析师:洞察力量的引擎数据分析师的兴起数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。...

数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将...

“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、...

一、引言背景介绍随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业...

《Python数据分析极简入门》第2节7Pandas分组聚合分组聚合(groupby)顾名思义就是分2步:先分组:根据某列数据的值进行...

数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容:数学和统计学...

数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力:统计...

数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需...

《Python数据分析极简入门》第2节6Pandas合并连接在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc...

《Python数据分析极简入门》第2节5Pandas数学计算importpandasaspdd=np.array([[81,&n...

数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面:基础知识:数据分析的基本概念...

数据分析适合在多个单位工作,包括但不限于以下领域:金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经...

数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面:数据收集与整理:数据分析师...

数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能:...

THE END
1.保险典型案例分析启示,保险典型案例分析启示:从案例中学习经验与...本文将对几个保险领域的典型案例进行深入分析,并探讨这些案例给我们带来的启示。通过学习和分析这些案例,我们可以了解保险行业的实际操作和风险控制方法,? ,理想股票技术论坛https://www.55188.com/topics-7014110.html
2.保险行业经典案例解析.docx保险行业经典案例解析.docx,保险行业经典案例解析 人身保险 条款惹争议 一字之差拒赔 虽然买了重大疾病保险,但因为手术的名字有“一字之差”却得不到赔偿,朱先生已花了住院费3万元,但一直没敢把这个不幸的消息告诉刚做完手术的妻子。 “按照保单条款,如果王女士做的是‘https://m.book118.com/html/2022/0801/5334104214004314.shtm
3.2018级泛华金控——专业互联网保险中介商业模式案例分析泛华金控——专业互联网保险中介商业模式案例分析 一、创业背景分析 1.1中国互联网保险市场概况及竞争分析 1.1.1互联网保险市场的定义与产业图谱 定义 《互联网保险业务监管暂行办法》中定义的互联网保险是指“保险机构依托互联网和移动通信等技术,通过自营网络平台、第三方网络平台等订立保险合同、提供保险服务的业务。”...http://fmba.pbcsf.tsinghua.edu.cn/info/1027/1260.htm
4.2018级老年服务与管理专业人才培养方案九、职业能力和职业资格标准分析 十、课程结构框架 按照高素质技术技能人才的培养目标,构建公共基础课程(公共必修课、公共选修课)、专业课程(专业基础课、专业技能课、专业选修课)的课程体系。通过校内理论授课和实训、校外实践、企业实习,促进学生综合职业能力的形成。 https://jwc.wfhlxy.com/info/1023/1358.htm
5.保险公司案例分析保险公司案例分析 保险公司是一种金融机构,主要提供保险服务,为客户提供风险保障和理财增值的服务。在保险行业中,有许多知名的保险公司,如中国平安、中国人寿、中国太平等。以中国平安为例,该公司中国平安是中国最大的保险公司之一,也是全球最大的保险公司之一。该公司提供多种保险产品,包括人寿保险、财产保险、健康保险...https://www.xyz.cn/toptag/baoxiangongsianlifenxi-76915.html
1.新保险案例分析10篇(全文)新保险案例分析 第2篇 【摘要】随着人类社会的不断进步和发展,人们对于个人的生命和财产安全重视程度越来越深,保险行业迅速发展,为了满足社会的需求,更好的进行政府职能的转变,国家出台了保险业新“国十条”。笔者希望通过本文研究新国十条出台的必要性及创新性,分析其对保险业的影响 ...https://www.99xueshu.com/w/file95l994xf.html
2.保险案例分析保险市场的案例分析保险案例分析 一、业务背景 纵观目前宏观环境,中国是世界第二大保险市场,但与世界水平还有很大差距。互联网行业的发展,为保险行业带来了新的市场,中国保险市场持续高速增长。随着入局保险企业增多,流量争夺更加激烈,最终保险公司与第三方平台深度合作将成为常态。https://blog.csdn.net/wxj8783/article/details/101711173
3.保险公司理赔案例分析(精选8篇)篇1:保险公司理赔案例分析 截至8月中旬,山东临沂市小麦政策性农业保险理赔工作结束,理赔面积12.6万亩,理赔金额1762万元,16万农户得到保险理赔款。据了解,20,临沂市共有10个县区、134个乡镇、5545个村参加了小麦政策性农业保险,各级财政共支付保费2567万元,有效地提高了临沂市农户承担自然灾害风险的能力。 https://www.360wenmi.com/f/fileem5k3klk.html
4.2022年人寿保险行业分析商业养老保险有望分享第三支柱增长红利...2022年人寿保险行业分析 ,商业养老保险有望分享第三支柱增长红利。目前中国人口老龄化加速,生育意愿下降,抚养比持续上升。我们预计 到 21 世纪中叶,社会面临的养老压力会逐年增大,民众的养老金与养老服务需求 会逐年增多。解决此问题的根本核心在于技术进步与全要素生https://m.vzkoo.com/read/202207224c145761fa73172cf202d4fd.html
5.船员保险的现状与典型案例分析澎湃号·政务澎湃新闻众所周知,航运业是保险充分覆盖的行业,船舶、货物、船员都可以成为承保的对象,对于船员权益保护和权利救济而言,保险制度在损害赔偿和损失弥补等方面都能够起到很好的作用。本篇文章将通过有关案例分析,结合保险条款解读针对船员保险的有关问题。 一 船员保险的强制要求 ...https://www.thepaper.cn/newsDetail_forward_4673050
6.美国OFAC对金融机构典型案例分析!国复咨询二、OFAC对不同金融行业处罚及案例分析 01.对银行业处罚情况及案例分析 1.总体情况 根据美国海外资产控制办公室(OFAC)执法行动数据公布,2009-2021年,对244家企业进行了处罚,涉及银行业、航空业、通信业、保险业、能源行业、支付行业、航运业、制造业,罚金高达56.92亿美元。其中金融业是处罚重灾区,共处罚银行业机构46...https://www.goalfore.cn/a/3635.html
7.帆软FineBI大数据Spider引擎——为海量数据分析而生保险行业常用传统展示分析工具如BO、SSAS、cognos、Microstrategy等,常规汇总分析数据与粗粒度维度汇总计算较为方便,固定的指标查看等都没有问题。但是到明细数据的展示分析与汇总时候,就存在各种性能瓶颈以及传统BI工具的约束,比如维度过多导致cube难以支撑; 无法在线查看实际明细数据,而下载导出的数据有数据量的限制;任意...https://maimai.cn/article/detail?fid=1087958660&efid=cFC-D1L_rX-NNAoQf2Qh1A
8.中国大地保险数据管理应用中心大数据应用平台案例分析2017年底,在“科技驱动的客户综合经营”战略导向下,中国大地保险创新孵化中心应运而生,该中心旨在落实公司科技驱动的战略目标,从而在变革时期承接对创新业务的持续探索。据悉,中国大地保险创新孵化中心的职能大致分为四大板块:即行业研究,创新管理,金融科技,大数据及人工智能应用。 https://bigdata.51cto.com/art/201902/592367.htm
9.案例丨保险的商业逻辑(二):“大都会”的前世三生大都会人寿保险公司(Metlife)是全美第一的人寿保险公司,从1863年的成立到2016年的分拆,153年的历史还在继续。在保险行业历次发生巨大变革时,公司未雨绸缪,及时调整战略部署方向,逐步走向繁荣并成为保险行业巨头 一、“大都会”简介 1. 公司概述 大都会人寿保险公司(Metlife)是全美第一的人寿保险公司,为遍布全球数以...https://www.iyiou.com/analysis/2018032668774