专家谈:构网型储能在新型电力系统中的作用和并网要求SMM新能源峰会

以“智启双碳.绿动未来”为主题,展会将覆盖8大展馆,1200多家国内外参展商将集中亮相。

构网型储能的发展背景

新型电力系统的特征

供电主力电源发生较大改变

由传统燃煤机组转向新能源为主体的发电结构;从静态负荷资源转变为动态可调负荷资源;从单向电能供给变为双向电能互济,终端电能替代比例从低到高。

从发电机主导向变流器主导演变

新能源的并网、传输和消纳在源网荷端引入了更多电子电子装备,电力系统呈现显著的电力电子化趋势。

高比例新能源+高比例电力电子设备=“双高”特征

高惯量、强阻尼,源随荷动→低惯量、弱阻尼、源荷互动。

新型电力系统的挑战

三大挑战:新能源发电出力时空分布极度不均衡且“高装机、低电量”,带来充裕性挑战;新能源发电渗透率超过50%将带来安全性挑战;协调源-网-荷-储资源弥补新能源在充裕性和安全性方面的不足,带来体制机制挑战。

储能在新型电力系统中的作用

储能作为优质的灵活调节资源和潜在的主动支撑手段,能够减小电网峰谷差、改善电压动态性能,是应对新型电力系统“电网安全稳定和电力电量平衡”挑战的有效手段。

新型电力系统对构网型储能的需求

强电网下,基于锁相环技术的传统跟网型技术(GridFollowing,GFL)可以实现新能源利用率的最大化,还可以保证较高的并网电能质量。

随着新能源渗透率不断提高,在各个地方引起了多起事故,跟网型技术已不足以提供电网所需的安全稳定能力。

政策对构网型储能的需求

2023年,国家能源局发布《关于组织开展可再生能源发展试点示范的通知》:技术创新类项目方面,包括新能源加储能构网型技术示范,主要支持构网型风电、构网型光伏发电、构网型储能、新能源低频组网送出等技术研发与工程示范。

构网型储能技术特点与现状

构网型技术(GFM)的定义

构网型控制(Grid-formingControl)一词最早是1997年德国太阳能供电技术研究所发布的一份研究报告中提出的。

2021年12月,北美电力可靠性组织(NERC)发布的白皮书《构网型技术——大规模电力系统可靠性探讨》,定义:在次暂态到暂态过程中,维持内电势相量恒定或接近恒定。它使得逆变器后资源能够立即响应外部系统的变化,并在不同的电网条件下保持逆变器后资源控制的稳定性。同时,它必须控制电压相量以保持与电网中其他设备的同步,还须适当调节有功功率和无功功率以为电网提供支撑服务。

国内尚无准确定义,但有两大特点:电压源、内电势在暂态和次暂态过程中保持恒定。。

储能由于具有相对稳定的能量作支撑,且可瞬间自然释放,是实现构网型技术的天然载体。

构网型储能与跟网型储能、同步发电机对比

构网型储能的技术优势

频率和惯量支撑方面:

通过控制释放直流测储能能量等效为同步机惯量机械能或阻尼能量,进而提供惯量响应与振荡抑制,具备更好的频率支撑和惯量支撑能力。

电压支撑方面:

通过功率同步控制机制,将储能变流器塑造成电压源外特性,可在不依赖外界交流系统的情况下,自行构建交流侧电压幅值与相位,具备更好的电压支撑能力。

构网型储能在新型电力系统中的作用

在弱电网(weakgrid)地区,新能源接入比例高,系统支撑能明显不足,青海、新疆、西藏等局部电网,网架薄弱加之缺乏常规电源支撑,系统在电压调节、一次调频、阻尼控制及惯量响应等方面均面临安全风险,构网型储能在弱电网的应用项目表明主动支撑效果明显。

构网型储能并网要求浅析

构网型储能并网要求

【国外构网型标准】国际上,已经有相应规范要求基于逆变器的发电机需要具备构网能,英国、澳大利亚、美国、德国等均发布了相应的电力导则。

【国外构网型标准】快速故障电流注入(无功电流),惯量支撑、阻尼控制、相位跳变支撑、相角跳变支撑、快速频率响应、动态无功补偿能力。要求构网型储能装置在电力系统发生扰动或者故障时需在5ms内出反应,即5ms内启动响应。

【国内构网型标准】目前国网公司正在制定相应的企业标准,正在制定国家标准《电化学储能构网型变流器技术规范》。

构网型储能并网要求思考

(1)哪些指标代表构网能力?不同应用场景是否具有不同的构网能力技术指标?

(3)阻尼控制功能的技术指标是什么,怎么测试?

(4)过载能力应该怎么测试?

(5)人工短路的故障点怎么选择?并联机组在人工短路过程中的脱网问题?

(6)跟网和构网控制方式相互切换的判断依据是什么?

(7)构网型储能电站并联机组之间的振荡风险和稳定性怎么测试?

