主要是对训练数据进行随机偏移、转动等变换图像处理,这样可以尽可能让训练数据多样化
另外处理数据方式采用分批无序读取的形式,避免了数据按目录排序训练
这个部分是核心工作,目的是使用ImageNet训练出的权重来做我们的特征提取器,注意这里后面的分类层去掉
然后是冻结这些层,因为是训练好的
这里我们用fit_generator函数,它可以避免了一次性加载大量的数据,并且生成器与模型将并行执行以提高效率。比如可以在CPU上进行实时的数据提升,同时在GPU上进行模型训练
训练数据540M,测试数据270M,大家可以去官网下载
训练的时候会自动去下权值,比如vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5,但是如果我们已经下载好了的话,可以改源代码,让他直接读取我们的下载好的权值,比如在resnet50.py中
vgg19的深度有26层,参数达到了549M,原模型最后有3个全连接层做分类器所以我还是加了一个1024的全连接层,训练10轮的情况达到了89%
ResNet50的深度达到了168层,但是参数只有99M,分类模型我就简单点,一层直接分类,训练10轮的达到了96%的准确率
THE END