谷禾健康–第29页–谷禾健康

大多数外行人没有听到过一个词——过敏级联反应,要深度了解过敏,非常有必要知道和了解过敏级联反应,在了解这个概念之前,我们先了解回顾下免疫系统的工作原理。

免疫系统是非常具体和目标导向的。虽然你可能对多种物质过敏,但过敏反应是针对特定过敏原的。例如,你可能对花生过敏,但一般对海鲜不过敏。

然而有时,两种或多种外来物质可能对于免疫系统而言,在性质上看起来相似,这可能会使免疫系统误认为另一种并对两者都产生反应。

例如,本来你是对桃树花粉过敏,但你的免疫系统也可能会对苹果或其他水果产生反应,免疫系统会误认为它们是桃树花粉。好比一个多层次的瀑布,水从一个壁到另一个壁越来越强。

这些交叉反应的发生是由于多种植物产生的类似过敏原。不幸的是,这会导致细胞和化学相互作用的有害序列,有时针对无害的物质。最终结果是由“过敏级联”产生的一系列明确的体征和症状。

身体的免疫系统旨在不断寻找入侵者。它能区分“我”和“非我”(它保护我们免受外来物质的侵害)。

来看看这个复杂的过程:

有些人接触到花粉过敏。一旦花粉进入体内,就会被免疫系统的侦察兵[称为抗原呈递细胞(APC)]吞噬。这些APC将花粉切成小碎片,然后与细胞中的特殊蛋白质结合,称为人类白细胞抗原(HLA)。

HLA的功能就像一个指南,帮助身体区分“自我”和“非我”。当与HLA结合时,这些碎片对于过敏级联反应中的关键参与者淋巴细胞变得可见,淋巴细胞将它们识别为外来物。这种花粉片段-HLA组合暴露在APC的表面,这些特化的白细胞完全可见。

基本概念:免疫反应重要细胞类型和信使蛋白

术语白细胞源自希腊语单词“leukos”,意思是白色,“cytes”意思是细胞。白细胞对免疫系统至关重要,包括:单核细胞、巨噬细胞、中性粒细胞和淋巴细胞。

淋巴细胞是白细胞,在免疫和过敏中都起着关键作用。它们分为两种类型:T淋巴细胞和B淋巴细胞。每种类型负责免疫系统的特定分支。

T淋巴细胞的职责是准备好直接转变为攻击外来物质的行动(细胞介导的免疫)。一些T淋巴细胞是“杀伤”(细胞毒性或杀伤性T细胞)专家。

而另一些则有助于免疫反应,被称为“辅助”细胞(TH细胞)。根据它们释放的蛋白质,TH细胞进一步分为TH1(抗感染)和TH2(过敏促进剂)。

T淋巴细胞的伙伴是B淋巴细胞。B淋巴细胞是微小的抗体工厂,当受到TH细胞的刺激时,它们会产生抗体以帮助破坏外来物质。

嗜碱性粒细胞和嗜酸性粒细胞是其他在过敏反应中起重要作用的白细胞。

T细胞通常会在过敏条件下调用这些细胞。患有哮喘和其他过敏性疾病的人的血液嗜酸性粒细胞水平通常会升高。

细胞因子是一组多样化的蛋白质,由淋巴细胞和巨噬细胞在损伤或激活(例如过敏原)时释放。它们充当“加强”或“降低”免疫反应的化学信号。

淋巴细胞—T&B

淋巴细胞—T&B:淋巴细胞是白细胞家族的一部分,由T和B两种类型组成。每个T淋巴细胞或T细胞就像一个受过专门训练的侦探。T细胞检查APC暴露的证据。

当特定T细胞与APC上的、花粉片段接触并将其识别为外来物时,就会触发“辅助”细胞(实际上是TH2细胞)的特化T细胞大军,从而释放刺激B淋巴细胞的化学物质(细胞因子)。

B淋巴细胞产生与过敏原(如花粉片段)结合的IgE抗体。一旦IgE产生,它就会特异性识别花粉,并在未来暴露时识别它。

已发现促进过敏的TH2细胞和抗感染的TH1细胞之间的平衡是我们免疫系统的关键组成部分。过敏反应涉及大量TH2细胞,而感染会产生大量TH1细胞,然后释放出有助于消灭微生物的化学物质。

近几十年来,过敏和哮喘发病率一直在上升。一种“卫生假说”的理论解释了这种增加是由于现代人相对无菌的环境(可能是由于抗生素和疫苗接种)导致的人类免疫系统“装备不足”的结果。

这个概念意味着暴露于足够微生物的个体的免疫系统在受到刺激时会产生TH1细胞。但是,如果一个人的免疫系统因接触微生物而没有得到充分刺激以产生TH1细胞,它反而会倾向于产生过敏反应的系统并产生TH2细胞,结果就是过敏反应的倾向。

虽然这看起来很复杂,但了解不同的淋巴细胞反应对于治疗过敏很重要。理想情况下,我们希望用TH1淋巴细胞而不是TH2淋巴细胞对花粉作出反应,后者会促进过敏反应并大量产生IgE。过敏者会召唤大量TH2细胞来响应过敏原,而非过敏者则不会。

最后,发生过敏性疾病的倾向(例如,对过敏原产生强烈的TH2反应)被认为部分遗传自父母。出生时,抗感染的TH1细胞和促进过敏的TH2细胞之间似乎存在平衡。

目前的看法是,当孩子暴露于环境中的某些物质时,过敏会在出生后发展。免疫系统受到这些暴露的刺激,因此倾向于产生促进过敏的TH2细胞。他们特别倾向于在继承父母遗传倾向的个体中促进过敏。

肥大细胞和嗜碱性粒细胞

如果你患有任何形式的肥大细胞增多症,重要的是要了解过敏级联反应链中每个环节的工作原理,以及肥大细胞以外的那些细胞与过敏反应以及每一步在身体中的发生。

肥大细胞和嗜碱性粒细胞是过敏级联反应中的下一个关键参与者。它们是具有潜在爆炸行为的“挥发性电池”。肥大细胞存在于组织中,而嗜碱性粒细胞存在于血液中。这些细胞中的每一个都有超过100,000个IgE受体位点,可以使IgE结合在这些细胞表面。

IgE与这些细胞的结合就像炸弹上的保险丝。细胞现在用IgE致敏或引发。当这个过敏或致敏的个体再次接触花粉时,IgE已准备好与这种花粉结合。当这种情况发生时,肥大细胞和嗜碱性粒细胞被激活并释放出许多化学物质,最终产生我们可以看到和感觉到的过敏反应。

这些化学物质在体内释放的任何地方都会显示过敏症状。以花粉为例,当鼻中的肥大细胞因接触花粉而被激活时,释放出的化学物质可能会导致打喷嚏、鼻塞和流鼻涕——这是花粉热的典型症状。一旦致敏,肥大细胞和嗜碱性粒细胞可以在数月甚至数年内保持准备好用IgE点燃。

化学介质

每个肥大细胞和嗜碱性粒细胞可能含有1000多个小包(颗粒)。这些颗粒中的每一个都含有30多种过敏化学物质,称为化学介质。许多这些化学介质已经准备好并在颗粒发生过敏反应时从颗粒中释放出来。这些化学介质中最重要的是组胺。一旦释放到组织或血流中,组胺就会附着在大多数细胞表面存在的组胺受体(H1受体)上。

这种附着会对血管、粘液腺和支气管产生某些影响。这些影响会导致典型的过敏症状,例如鼻子、喉咙和上颚肿胀、打喷嚏和瘙痒。

一些化学介质直到肥大细胞或嗜碱性粒细胞活化5到30分钟后才会形成。其中最突出的是白三烯。白三烯D4的效力是组胺的10倍。其作用与组胺相似,但白三烯D4还会吸引其他细胞到该区域,从而加重炎症。

