本文提出了一种嵌入式系统全程喂狗策略及实现方法,从系统上电、引导程序(Bootloader)、操作系统内核直至应用阶段都启用看门狗。实验表明,该方法简单可行,成本较低,在嵌入式系统的全过程中都可以实现喂狗策略,提高了系统可靠性。
1系统总体设计
1.1看门狗电路设计
图1为看门狗电路原理,采用IMP706芯片组成硬件看门狗电路,通过电平转换器件74AVClT45,硬件看门狗器件的ST脚与中央处理器(CPU)的GPIO3脚相连。看门狗器件的PRST脚与IN脚接到复位开关,RST脚接到CPU的RESET脚,当复位开关被触动或看门狗器件的计数器溢出时,看门狗器件的RST脚输出复位信号给CPU的RESET脚,CPU复位重启。
1.2喂狗策略及实现
1.2.1Bootloader阶段
在Boot1oader阶段(本设计采用U—boot,但不限于此),喂狗策略是在Bootloader的程序中不同位置插入喂狗程序。具体做法是:由于Bootoader第一阶段的启动不会超过1.6s,因此只需在Bootoader的第二阶段,如Flash读写、CRC校验、循环等待等处,插入喂狗代码。喂狗代码采用直接置位中央处理器的GPIO3状态寄存器的方式进行。
首先在特定平台的定义头文件include/conffigs/xxx.h中加入看门狗的宏定义:
在lib_generic下的CRC校验阶段代码crc32.c中加入如下代码,实现CRC校验阶段喂狗:
1.2.2Linux内核阶段
在Linux内核加载阶段(采用MontaVistaLinux操作系统,但不限于此),喂狗策略是在Linux内核程序的不同位置插入喂狗程序。具体做法是:首先在Linux内核阶段1的内核解压缩程序、RTC驱动加载程序、GPIO驱动加载程序适当代码处插入喂狗代码,喂狗代码以直接取反中央处理器的GPIO3状态寄存器的方式进行;在Linux内核阶段2的Watchdog驱动加载程序适当代码处插入喂狗代码,喂狗代码调用GPIO驱动,GPIO驱动内含取反中央处理器的GPIO3状态寄存器的操作;在Linux内核阶段3的内核加载根文件系统程序、init程序的适当代码处调用Linux的Watchdog驱动,Watchdog驱动内含取反中央处理器的GPIO3状态寄存器的操作。
以上内核阶段的划分是以GPIO及Watchdog驱动的加载为标志的。GPIO驱动加载之前为内核阶段1,GPIO驱动加载之后至Watchdog驱动加载之前为内核阶段2,Watchdog驱动加载之后为内核阶段3。
下面示例说明内核解压缩asm/arch/boot/compressed.c中喂狗的实现代码:
从以上代码可以看出,它是内核阶段l喂狗的典型方法,是直接取反GPIO3状态寄存器的。
下面示例说明内核阶段2的喂狗方法(仅以加载RTC驱动为例):首先让RTC驱动中包含GPIO的头文件,然后在读取RTC当前值的函数中调用GPIO驱动进行喂狗。
为了能够在内核阶段3调用Watchdog驱动进行喂狗,需要在Watchdog驱动中导出喂狗函数以供内核阶段3使用。Watchdog驱动喂狗也是调用GPIO驱动实现的,但Watchdog驱动一旦加载完成,以后的喂狗都通过调用Watchdog驱动完成。
1.2.3程序运行阶段
以下示例说明在应用中如何调用Watchdog驱动实现喂狗:
总之,在系统不同阶段,由于系统调用和封装程度不同,看门狗的喂狗实现方法也不同:在Bootloader阶段,直接取反中央处理器的GPIO3的状态寄存器;在Linux内核阶段1,采取取反中央处理器的GPIO3的状态寄存器的方法进行;在Linux内核阶段2,采取调用GPIO的驱动的方法进行;在Linux内核阶段3,采取调用Watchdog驱动的方法进行;在应用程序运行阶段,应用程序中的喂狗程序采取调用Watchdog驱动的方法进行,如图3所示。
2实验结果
综上所述,本全程喂狗的方法能确保系统在任一阶段出现软件或硬件故障时都能复位重启。
结语
本文提出了一种嵌入式系统全程喂狗策略,包括硬件电路设计和软件实现方法。该方法有如下特点:看门狗电路简单,硬件只需一块看门狗芯片,不需复杂的外围逻辑电路,成本较低;系统全过程启用看门狗,确保系统在任一阶段出现软件或硬件故障都能复位重启,系统可靠性得到提高。