THE END
1.网工新手必看:用拓扑设计让网络跑得更快更安全!网络拓扑是指网络设备之间的连接方式。你可以把它理解为“网络的骨架”。常见的拓扑结构包括星型、环型、总线型和网状结构,每一种都有不同的适用场景。 高效网络设计的关键要素 选择合适的拓扑结构 小型企业可能适合星型拓扑,中心设备负责所有通信,简单高效;而大规模网络中,网状拓扑更具冗余性,能确保网络的稳定性。https://blog.csdn.net/funnetxia/article/details/143922749
2.“构网型电化学储能”与下一代电网“跟网型”与“构网型”逆变器 国家可再生能源实验室(NREL)最近出版了一份技术报告,称“今天的电力系统正在迅速转变为越来越多的非传统能源发电,如风能和太阳能,以及储能设备。” 这些资源通过“电网跟随型”逆变器连接到电网。这是有关下一代储能与风能和太阳能等可再生能源一起走向何方的另一个线索。 https://power.in-en.com/html/power-2403573.shtml
3.构网型储能:让新能源并网更稳更灵活逆变器主要有两种控制技术,即跟网型(Grid Following)控制技术和构网型(Grid Forming)控制技术。当前,并网储能逆变器通常采用跟网型控制技术。 据王晓斌介绍,跟网型逆变器通过跟踪电网的电压、相位来控制其输出,由于跟网型逆变器依赖于电网的实际电压和频率,需要惯性源提供稳定支撑,如旋转质量,因此跟网...https://www.repower.cn/h-nd-474.html
4.全面解读跟网型与构网型储能:技术对比与未来趋势在能源转型的道路上,跟网型储能与构网型储能作为两大技术路径,各有千秋。跟网型储能以其简单可靠、成本较低的特点,在稳定性较好的电网中发挥着重要作用;而构网型储能则以其强大的电压、频率支撑能力和短时高过载能力,可有效提升电网的稳定性和新能源的消纳能力。未来,随着新能源比重的不断增加和电网稳定性的挑战...https://www.hoenergypower.cn/news/chnology-comparison-and-future-trends-493.html
5.构网+储能,新能源并网的下一个刚需这一物理性能决定着跟网型储能电站在提供消纳能力的同时,必须依赖电网的稳定电压和频率运行,无法为电网提供强度的支撑。 而构网型储能却“化被动为主动”,能使逆变器连接的能源(例如风光或电池)在电网干扰或停电时,为电网提供电压和频率的支持。 (图片来源网络) ...https://www.ne21.com/news/show-201481.html
6.中信证券:构网型储能是电力系统发展的必然趋势构网型储能或成为行业发展的必然趋势。一方面大规模可再生能源的接入需要储能装置来帮助实现频率、电压和功角稳定;另一方面构网型储能也带来了储能PCS的变化,产品的升级迭代可以加强龙头的领先地位,也带来IGBT、电感和电容等零部件的变化。另外,我们看到构网型储能PCS的招标已经开启,其价格要比跟网型储能PCS高50%以上...https://m.jrj.com.cn/madapter/stock/2024/06/18080041062066.shtml
7.构网型控制改善跟网型变流器次/超同步振荡稳定性的机理和特性分析构网型(grid-forming,GFM)并网变流器具有良好的弱电网稳定性,同时能够改善跟网型变流器的次/超同步振荡稳定性。为明确GFM控制改善振荡稳定性的机理和特性,首先推导了GFM变流器电路特性与每个控制环节的关系,并分别从变流器自身电路特性、变流器并网系统整体阻抗特性角度揭示了GFM控制改善振荡稳定性的电路机理。然后,基于阻抗...https://read.cnki.net/web/Journal/Article/DWJS202403006.html
8.构网型变流器技术的发展现状与趋势研究此外,构网型变流器在空载条件下,为负载和附近运行的其他装置提供了参考电压,而跟网型变流器对于电流的输入需要一个参考功角。尽管工作原理不同,但在稳态运行时,构网型和跟网型变流器都会根据实际运行的条件控制电网中的有功功率和无功功率的输入,同时考虑变流器的内部物理电压和电流的限制。此外,这类型的变流器都可以...https://www.fx361.com/page/2022/0928/13771520.shtml
9.中国下一代输电技术:高温超导气体绝缘,谁更领先跟网型储能系统会跟随电网需求输出电能,无法提供主动同步支撑,难以适应高比例新能源并网需求。而构网型储能系统则不仅能为电网提供稳定电压源,还可主动平抑新能源发电波动,具有系统惯量、电压与频率支撑能力强等优势,还可以在极端环境下提升电力系统的运行稳定性和电网接纳新能源能力。 https://www.ithome.com/0/709/077.htm
10.时伯年:新型电力系统下的构网型技术我们目前现在大量应用的是跟网型技术,现在的技术热点是构网型技术,从这张对比图可以看到,构网型技术有很多的优势,包括惯量支撑、电压支撑等方面,只有把这些技术用好,才能避免新能源飞速发展后,在电网强度逐渐下降的形势之下,还要保证安全可靠的运行,这是必不可少的技术。 https://www.mhcm.net/cms/show-144338.html