白三烯最初于1938年被发现,被称为“过敏反应的慢反应物质(SRS-A)”。四十年后,瑞典的Samuelsen发现它们在过敏性炎症中起着重要作用。

最近,发现一种白三烯调节剂的新药物家族有助于治疗哮喘。例如孟鲁司特(Singulair)和扎鲁司特(Accolate)。

在肥大细胞刺激后形成的另一组引起炎症的化学介质是前列腺素。特别是前列腺素D2,是过敏性哮喘患者肺气道(支气管)炎症的一个重要因素。

回到过敏级联的概念,当医生使用这个术语时,他们指的是对过敏原的渐进致敏和反应。

有3个阶段:

致敏或诱导——早期阶段——后期

在这三个阶段中,每个阶段都有不同的身体细胞和激素或化学物质在起作用。例如,如上所述,最初IgE会引发过敏反应。后来,嗜酸性粒细胞发挥更大的作用。在这些阶段,化学介质也会与这些免疫系统细胞相互作用。

★致敏

我们每天都会接触到环境中的数百种物质。但是对于某些人来说,第一次接触其中的一些东西,例如花粉,会导致免疫系统反应过度并从此对这种物质变得“敏感”。

当这种情况发生时,免疫细胞之间会发生级联反应,例如:

T辅助细胞因子刺激B细胞

B细胞变成浆细胞,开始制造IgE抗体

IgE抗体与肥大细胞结合

在大多数情况下,这一切都在悄无声息地发生。

这意味着虽然过敏过程已在体内触发,但你第一次可能不会有任何明显的症状。可能有些人仅与过敏原接触一次就发生完全致敏;但某些人,可能需要接触几次才能完全致敏。

★早期阶段

一旦完全敏感,到再次接触该过敏原时,身体就会知道这是一种(假定的)威胁,并准备好应对它。

从本质上讲,免疫系统的反应方式与它对抗引起感染的细菌和病毒等细菌的方式类似。

想想那些在致敏阶段形成的IgE抗体和肥大细胞的组合,就像士兵一样。它们会释放调解器,在全身上下移动并击退入侵者(如花粉)。最常见的介质之一是组胺。

早期阶段反应可以在暴露后几分钟内开始于变应原,然后可以持续3-4小时。

★后期

在花粉引起强烈过敏和哮喘发作后,症状在几个小时后开始消退。但随后又变得更糟了。级联的后期阶段是发生这种情况的原因。

晚期阶段的免疫系统反应与早期阶段同时开始。然而,它引起的变化实际上并不会立即引起症状。在这个阶段,早期动员的“士兵”招募帮手。

炎症细胞包括:

嗜酸性粒细胞、中性粒细胞、嗜碱性粒细胞、单核细胞、淋巴细胞

这些细胞导致气道进一步和持续的炎症。因此,该阶段的症状会在接触过敏原4小时后开始出现,然后会持续6-12小时。

总结下过敏级联过程:

1.首次接触过敏原

2.抗原呈递细胞向T细胞提供过敏原

3.T细胞激活B细胞

5.IgE抗体附着于肥大细胞和嗜碱性粒细胞表面的FC受体,等待下一次接触

6.第二次接触过敏原(有时几年后)

7.过敏原附着在从肥大细胞/嗜碱性粒细胞表面伸出的IgE

8.免疫反应细胞脱颗粒,释放介质或化学物质

9.介质/化学品引起全身效应,例如血管舒张、粘液分泌、神经刺激和平滑肌收缩

10.全身效应导致个体化过敏反应(从鼻子痒、哮喘、湿疹到过敏反应)

虽然一些过敏反应是轻微的,可能仅限于身体的某些部位,但有些过敏反应是严重的,会影响整个身体的健康。

//黑眼圈

黑眼圈除了是熬夜,另外一个可能是过敏的一个迹象。当你总是揉眼睛发痒时,可能是过敏。服用抗组胺药可以缓解眼睛发痒、流泪、打喷嚏和流鼻涕等症状。

//堵塞

感冒或流感,鼻塞应该在一两周内消失。如果充血一直持续下去,则更可能归咎于过敏。在过敏反应期间,鼻腔内壁会膨胀并产生额外的粘液,感到鼻窦压力和头痛。鼻用类固醇用于减少由过敏引起的鼻腔粘膜炎症。用药请咨询过敏症专科医生。

//喘息

喘息通常与哮喘有关,但也可能与季节性过敏或严重的过敏反应有关。当你必须通过狭窄的气道呼吸时,就会发出口哨声。在严重的情况下,可能需要紧急护理。

图源:medicinenet

//呕吐腹泻

进食某种食物后造成呕吐,腹泻及腹痛等不良反应。轻度食物过敏会慢慢好转,严重的食物过敏能引起喉咙水肿而造成窒息。食物过敏最常涉及的是消化系统,症状呈非特异,容易漏诊。

//发痒

不停瘙痒或变成皮疹,则可能患有湿疹。这种皮肤反应在过敏人群中很常见。触发因素包括肥皂或洗涤剂、织物柔软剂中的化学物质、宠物皮屑和粗糙的织物。可以使用抗组胺药、保湿剂和氢化可的松乳膏治疗。

//荨麻疹

伤口苍白、发痒、发红,可持续数小时到数天不等。它们是对食物、药物或昆虫叮咬等事物的过敏反应。抗组胺药通常可以立即缓解,也可能需要类固醇。最好的防御是找到过敏源避免触发。

//失眠

皮肤和眼睛发痒、头痛不舒服、鼻窦疼痛和其他过敏症状会让人难以入睡。咳嗽或喘息也可能导致难以入睡。

希望每个人都远离过敏。请注意,本文信息仅供学习参考交流,不参与提供医疗建议。

谷禾健康

脱硫弧菌属无处不在,可以在土壤、水和污水中以及动物和人类的消化道中找到。它们是硫酸盐还原性、非发酵性、厌氧性、革兰氏阴性杆菌,细胞直径约为0.7微,具有中温生长模式,在25至40摄氏度之间的温度下生长速率理想。

脱硫弧菌又被称为硫酸盐还原菌,由于其金属腐蚀能力,从而导致工业中的许多健康和安全问题。然而,该生物体也显示出生物修复的潜力,因为它可以对土壤中的污染物进行厌氧转化。

脱硫弧菌的物种被确定为生物修复剂,它能减少铀(VI)、铬(VI)和铁(III)等几种有毒金属,在环境中,脱硫弧菌具有非常有用和有害的潜力。

结构和分类

由于惰性生长模式持续4至7天,因此很难通过常规方法从临床标本中分离。出于这个原因,所以目前通常使用分子技术鉴别该物种。

到目前为止,四种脱硫弧菌种均与人类感染有关(主要是腹部):

Desulfovibrio.fairfieldensis、

Desulfovibrio.desulfuricans、

Desulfovibrio.piger

Desulfovibrio.vulgaris

据不完全统计,SRB已有12个属40多个种,SRB的分类学研究进展比较缓慢。已知的SRB从生理学上分为两大亚类。

Ⅰ类:如脱硫弧菌属Desulfovibrio、脱硫单胞菌属Desulfomonas、脱硫叶菌属Desulfobulbus和脱硫肠状菌属Desulfotomaculum,其特点是可利用乳酸、丙酮酸、乙醇或某些脂肪酸为碳源及能源,将硫酸盐还原为硫化氢。

Ⅱ类:如脱硫菌属Thiobacillus、脱硫球菌属Desulfococcus、脱硫八叠球菌属Sporosarcina和脱硫线菌属Desulfotalea,它们的特别之处是可以氧化脂肪酸,并将硫酸盐还原为硫。随着研究的进展,陆续又有一些新的种属被命名。

由于脱硫弧菌的历史重要性,已经对两种菌株进行了基因组测序,一种正在进行中。这些菌株包括DesulfovibriodesulfuricansG20(已完成)、Desulfovibriovulgarissubsp.

