您是否想浏览中国自主品牌出口车型,可以为您切换到易车国际站。
2525
前言
HW2.0增加了侧前侧后方摄像头,前置摄像头由单目进化为三目摄像头,周边车辆的感知能力提升了6倍,前方障碍物识别也得到了极大更新。辅助数据除雷达、超声波传感器之外还包括深度学习构建的高精度地图和白名单。
HW2.0使用NVIDIA的DrivePX2芯片,主板的整体集成度并不高,有大片留白。所有芯片加起来理论算力仅有NVIDIA的DrivePX2的一半。HW2.5芯片整体集成度空前提高,在之前主板构造的基础上增加了4块CPU,集成度上的飞跃带来算力的跃升,基本达到了DrivePX2的理论算力水平。
核心优势
1.1自主研发芯片:算力安全双保险
FSD主板设计的最大特点是双芯片设计形成冗余,减少了功能区故障隐患,同时提高了图像处理的安全与精准性。根据马斯克的说法,FSD芯片主板做了完整的冗余,也就是说HW3.0的每一个功能区都可以损坏,而整套硬件依然可以保持正常工作。
FSD的核心优势在于强大的图像处理和高速传输数据能力。GPU单元为图形处理单元,工作是协助核心处理器完成图形和动画的渲染,让用户能在屏幕上获取有效信息。图像处理器ISP的作用主要是将摄像头产生的原始RGB三原色数据转化成复杂的图像信息。GPU和ISP构成了智能驾驶AI芯片的主角。
FSD内置了主频为1GHZ的GPU,拥有600TOPS的超强运算力,同时图像处理器ISP最高可以25亿像素/秒的高速处理10亿像素的数据量数据。大概是往21块1080P的全高清屏幕塞60帧画面的程度,这已经追上现在世界上最快的消费级图像传输标准DisplayPort1.4了,而车载芯片“传统上”要落后消费级起码一个时代的。
FSD的优势之二在于神经处理单元NPU储存芯片容量巨大、带宽速度极快。NPU负责根据深度学习模型对ISP产生的图像数据作出处理——但在此之前,这些数据将会存储在SRAM内。
SRAM可以简单地将它理解为比运行内存速度快很多,同时成本也高很多的存储芯片,一般被应用在处理芯片的1-3级缓存上。FSD现在拥有32MB的缓存,对比来看,零售价16999元的英特尔酷睿i9-9980XE,SRAM缓存总量也仅为33.75MB,2010年英特尔CPU的最大SRAM仅为16MB,2014年也只是增长到了24MB。
1.2颠覆EEA构架,集中化打破自动驾驶硬件瓶颈
(1)ECU的算力不能协同,并相互冗余,产生极大浪费。
(2)大量分离的嵌入式OS和应用程序Firmware,由不同Tier1提供,语言和编程风格迥异,导致统一维护和OTA升级困难。
(3)分布式的架构需要大量的内部通信,客观上导致线束成本大幅增加,加大装配难度。
(4)第三方应用开发者无法与这些硬件进行便捷的编程,软件开发低效。
2.1传感器方案:摄像头为主,多传感器融合
激光雷达最重要的两个属性是测距和精度。激光雷达可以主动探测周围环境,属于“主动视觉”,即使在夜间仍能准确地检测障碍物。因为激光光束更加聚拢,所以比毫米波雷达拥有更高的探测精度。缺点在于成本高昂、技术不成熟、影响车辆整体外观。激光雷达成本高于2万元,而摄像头最多仅2000元,雷达则更便宜,激光雷达主导的解决方案为主机厂带来成本压力。
摄像头测距能力相对较弱,且受环境光照的影响大,但摄像头的核心优势在于非常适用于物体识别、数据量远超其他传感器。摄像头成像原理与人眼类似,都是物体反射的光通过镜片在传感器上成像,人眼就能看懂摄像头拍摄的内容,摄像头可以完成物体分类。同时摄像头拥有最丰富的线性密度,其数据量远超其他类型的传感器。基于图像信息密度最高的优势,使得它处于整个感知融合的中心地位。
2.2深度学习:神经网络算法提高精度
深度学习搭建时空结构网络,实现机器不干预的自我学习,深度学习能够在图像识别能力上显著超越传统算法。ClarifAI针对行人等复杂物体识别实验数据显示,2010年误检率(ErrorRate)在30%-80%之间,两年传统算法优化将误检率降低至20-30%左右,陷入瓶颈。深度学习算法则进一步降低误检率,接近至10%以下。ImageNet数据同样显示,深度学习算法可将行人的识别率提升至90%以上。
此外,全球各地不同国家有着完全不同的路况、交规、暴雨、冰雹、大雾、甚至洪水、火灾、火山等罕见的长尾场景。每一次AP启用状态下的人为介入接管,系统都会记录下该场景的信息和数据,并自行学习人类的决策和驾驶行为。
竞品分析:水平远超同行
若ADAS只能在理想的单一路况下行驶,无法处理实际突发情况,人工干预次数增加、安全性难以保证,落实自动驾驶在真实道路上的应用就只能是纸上谈兵。