半导体材料包括三大类:1、单元素半导体材料,即以单一元素构成的半导体材料,主要包括硅(Si)、锗(Ge),其中硅基半导体材料是目前产量最大、成本最低、应用最广的半导体材料;2、III-V族化合物半导体材料,即以III-V族元素的化合物构成的半导体材料,主要包括砷化镓(GaAs)、磷化铟(InP),具有电子迁移率高、光电性能好等特点,是当前仅次于硅之外最成熟的半导体材料,在5G通信、数据中心、光纤通信、新一代显示、人工智能、无人驾驶、可穿戴设备、航天方面有广阔的应用前景;3、宽禁带半导体,以氮化镓(GaN)和碳化硅(SiC)等为代表,具有高禁带宽度、耐高压和大功率等特点,在通信、新能源汽车等领域前景广阔,但目前成本较高。
2.光通信用光芯片分类◆光芯片按功能可以分为激光器芯片和探测器芯片,其中激光器芯片主要用于发射信号,将电信号转化为光信号,探测器芯片主要用于接收信号,将光信号转化为电信号。◆激光器芯片按出光结构可进一步分为面发射芯片和边发射芯片,面发射芯片包括VCSEL芯片,边发射EEL芯片包括FP、DFB和EML芯片;探测器芯片,主要有PIN和APD两类。◆激光器芯片按照材料体系划分,可以分为砷化镓GaAs和磷化铟Inp两套材料体系。
3.磷化铟光芯片:分类及下游应用◆按导电性能,InP衬底主要分为半导电和半绝缘衬底
半导体衬底分为N型和P型半导电衬底:1)N型掺SnInP主要用于激光二极管。2)N型掺S的InP不仅用于激光二极管,而且还用于光探测器。3)P型掺ZnInP主要用于高功率激光二极管。半绝缘衬底按照是否掺杂分为掺杂半绝缘衬底和非掺杂半绝缘衬底,半绝缘衬底主要用于制作射频器件。
◆从全球磷化铟衬底应用情况来看,据Yole数据显示,2020年光模块器件、传感器件、高端射频器件三者销量占比分别为83%、4%和14%光模块器件和高端射频器件是磷化铟下游主要的应用。
4.光通信系统中的光芯片位置及应用结构图◆光通信是以光信号为信息载体,以光纤作为传输介质,通过电光转换,以光信号进行传输信息的系统。光通信系统传输信号过程中,发射端通过激光器芯片进行电光转换,将电信号转换为光信号,经过光纤传输至接收端,接收端通过探测器芯片进行光电转换,将光信号转换为电信号。◆光芯片加工封装为光发射组件(TOSA)及光接收组件(ROSA),再将光收发组件、电芯片、结构件等进一步加工成光模块。光芯片的性能直接决定光模块的传输速率,是光通信产业链的核心之一。
5.光芯片及组件:光模块中最大的成本项◆根据中际旭创披露的2016年1-8月光模块成本构成,芯片成本占60-70%(光芯片及组件占50%,比重最大;电芯片成本占15%),人工和其他成本占23%;◆光模块中的芯片包含:光芯片(激光器芯片和探测器芯片)、电芯片(LD驱动芯片、TIA跨阻放大芯片、CDR时钟和数据电路、DSP、MUX&DeMUX等)。