两个完全测序的基因组都显示Desulfovibrio具有一条染色体长度超过3Mbp。两次测序还发现蛋白质的数量都在3000以上。

生态属性

培养和分离

大多数脱硫弧菌可以耐受少量暴露于空气中;然而,电镀介质中的氧气可以延迟或抑制该菌落的生长。因此,如果培养该菌,操作和生长应在厌氧生长室中进行。即使塑料物品(培养皿、eppendorf管、移液管吸头、锥形管等)有氧气,也会阻碍Desulfovibrio.vulgaris和其他脱硫弧菌菌株生长。因此,塑料制品在使用前应在厌氧室内“脱气”至少7天。

如果将含有合适碳源和硫酸盐的细菌盐混合物与接种物在pH7.5下厌氧培养,则会产生脱硫弧菌属。通过添加化学还原剂,Eh应低于-150mV。亚铁盐过量存在表明硫酸盐通过变黑而减少脱硫弧菌属的共养生活方式。主要与氢营养型产甲烷菌有关。

环境特性

硫酸盐还原菌(例如Desulfovibriospp.和Desulfotomaculumspp.)主要在深层地下水中产生气味,释放硫化氢。这些细菌还在热分层的湖泊和水库的厌氧低水层中产生硫化物气味。由其它细菌,尤其是产生的“沼泽”气味假单胞菌和单胞菌。这种现象是由在厌氧条件下具有强烈气味的有机硫化物(例如二甲基多硫化物)引起的。

Desulfovibrodesulfuricans菌株为研究汞甲基化提供了一个极好的机会,因为它是典型的厌氧嗜温细菌,对pH和盐度具有广泛的耐受性,它也能在富马酸盐作为电子受体的情况下生长良好,从而防止硫化物对汞甲基化的抑制。

脱硫弧菌能利用乙醇或乳酸还原硫酸盐产生乙酸代谢产物。其中Desulfovibriosp.strainJY菌株在淡水和海水环境中均具有很强的产电能力,最大电流输出密度可达243.2mA/m2。该菌株是目前报道的首例电活性脱硫弧菌,可为探索微生物胞外电子传递在腐蚀中的作用提供模式菌株,进而为海洋金属腐蚀防控技术提供策略。

约50%人的口腔和肠道中存在Desulfovibrio,也就是硫酸盐还原菌(SRB)。它在肠道中茁壮成长,释放硫化氢(H2S)作为硫酸盐还原的产物。

在厌氧条件下微生物将硫酸盐还原为H2S的过程称为反硫化作用。参与这一过程的微生物称为硫酸盐还原菌。反硫化作用具有高度特异性,主要是由脱硫弧菌属(Desulfovibrio)来完成。如脱硫脱硫弧菌(D.desulfuricans)是一典型反硫化作用的代表菌,其反应式为:

C6H12O6+3H2SO4→6CO2+6H2O+3H2S+能量

产生的H2S与铁化学氧化产生的Fe2+形成FeS和Fe(OH)2,这是造成铁锈蚀的主要原因。

H2S作为第三种气体信号分子广泛参与动物体内的多种生化反应,是胃肠道内一种重要的生理分子,调节细胞和组织的生理功能。硫化氢参与了对消化系统许多疾病的自然预防,但这种分子在胃肠道中的活性取决于这种气体介质在特定组织中的浓度。

肠道细菌中包括Desulfovibrio是胃肠道硫化氢的主要生产者,细菌释放的硫化氢扩散到上皮下区域由肠细胞和结肠细胞控制。这种相互作用对调节粘膜功能和肠道内环境很重要。

肠道炎症

H2S在肠道炎症中的作用是复杂的,有时是矛盾的。

一些实验和临床数据表明H2S与慢性结肠疾病和大肠炎症有关。同样,一些脱硫弧菌物种的存在与慢性牙周炎、细胞死亡和炎症性肠病如溃疡性结肠炎和克罗恩病有关,或者至少增加复发的风险。

但是同时也有研究表明H2S可以直接促进血管生成,其对胃肠道溃疡愈合的有益作用可能部分是由于溃疡边缘的粘膜血流增强,这对溃疡修复至关重要。

内脏敏感性

H2S在刺激肠道内脏敏感性方面也具有双重作用。

硫化氢可以调节胃肠道的伤害敏感性,对脊髓和脊髓上内脏运动反应产生抗伤害作用。

硫化氢同时也可以通过激活T型钙通道对结肠扩张引起的内脏运动反应具有促痛作用。锌的螯合作用通常通过硫化氢与T型钙通道结合,似乎是结肠传入激活的关键步骤。硫化氢的促伤害作用来自硫化氢直接激活空肠肠系膜传入。

硫化氢通过几个确定的分子靶点调节胃肠道的伤害性反射,包括:

T型电压门控钙通道(VGCC)

TRPV1受体

TRPA1受体

通过使用氢气,SRB有助于高效能量获取和发酵细菌产生的底物的完全氧化。因此,SRB可以在肠道微生物组中发挥双重作用。来自健康个体的相对较少的菌株已被表征。在从西方国家获得的样本中,Desulfovibrio.piger被描述为最丰富的。

肥胖/代谢紊乱

一项研究来自广东肠道微生物组计划(GGMP)的广泛的肠道菌群数据集,该数据包含来自中国广东省14个地区的7009个人,研究结果表明Desulfovibriopiger可能是广东人群肠道中最常见和最丰富的Desulfovibrio物种。

另有研究也表明,肥胖和超重儿童Desulfovibrio显著低于正常体重儿童。

帕金森

肝脏脂质代谢

宏基因组学显示富含黄芪多糖的D.vulgaris可能通过产生乙酸和调节小鼠肝脏脂质代谢来有效减轻肝脏脂肪变性。

关节炎

临床报告了一例由脱硫弧菌引起的髋关节化脓性关节炎。患者接受了清创术,随后进行了靶向抗生素治疗,感染消退。

结直肠癌

D.longreachensis分别在III/IV期和0期结直肠癌中增加。

系统性硬化症

系统性硬化症患者的肠道微生物群的特征是促炎性有害属增加,尤其是Desulfovibrio。

妊娠期糖尿病

Desulfovibrio在妊娠期糖尿病女性中大量存在。

IBS

便秘型肠易激综合征患者肠道微生物群中的Desulfovibrio高于健康人。

菌血症

Desulfovibriofairfieldensis和D.desulfuricans与菌血症有关。

但是这些样本量、研究对象和部分缺乏健康对象参数。可能需要进行大规模的队列分析。

总结

Desulfovibrio是一类还原硫酸盐产生H2S的厌氧菌,内源性的H2S会毒害肠道上皮细胞,会造成肠道敏感性,肠漏或者腹痛等,多项临床研究证实脱硫弧菌属数量的增多是息肉和溃疡性结肠炎疾病的一个重要特征。

谷禾大数据显示,如果脱硫弧菌同时和几个其他的菌超标,如,肺炎链球菌、克雷伯氏菌、嗜胆菌属、甲烷短杆菌也超标,对应菌群代谢产物如胆汁酸,对甲酚等代谢问题,引发腹胀,便秘和情绪等问题。也有研究证实便秘组克里斯滕森菌(christensenella)和脱硫弧菌(desulfovibrio)的相对丰度较高。

因此,一个菌的好坏及其健康特性,需要将其置于整个微生物生态中去综合考量,通过整个生态菌群构成和代谢来判别其丰度阈值和功能特性。

主要参考文献

NCBI.GenomeProject>DesulfovibriodesulfuricansG20projectatDOEJointGenomeInstitute.

VerstrekenI,LalemanW,WautersG,VerhaegenJ.Desulfovibriodesulfuricansbacteremiainanimmunocompromisedhostwithalivergraftandulcerativecolitis.JClinMicrobiol.2012Jan;50(1):199-201.doi:10.1128/JCM.00987-11.Epub2011Nov9.PMID:22075582;PMCID:PMC3256723.

XuY,ShaoM,etal.Antipsychotic-inducedgastrointestinalhypomotilityandthealterationingutmicrobiotainpatientswithschizophrenia.BrainBehavImmun.2021Sep24;99:119-129.doi:10.1016/j.bbi.2021.09.014.

