设AD与B′C′交于G,过B′作B′F⊥AD于F,延长D′C′交AD于E,根据旋转的性质得到∠D′=∠D=45°,AB′=AB,C′D′=CD=60cm,根据等腰直角三角形的性质得到C′E=GE,求得AG=C′D′=60,解直角三角形即可得到结论.
解:设AD与B′C′交于G,
过B′作B′F⊥AD于F,延长D′C′交AD于E,
由旋转的性质得,∠D′=∠D=45°,AB′=AB,C′D′=CD=60cm,
∵D′C′⊥AD,
∴∠AED′=90°,
∴△AED′是等腰直角三角形,
∴AE=D′E,
∵AD∥BC,
∴AD′∥B′C′,
∴△GC′E是等腰直角三角形,
∴C′E=GE,
∴AG=C′D′=60,
∵∠FGB′=∠C′GE=45°,
∴FG=FB′,
∵∠DAB′=30°,
故选:B.
【题目】在湖边高出水面40m的山顶A处看见一架无人机停留在湖面上空某处,观察到无人机底部标志P处的仰角为45°,又观其在湖中之像的俯角为60°,则无人机底部P距离湖面的高度是()
(2)求点B的坐标;
(3)求△OAP的面积.
(1)求该反比例函数和一次函数的解析式;
(2)直接写出当x为何值时,y1≥y2.
【题目】(本题满分10分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.
(1)求每张门票原定的票价;
(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.
【题目】某民营企业准备用14000元从外地购进A、B两种商品共600件,其中A种商品的成本价为20元,B种商品的成本价为30元.
(1)该民营企业从外地购得A、B两种商品各多少件?
(2)该民营企业计划租用甲、乙两种货车共6辆,一次性将A、B两种商品运往某城市,已知每辆甲种货车最多可装A种商品110件和B种商品20件;每辆乙种货车最多可装A种商品30件和B种商品90件,问安排甲、乙两种货车有几种方案?请你设计出具体的方案.