MarquisTJ,WilliamsVJ,BanachDB.SepticarthritiscausedbyDesulfovibriodesulfuricans:Acasereportandreviewoftheliterature.Anaerobe.2021Aug;70:102407.doi:10.1016/j.anaerobe.2021.102407.Epub2021Jun18.PMID:34153468.

ChenYR,JingQL,ChenFL,ZhengH,ChenLD,YangZC.DesulfovibrioisnotalwaysassociatedwithadversehealtheffectsintheGuangdongGutMicrobiomeProject.PeerJ.2021Aug18;9:e12033.doi:10.7717/peerj.12033.PMID:34466295;PMCID:PMC8380029.

随着工业革命的发展,城市化进程的加快和经济的发展导致能源消耗和废物排放激增,在过去的几十年里,环境污染物已成为一种日益普遍的健康危害。

最近的研究还表明,人类微生物组可以代谢环境化学物质,进而可能会受到化学物质暴露的影响。

这种直接相互作用表明,在风险评估中可能需要考虑微生物组。

目前越来越多的证据表明,接触这些环境化学物质是导致多种健康障碍发展的重要因素之一。例如,体外、体内和流行病学研究已将人类暴露于内分泌干扰的化学物质与肥胖、代谢综合征和2型糖尿病联系起来。

此外,接触环境污染物与产前缺陷、呼吸系统疾病、心脏病和精神障碍以及患癌可能性增加和预期寿命缩短有关,而胃肠道微生物群对各种宿主代谢和免疫功能起着至关重要的作用。

JinYetal.EnvironPollut.2017.

尽管大多数环境污染物并不直接针对肠道微生物群,但一些污染物可以通过不同途径进入人体并与肠道微生物群相互作用。

先前的多项研究表明,暴露于环境污染物会改变肠道微生物群的组成,导致能量代谢、营养吸收和免疫系统功能障碍或产生其他毒性症状。有人提出胃肠道微生物可能通过改变环境化学物质的吸收、处置、代谢和排泄来影响肥胖和糖尿病等疾病。

肠道微生物群对药物、饮食以及环境污染物都非常敏感,包括抗生素、重金属、持久性有机污染物、杀虫剂、纳米材料和食品添加剂等。

环境污染物可能对肠道微生物群的影响及其对健康的产生后续影响。

我们每个人的肠道中都携带着数千种细菌以及一些其他类型的微生物。虽然说所有人都具有非常相似的微生物群,但没有两个人的肠道中细菌种类的组成完全相同,换句话说,每个人的微生物群可能会像指纹一样独特。

不过,不同的细菌物种在人与人之间可能存在很大差异,但这些物种往往编码相同的代谢途径。

通过查阅文献得出肠道微生物具有广泛的代谢环境化学物质的能力,污染物的细菌依赖性代谢会调节宿主的毒性。相反,来自各种化学家族的环境污染物已被证明会改变胃肠道细菌的组成和/或代谢活动,这可能是影响个体微生物群的重要因素。

直接代谢排出

几十年来,人们已经知道胃肠道微生物参与异生物质的生物转化。

注:异生物质,是指由人工合成的化学物质。如农药、洗涤剂及化工原料等,其中各种合成农药占绝大多数。异生物质是对身体来说是异物的物质。

早在1973年,Scheline就提出,胃肠道微生物群代谢外来化合物的潜力与肝脏不差上下。此后已为胃肠道微生物群鉴定了40多种药物底物,并强调肠道微生物对药物进行多种化学转化的能力,包括:

还原、水解、琥珀酸基团的去除、脱羟基、乙酰化、脱乙酰、N-氧化物键的裂解、蛋白水解、脱硝、解偶联、噻唑开环、去糖基化、去甲基化

胃肠道是异生物质进入人体的主要途径。细菌代谢的速率和程度受到达远端肠道的异生物质数量的影响,在那里细菌丰度最高。环境化学物质在摄入后可能吸收不良,随后被蠕动扫到远端小肠和盲肠,或者,它们及其代谢物可能会穿过肠壁从血液中分离出来。因此,许多化学物质可以被胃肠道微生物群直接代谢。

环境化学物质(或其代谢物)也可能从胆汁中排出。大多数外源性物质是非极性的,因此在胃肠道中被吸收并通过门静脉血输送到肝脏进行解毒。肝脏通常氧化异生素并产生葡萄糖醛酸、硫酸盐或谷胱甘肽结合物。在大多数情况下,结合反应促进排泄,结合物从尿液中消除。

然而,结合物也可以在胆汁中排泄。决定一种化学物质是否排泄到胆汁中的因素尚不完全清楚,一般规则是低分子量化合物(<325kDa)很少排泄到胆汁中,而较高分子量(>325)的化合物可以显着排出。分泌到胆汁中的结合物进入小肠,那些未被吸收的向下移动到大肠,在那里它们可能被微生物群代谢。

ClausSPetal.NPJBiofilmsMicrobiomes,2016

解偶联,形成肝脏循环

胃肠道微生物群可以通过解偶联并减少肝脏异生物质代谢物,导致形成低分子量的非极性分子,这些分子很容易被重吸收。这些非极性分子的重吸收和它们返回肝脏被称为“肠肝循环”。肝肠循环控制着体内内源性底物(如胆汁酸和类固醇)的储存和再利用。然而,它也延迟了体内环境化学物质的消除。

胃肠道细菌介导的环境异生物质转化的例子,如下:

ClausSPetal.,NPJBiofilmsMicrobiomes,2016

胃肠道微生物群的异生物质代谢酶

尽管已经将各种化学反应归因于胃肠道微生物,但只有少数酶家族被确定为胃肠道微生物异生物质代谢。

主要偶氮还原酶、nitroreductases、β-葡糖醛酸酶、硫酸酯酶和β-裂解酶。

胃肠道微生物群的异生物质代谢酶,如下:

(i)偶氮(N=N)键的还原裂解由细菌偶氮还原酶进行。

(ii)细菌硝基还原酶还原硝基(–NO2)官能团到相应的胺。

(iv)异生素的谷胱甘肽结合物也大量排泄在胆汁中。它们被各种哺乳动物酶(γ-谷氨酰转肽酶和羧肽酶)降解,形成半胱氨酸结合物。这些半胱氨酸结合物可能会到达含有-裂解酶活性的胃肠道的一部分,并转化为相应的硫醇。

肠道细菌和人体细胞合作,制造生命所需的酶

据NIEHS科学家领导的一个团队称,人类肠道中的细菌与人体细胞合作,制造出一种生命必不可少的分子。烟酰胺腺嘌呤二核苷酸(NAD)分子是细胞生存必须完成的数百个生化反应所必需的。

研究人员还发现,一些肿瘤内的细菌保护肿瘤免受靶向NAD的抗癌药物的侵害。研究结果于2020年3月3日在线发表在CellMetabolism上。

该研究的主要作者指出,NAD水平会随着哺乳动物的年龄增长而降低。他说有些人服用补充剂来促进NAD的产生。Shats解释说,他的小组的最新研究表明,这些化合物的功效取决于肠道微生物群。

“如果你的肠道细菌没有发现负责促进NAD合成的酶,那么补充剂的效率就会低得多”。

EDC被美国环境保护署描述为外源性因素,因为它可以干扰内源性激素,从而解除对发育过程的管制。由于内分泌系统对器官的影响,EDCs对身体具有深远的全身影响。EDC已通过消化道对动物和人类健康产生不利影响,例如炎症、代谢紊乱、先天性异常,菌群失调。

LiN,etal.EnvironPollut.2021

在过去的50年中,全世界开发了大量抗生素用于人类和兽医学。由于它们在人和动物体内的吸收不完全,部分摄入的抗生素通过粪便或尿液排出到环境中。

越来越多的研究发现,在中国和其他国家的河流和湖泊沉积物、地表水、农业土壤和废水等自然环境中发现了高浓度的各种抗生素。

先前的研究发现,抗生素治疗并没有减少肠道微生物群的总数,而是改变了人类和动物中某些物种的相对数量。此外,抗生素暴露通常会通过增加或减少多样性来改变微生物组的多样性。

更重要的是,抗生素对人类肠道微生物群的影响可持续数年。如克拉霉素和甲硝唑治疗持续改变肠道微生物群组成长达4年。婴儿完成抗生素治疗后,虽然微生物群组成的某些方面恢复到治疗前的水平,但某些细菌种类的丰度发生了永久性改变。这种变化对婴儿有害,扰乱他们的早期发育。值得注意的是,不同的环丙沙星治疗对个体微生物群影响也略有不同。

在生命早期向小鼠施用低剂量的青霉素,可通过降低乳酸菌Lactobacillus,Candidatus,Arthromitus,Allobaculum的水平来增强代谢表型并促进脂质积累。另一份报告显示,给小鼠服用青霉素G、红霉素或两者结合可以增加脂质积累并诱导炎症反应。所有这些处理都降低了拟杆菌属/厚壁菌门的比率。

接触某些抗生素可能会加重某些疾病的严重程度。例如,艰难梭菌是抗生素引起的腹泻的主要原因,它会大大增加住院患者的发病率和死亡率。

用克林霉素和氨苄青霉素这两种最常用的抗生素进行治疗,通过减少Clostridiumscindens菌(胆汁酸代谢的二级调节剂)来增加患者对艰难梭菌感染的易感性。

甲硝唑治疗减少了小鼠结肠的内部粘液层,从而通过减少厌氧拟杆菌的组成,以及增加包括乳酸杆菌在内的耐氧细菌的组成来增加对柠檬酸杆菌引起的结肠炎的易感性。

抗生素治疗还增加了大肠杆菌等病原菌的入侵,抗生素治疗后肠道微生物群中富集了抗生素抗性基因,造成抗生素抗性。

由于使用抗生素治疗,一些非微生物驱动的疾病会更频繁地发生。

在生命早期给小鼠施用万古霉素会通过增加乳杆菌科和疣微菌科的丰度来增强过敏性哮喘,并且这些微生物群的变化与Treg细胞减少有关。

最近,一项研究报告称,口服链霉素、粘菌素和氨苄青霉素的组合或单独使用万古霉素治疗会增加小鼠胰腺b细胞死亡和I型糖尿病的发病率。

然而,抗生素引起的肠道微生物群的改变有时对疾病有益。囊性纤维化是一种常染色体隐性疾病,可导致肠道细菌过度生长。链霉素治疗小鼠9周通过减少肠道细菌过度生长、通过降低乳酸杆菌丰度来调节T细胞谱以及增加肺和肠系膜淋巴结中的免疫细胞水平来改善这种疾病。

对肝硬化患者施用利福昔明可降低韦荣球菌科的丰度并增加真杆菌科的丰度。这些微生物组成的变化改变了患者的代谢特征并降低了疾病的严重程度。诺氟沙星可以减少肝硬化患者的细菌移位,改善肠道屏障功能,从而降低自发性细菌性腹膜炎的风险。

总之,抗生素很容易引起肠道微生物群失调,并对健康产生不利影响。人类和动物可能会长期被动地暴露于环境中低浓度的抗生素中。因此,环境衍生的抗生素对人和动物的健康风险不容忽视。

重金属:导致肠道微生物群失调近年来,环境中的重金属已成为严重的健康风险。作为一种常见的环境污染形式,重金属与多种毒性作用有关,包括致癌作用、氧化应激和DNA损伤,以及对免疫系统的影响。最近,几项研究表明,重金属暴露也可能导致肠道微生物群失调。

砷(As)是一种已知的致癌物质,是一种常见的有毒污染物,广泛分布在我们的环境中。砷通常以砷酸盐[As(V)]的形式附着在固体表面上。摄入As(V)后,肠道微生物群暴露于砷会诱导As硫醇化和甲基化。

据此前报道,砷暴露与多种疾病有关,如皮肤癌、膀胱癌、肺癌和肝癌;糖尿病;和心血管疾病。此外,暴露于10mg/L砷4周会显着扰乱小鼠的微生物组组成和代谢组学特征。一般而言,As暴露后厚壁菌门的丰度显着下降,而拟杆菌门的丰度显着增加。

镉(Cd)经常且广泛地用于制造许多产品,例如电池、金属电镀、颜料和塑料。在一些国家,尤其是中国等发展中国家,在水生系统、沉积物和土壤中观察到高浓度的Cd。

据报道,镉毒性与致癌作用、肝毒性、氧化应激和免疫毒性有关。最近,研究报告雄性小鼠亚慢性暴露于低剂量Cd(饮用水中10毫克/升)10周会降低厚壁菌门和变形菌门的相对丰度,并增加盲肠和粪便中拟杆菌门的相对丰度。肠道微生物组组成的这些变化与雄性小鼠血清中脂多糖(LPS)水平升高、肝脏炎症甚至能量代谢失调有关。

铅(Pb)也是一种剧毒金属,疾病控制和预防中心非常重视。事实上,环境铅是一种普遍存在的全球健康危害,因为它广泛用于各种消费品,例如汽油中的四乙基铅。由于它在空气、土壤、水、旧油漆和食物中的持久性,人类和动物可以通过摄入、吸入和皮肤吸收吸收铅。铅中毒还通过其能量产生和其他代谢过程的中断而与肥胖的发展有关。

最近的一份报告显示,围产期铅暴露(饮用水中32毫克/升)持续40周会导致成年雄性小鼠体重增加,但不会导致雌性小鼠体重增加。接触铅后微生物组中没有观察到拟杆菌/厚壁菌的比例下降;Desulfovibrionaceae、Barnesiella和ClostridiumXIVb的丰度在科水平上有所增加;接触铅后,乳球菌、肠杆菌和柄杆菌Caulobacterales的丰度下降。此外,Akkermansianuciniphila在暴露于铅的小鼠中。

持久性有机污染物:改变微生物组成,导致炎症

持久性有机污染物(POPs)包括有机氯农药、多氯联苯(PCBs)、多溴联苯醚和多环芳烃(PAHs)是合成化合物,具有持久性、半挥发性和高毒性,可在生物组织中积累。

PCB是一种致癌物质,因其介电特性和化学稳定性而被用于制造电容器、变压器、冷却液、液压油和润滑剂。PCBs可以在小鼠暴露后2天内显着改变肠道微生物群的组成。

肠道中的产气荚膜梭菌(Clostridiumperfringens)和拜氏梭菌(Clostridiumbeijerinckii)可以通过去除氯原子和打开苯环来降解多氯联苯。

暴露于一种PCB,2,3,7,8四氯二苯并呋喃(TCDF),以24毫克/公斤体重的剂量连续5天会降低厚壁菌门/拟杆菌门的比率,增加黄杆菌(Flavobacteria)的水平,并降低盲肠中的梭菌。

这些微生物群组成的变化与胆汁酸代谢的改变有关。此外,在分子水平上,TCDF还可以抑制法尼醇X受体(FXR)信号通路,由于细菌发酵而引发宿主体内显着的炎症和代谢紊乱。此外,TCDF诱导的变化以芳烃受体(AHR)依赖性方式发生。

PAH被认为是高度优先的环境污染物,因为它们对人类具有毒性、致癌性和假定的雌激素或抗雌激素特性。人类接触高分子量多环芳烃的途径主要是通过口服炭烤、烤和熏肉或摄入未清洁干净的蔬菜。

摄入的多环芳烃到达小肠肠细胞和肝脏肝细胞并作为AHR配体。此外,结肠中的微生物群可以催化多环芳烃转化为雌激素。这种生物活化可能是PAH毒性的潜在机制。另一种AHR调节剂二恶英也有可能影响小鼠肠道微生物组的组成。

农药/杀虫剂:改变微生物组成农药残留是一个长期存在且严重的环境问题,因为在食品材料、水和土壤中检测到了大量农药。近年来,关于农药对动物影响的健康问题也有所增加。由于某些杀虫剂的抗菌活性,杀虫剂有可能改变肠道微生物组并诱发动物的其他症状。

氯菊酯(PEM)是最具代表性的拟除虫菊酯化合物之一,在低剂量和长期治疗的情况下(Nasuti等人,2016)可以降低拟杆菌、普氏菌和卟啉单胞菌的丰度,并增加肠杆菌科和乳杆菌的丰度。肠道微生物群的这些变化可能导致PEM的神经毒性。

五氯苯酚(PCP)是世界范围内广泛使用的农药。即使在非常低的浓度下,五氯苯酚暴露也会导致水生动物的遗传和生殖毒性。PCP可在鱼类肝脏和肠道内蓄积,抑制鱼类生长,引起肝脏氧化和组织病理学损伤。此外,在金鱼中,接触五氯苯酚(100毫克/升)28天也通过降低厚壁菌门/拟杆菌门的比率来改变微生物组的组成。拟杆菌的相对丰度增加,金黄色杆菌、微杆菌、节杆菌和军团菌的相对丰度在属水平上下降。

当大鼠以高剂量EPO饮食喂养90天时,粪便中厚壁菌门的相对丰度下降,拟杆菌门和变形菌门的相对丰度增加。此外,毛螺菌科和肠杆菌科的相对数量被选择性地富集。作者进一步指出这些由EPO引起的微生物群组成的改变与肝功能受损有关。

毒死蜱(CPF)是一种有机磷杀虫剂,常用于处理水果、蔬菜作物和葡萄园。

CPF可以被肝脏和肠道中的细胞色素P450酶代谢。围产期CPF暴露降低了幼鼠的体重和身长,并抑制了它们的肠道发育。

此外,CPF诱导较高水平的拟杆菌、肠球菌和梭状芽孢杆菌,同时导致较低水平的乳杆菌属和双歧杆菌属。CPF诱导的微生物群失调会破坏粘膜屏障,增加细菌易位,并刺激先天免疫系统。

多菌灵(CBZ;2-苯并咪唑氨基甲酸甲酯)是一种内吸性广谱苯并咪唑杀菌剂,被广泛用于防治真菌病害。CBZ对健康有多种不利影响,例如肝脏氧化应激和水肿、生殖毒性和内分泌紊乱。

在最近的一项研究中,我们观察到,以高剂量向小鼠口服CBZ28天会增加肝脏脂质积累和体重,此外还会增加血清中促炎细胞因子IL-1b和IL-6的水平。

这些变化与CBZ诱导的肠道微生物群失调有关,包括在门水平上拟杆菌的相对水平降低和厚壁菌、变形菌和放线菌的相对水平增加。在科水平上,脱硫弧菌科、瘤胃球菌科、毛螺菌科和去铁杆菌科的相对丰度增加,而S24-7、副普雷沃氏菌科、瑞肯菌科、普雷沃氏菌科、拟杆菌科、卟啉单胞菌科、金银藻科(Christensencealae)的相对丰度减少。

最近,口服暴露(100毫克/公斤体重)至IMZ28天可导致小鼠肠道微生物群失调和结肠炎症。在盲肠中,49.3%的细菌在IMZ暴露后发生了变化。在门水平上,拟杆菌、变形菌和蓝藻的丰度下降,而绿弯菌Chloroflexi、厚壁菌、放线菌和酸杆菌的丰度增加。在属水平上,梭菌、毛螺菌科、螺杆菌科和螺杆菌的丰度显着增加,而S24-7、理肯菌科、普氏菌、厌氧菌和柠檬酸杆菌的丰度显着降低。

在塑料污染严重的地方,更多的微生物可以降解塑料。具有降解塑料能力的微生物酶的数量正在增加,这与当地塑料污染水平有关。

最近发表在科学杂志mBIO上的这项新研究分析了来自世界各地数百个地点的环境DNA样本。研究人员使用计算机建模来搜索具有塑料降解潜力的微生物酶,在污染最严重的地区增加酶的数量增加,换句话说,塑料降解酶的数量和多样性正在增加,直接响应当地的塑料污染水平。

总共发现了超过30,000种酶“同源物”,它们有可能降解10种不同类型的常用塑料。同源物是具有相似特性的蛋白质序列的成员。一些含量最高的地点是众所周知的高污染地区,例如来自地中海和南太平洋的样本。

这么多不同的微生物和环境栖息地中发现如此多的酶。这是一个令人惊讶的发现,真正说明了问题的严重性,这也说明对抗全球塑料危机的潜在途径。

塑料造成的环境污染已成为公共卫生问题。然而,微塑料对肠道微生物群、炎症发展及其潜在机制的影响尚未得到很好的表征。

用高浓度的微塑料处理增加了肠道微生物种类的数量、细菌丰度和菌群多样性。喂养组显示葡萄球菌丰度显着增加,同时副杆菌属显着减少丰度,与空白(未处理)组相比。此外,所有喂养组血清白细胞介素1α水平均显着高于空白组。

城市和下游农业和水产养殖业的密集人类活动对乌鲁木齐河微生物群结构和功能群有很大影响。Pastisphere群落比浮游细菌更能抵抗人类干扰。与周围的水相比,塑料圈增加了上游微生物结构和功能的遗传,也增加了下游水中病原体的存活和繁殖,其中含有高浓度的抗生素。

空气污染物:增加肠道通透性空气污染是指空气中可能由自然和人类活动导致的有害物质的存在。空气污染是一种复杂的气体混合物(包括臭氧、二氧化碳、二氧化硫、一氧化碳和二氧化氮)、颗粒物,包括化石燃料/汽车尾气的燃烧、多环芳烃/PAHS、花粉、孢子、微生物颗粒、矿物粉尘、有机碳、硝酸盐和硫酸盐。

大气颗粒物,尤其是空气污染是世界性的环境问题,会引发多种健康问题。颗粒物质其直径范围为2.5μM-10μM。

作为空气污染成分的颗粒物和臭氧现在被认为具有严重的健康问题,因为臭氧和颗粒物会增加肠道通透性,而且它们可能会破坏肠道细胞壁中存在的紧密连接。由于空气污染对肠道微生物群的影响而发生的变化知之甚少。当颗粒物被摄入时,它会被肠道微生物群代谢成其他一些对整个肠道有害的有毒代谢物,如果这种代谢物进入循环,那么它可能会引起其他一些影响。

生物学研究的最新进展表明,空气污染正在导致肠道微生物群的组成和生理发生改变。人类中,吸入的PM会迅速从肺部清除并运输到肠道,在那里它可能会导致菌群发生改变。

在炎症性肠病(IBD)的小鼠模型中,口服环境PM10的浓度代表了在高水平空气污染期间可能发生的剂量,已被证明会显着影响肠道微生物群。厚壁菌门的比例增加,而拟杆菌门减少,炎症反应和肠道通透性得到提高。

肠道微生物群相对浓度的这种显着变化导致支链脂肪酸(异丁酸和异戊酸)的形成,从而导致丁酸浓度降低。丁酸是结肠细胞和肠黏膜细胞必需的脂肪酸,丁酸的减少会导致肠道屏障受损,也会导致黏膜炎症。

流行病学证据表明,空气污染物也与人类IBD风险增加有关。有人提出,一般而言,空气污染和PM可能会促进人类的胃肠道疾病。

纳米材料和食品添加剂:直接改变或者杀死微生物纳米粒子(NP)被广泛用于制造许多产品,例如电子元件、无刮痕涂料、药品、运动器材、化妆品、食品容器和膳食补充剂。

由于它们的体积非常小,NPs能够通过吸入、摄入、皮肤渗透或注射进入人体。作为一种新的环境污染物,NPs会诱导氧化应激,这被认为是最具毒性的细胞内和体内机制。一些纳米颗粒在体外显示出抗菌特性。例如,银纳米颗粒(AgNPs)对细菌、病毒和真菌生物体具有明显的细胞毒性。摄入后,AgNPs可以被小肠吸收并被回肠组织内的派尔氏斑吸收。碳纳米管与细胞壁结合,破坏细胞膜,并对球状或杆状形态的革兰氏阳性菌和革兰氏阴性菌具有抗菌活性。

考虑到NPs的生物分布和抗菌活性的潜力,NPs有可能通过口服和非口服途径影响肠道微生物群。然而,关于纳米颗粒对肠道微生物群的影响的研究很少。

银纳米颗粒(AgNPs):最近的一项研究报告称,给予AgNPs(1mg/mL在2mM柠檬酸盐缓冲液中或在100mg/mL聚乙烯吡咯烷酮水溶液中持续28天)不会改变小鼠肠道微生物组的组成、结构或多样性。然而,另一项研究表明,暴露于AgNPs13周会降低门水平厚壁菌的丰度,并扰乱大鼠回肠中免疫调节基因的表达。

此外,AgNPs对果蝇幼虫有毒,因为它们会降低幼虫肠道微生物群的多样性。需要更多证据确定NPs是否具有抗菌活性或对肠道微生物群的其他影响。

无热量人造甜味剂(NAS)可为不含高热量糖分的食物提供甜味,是无糖汽水、谷物和无糖甜点中的常见成分,推荐用于减肥和患有葡萄糖耐受不良的人或2型糖尿病。

最近的一份研究表明,长期给小鼠喂食NAS(包括糖精、三氯蔗糖和阿斯巴甜)会导致更高的葡萄糖耐受性,并且与肠道中拟杆菌属和梭菌属细菌的丰度增加有关。这种葡萄糖耐受不良的增加依赖于肠道微生物群;NAS在无菌小鼠或抗生素治疗小鼠中均未引起葡萄糖耐受不良;然而,将肠道微生物群从NAS处理的小鼠或体外暴露于NAS的细菌转移到无菌小鼠或抗生素处理的小鼠,会损害葡萄糖稳态。

乳化剂是食品添加剂,通常存在于加工食品(如面包)中,以延长保质期和新鲜度。

最近的一项研究表明,乳化剂的类似洗涤剂的特性可能会对肠道微生物群和肠道组织的完整性产生负面影响。给小鼠喂食羧甲基纤维素或聚山梨醇酯-80(乳化剂)12周,增加了粘液溶解细菌(如瘤胃球菌)的丰度,并降低了粪便中拟杆菌的丰度。微生物群的这些变化伴随着肠道粘液厚度的减少、轻度炎症和代谢综合征的症状,包括肥胖增加和葡萄糖失调。有趣的是,乳化剂对无菌小鼠没有影响。

此外,这些变化可以通过从乳化剂处理的小鼠身上转移微生物群来转移到无菌小鼠身上。此外,作者观察到乳化剂在IL-10缺陷和Toll样受体5(TLR5)缺陷小鼠中促进了强烈的结肠炎,这表明乳化剂可能会促进易感宿主的强烈结肠炎,并诱发低度炎症。

大规模的环境污染和由此产生的抗健康问题是当前主要的公共卫生问题。

当环境污染物改变肠道微生物群组成时,微生物群代谢物,包括短链脂肪酸和胆汁酸,将首先受到影响。这些特性支持短链脂肪酸影响能量代谢、肠道免疫、癌症甚至神经系统功能。

环境污染物会直接影响肠道微生物群并导致代谢物和免疫系统发生变化。生物多样性的丧失和污染物的暴露最终会导致免疫系统失衡,并增加威胁公众健康的炎症性疾病。

环境污染对肠道微生物群的影响及其后续影响

需要注意的是,环境毒理性研究大多数来自动物模型,主要是大小鼠。确定动物结果对推测人类的重要性并不容易,因为它们没有相同的环境暴露以及物种差异。没有人能排除环境污染物可能对人类肠道菌群和表型产生长期影响的可能性,而这些影响迄今为止在动物身上不存在,短期使用是规则。

总之,动物实验和流行病学研究并不完全平行。因此,即使有足够的证据支持基于动物模型结果的“三向相互作用”理论,仍需要更多的流行病学证据来验证。

建议今后应该确定以下几方面:

许多微生物在人类存在之前就已经存活在大自然中,它们也在不断进化从而适应环境。微生物群与人类、环境和它们自身相互作用或许远超出我们想象。

微生物群检测是我们人类得以了解它们的一个通道,对于环境微生物群的深入了解,或许能成为我们了解微生物群与人体关系的一块重要拼图。

ClausSP,GuillouH,Ellero-SimatosS.Thegutmicrobiota:amajorplayerinthetoxicityofenvironmentalpollutants[publishedcorrectionappearsinNPJBiofilmsMicrobiomes.2017Jun22;3:17001].NPJBiofilmsMicrobiomes.2016;2:16003.Published2016May4.doi:10.1038/npjbiofilms.2016.3

LiN,LiJ,ZhangQ,GaoS,QuanX,LiuP,XuC.Effectsofendocrinedisruptingchemicalsinhosthealth:Three-wayinteractionsbetweenenvironmentalexposure,hostphenotypicresponses,andgutmicrobiota.EnvironPollut.2021Feb15;271:116387.doi:10.1016/j.envpol.2020.116387.Epub2020Dec24.PMID:33401209.

JinY,WuS,ZengZ,FuZ.Effectsofenvironmentalpollutantsongutmicrobiota.EnvironPollut.2017Mar;222:1-9.doi:10.1016/j.envpol.2016.11.045.Epub2017Jan11.PMID:28086130.

AnwarH,IftikharA,MuzaffarH,AlmatroudiA,AllemailemKS,NavaidS,SaleemS,KhurshidM.BiodiversityofGutMicrobiota:ImpactofVariousHostandEnvironmentalFactors.BiomedResInt.2021May12;2021:5575245.doi:10.1155/2021/5575245.PMID:34055983;PMCID:PMC8133857.

嗜粘蛋白-阿克曼氏菌(Akkermansiamuciniphila,A.muciniphila),简称为AKK,于2004年发现,是一种从人类粪便中分离出来的椭圆形革兰氏阴性细菌。

该细菌以荷兰微生物生态学家AntonDLAkkermans的名字命名,以表彰他对该领域的贡献。A.muciniphila是人类肠道共生菌,并可以依靠肠粘液层的黏蛋白生存。

在过去十年中,越来越多的研究证明,在糖尿病、心血管疾病、疾病性肠病、神经疾病发现A.muciniphila丰度降低。最近的干预研究还证实如茶或富含多酚水果的饮食可增加其丰度,有助于改善糖尿病和肥胖个体的代谢功能。

总的来说,来自动物和人类研究的越来越多的证据表明A.muciniphila将成为下一代有临床应用前景的益生菌。尤其是它在预防和治疗糖尿病、肥胖症及癌症,这对未来的研究具有重要意义和发展。

值得注意的是,A.muciniphila具有一定的耐氧性,其暴露在空气中24h,仍然有1%以上的存活率。此外,研究还发现低氧气浓度(纳摩尔)下可以显著促进A.muciniphila的生长。

A.muciniphila单独或者成对存在,很少成链生长,其代谢产物为乙酸盐、丙酸盐、1,2-丙二醇等。

在提供蛋白源的基础培养基中,加入N-乙酰氨基葡萄糖、N-乙酰半乳糖胺和葡萄糖作为能源,A.muciniphila可以生长,但是在果糖和纤维二糖等其他糖类作为能源的培养基中A.muciniphila不能生长,说明该菌的生长繁殖需要蛋白质。

A.muciniphila的特别有趣之处在于,与大多数其他有益细菌不同,它不完全依赖于我们的饮食来喂养。即使消化道中没有营养物质,它也会以粘膜层中的粘蛋白为食。

AkkermansiaMuciniphila一般通过母体获得,通常在儿童中大量存在,并随着年龄和疾病而减少。将其恢复到最佳水平可以带来许多好处。

肠道中低浓度的Akkermansiamuciniphila可能表明黏液层较薄,从而导致肠道屏障功能减弱,此外还会增加细菌毒素的易位,炎症性肠病、哮喘、肥胖症和II型糖尿病患者的Akkermansiamuciniphila浓度往往较低。

我们知道整个胃肠道(GI)的粘膜完整性对于维持人体健康至关重要。这其中,粘液屏障的完整性是胃肠道的第一道防线。肠道黏液层的周转包括黏液的合成、分泌和降解,这是一个需要调节和平衡的微妙过程,以确保黏液保持最佳的保护功能。

粘液由多种成分组成:水(90%–95%)、电解质、脂质(1%–2%)、蛋白质等。这种粘液是一种稀的、水性和粘弹性的分泌物,这要归功于被称为粘蛋白的特定粘液蛋白,它是粘液中存在的主要结构和功能成分,浓度为1%–5%。

粘蛋白是一个大的、复杂的、糖基化的蛋白质家族,其特征是一个重要的元素,即“粘蛋白结构域”。它由一个蛋白质核心组成,该核心由含有氨基酸残基脯氨酸(Pro)、苏氨酸(Thr)和丝氨酸(Ser)的序列组成,称为富含PTS的序列,通常串联重复,其中Ser和Thr广泛为O-糖基化并赋予“瓶刷”状构象。

MUC2(黏糖蛋白2)的化学结构和肠道粘液的合成

PaoneP&CaniPD.Gut.2020

肠道菌群在肠道中的分布梯度随其位置不同而变化;微生物密度从近端到远端肠道增加,每克肠道内容物的微生物细胞数量大约如下:

十二指肠中103个

空肠中104个

回肠中107个

结肠中1012个

此外,微生物密度从上皮细胞向管腔增加,在后者中发现的细菌数量最多,与管腔相比,实际上很少有细菌物种能够很好地粘附和驻留在粘液层中。除了粘附这一重要功能外,肠道微生物群对调节肠道粘液层有很大贡献。

需要普及一个认知就是,当我们谈到构成微生物组的各种细菌物种时,有些菌似乎比其他细菌具有更显着的影响,比如肠道基石菌,核心菌,益生菌等,确保这些个体物种的最佳水平——不要太低,也不要太高——可以产生对健康深远的影响。这其中包括有益细菌的关键物种之一AkkermansiaMuciniphila。

谷禾肠道样本大数据库显示A.muciniphila缺乏或未检出情况在人群中很常见,尤其是那些有肠道问题的人。在健康个体中其约占肠道微生物群总数的0.5%–3%。

但是也有例外,在我们在最近的检测的一个56岁女士肠道内该菌的丰度占比超50%,菌群构成如下:

然而,好事太多也可能是坏事。它的名字——“muciniphila”的意思是粘液爱好者,指的是它独特的能力,降解黏蛋白和粘液层。过量的Akkermansia将过度消耗粘液蛋白而存活下来,这是大多数其他细菌所缺乏的生存优势。在这种情况下,非粘液消耗物种的数量显着减少,导致物种多样性减少,Akkermansia增殖异常,从而可能导致肠道屏障损伤,诱发肠道炎症、LPS进入血液的增加、自身免疫性疾病有关,神经退行性疾病等。

该样本检测报告也显示菌群多样性低,肠炎和几项慢病注意风险:

此外,在其它研究文献中也得出Akkermansiamuciniphila丰度高的负面研究,如:

血红素在肠道中的过度增生,与A.muciniphila的粘膜溶解活性有关,在特定情况中,A.muciniphila参与促进代谢综合征。

北京协和团队发现Akkermansiamuciniphila可能参与了系统性红斑狼疮的发生发展,致自身免疫亢进特征。

通过细菌16SrRNA测序表明其属于疣微菌门(Verrucomicrobia),与Verrucomicrobiumspinosum有92%序列相似性,是现在唯一已知的人类肠道疣微菌门成员。其中文译名尚无统一,在文献中以阿克曼黏细菌、艾克曼黏细菌等名字出现。

为了揭示A.muciniphila的功能潜力,对其基因组进行了测序和注释。发现Akkermansiamuciniphila在其相对较小的基因组中编码了大量黏蛋白降解酶,黏蛋白被其降解后其下游聚糖副产物可以交叉饲养其他肠道细菌。

根据DNA-DNA杂交(DigitalDNA-DNAhybridiztion,dDDH)将23个Akkermansia属的菌株分为4种,分别为:

Akkermansiasp.CAG

Akkermansiasp.KLE

Akkermansia.muciniphila

Akkermansia.glycaniphila

但是发现它包含许多候选粘蛋白酶编码基因,但缺乏编码典型粘液结合域的基因。

瓦赫宁根大学微生物实验室从蟒蛇体内分离培养出于A.muciniphila基因序列具有94.4%相似度的新菌株,并且发现它们也具有相似的特性,将该微生物命名为Akkermansiaglycaniphila。

Akkermansiamuciniphila是一种肠道中的黏蛋白降解细菌。粘蛋白是肠上皮黏液层的重要组成部分。粘蛋白由杯状细胞产生肠上皮,是高度糖基化的分子,还包括丝氨酸、苏氨酸和半胱氨酸,它们在肠组织表面形成透明的粘液层,是大量肠道微生物栖息的主要部位。

此外,粘蛋白还覆盖在呼吸道、消化道和泌尿生殖道的细胞表面。许多癌症(胰腺癌、肺癌、乳腺癌、卵巢癌、结肠癌和其他组织)都会增加粘蛋白的产生。粘蛋白也在肺部疾病中过度表达,例如哮喘、支气管炎、慢性阻塞性肺病(COPD)或囊性纤维化。

Akkermansiamuciniphila高度适应从粘蛋白降解中生存——例如,它需要苏氨酸才能生长,并且具有多种适合利用粘蛋白寡糖中的特殊糖类的酶,如唾液酸酶和岩藻糖苷酶,甚至硫酸酯酶。表明宿主动物和AKK菌之间的共同进化进入了高级阶段,并暗示了这些疣状微生物对宿主的潜在功能意义。由于其向其他细菌物种提供粘蛋白降解产物,该物种也是肠道重要的共生菌属。

除了基因序列多样性外,这种细菌还表现出多种生物学功能,包括:

促进肠道屏障完整性;

调节免疫反应;

抑制炎症;

交叉喂养他微生物群;

降低某些心脏病风险,如胰岛素抵抗、总血胆固醇和脂肪组织储存;

防止体重增加。

DOI:(10.1111/jam.14911)

促进肠道屏障

肠道屏障是一个多层复杂的系统,它允许营养吸收,同时防止微生物及其产物的易位。肠道屏障的破坏导致管腔内容物进入血流,激活免疫反应并诱发炎症。

粘液覆盖外肠上皮细胞层,起到物理保护作用,防止微生物和有害化合物的渗透。除了降解粘蛋白外,A.muciniphila还被发现可以刺激粘蛋白的产生。

A.muciniphila在防止人类肠道致病菌增殖中的作用

KaliaVC,etal.,IndianJMicrobiol.2021

今年发表在GutMicrobes研究得出,虽然A.muciniphila是一种粘蛋白降解细菌,但是通过促进分泌型IEC的分化,反而增加了粘液的产生。A.muciniphila处理以Gpr41/43依赖性方式增强了ISC增殖,加速肠上皮再生,促进IEC发育并维持肠道稳态。

注释:哺乳动物肠上皮细胞(IEC)更新较快,每3-5天补充一次。所有类型的IEC都源自肠干细胞(ISC)

粘蛋白的周转率为6-12小时,内层的周转率约为1小时,据信其分泌受神经、激素和旁分泌作用的调节。

在动物模型中,A.muciniphila补充剂使结肠粘液层的厚度增加了大约3倍,明显高于由有益细菌植物乳杆菌引起的厚度增加。此外,在体外,发现A.muciniphila通过直接与肠细胞结合来改善肠细胞单层完整性。

A.muciniphila如何促进粘液厚度尚不清楚。原因之一可能是A.muciniphila通过从降解的粘蛋白中制造短链脂肪酸来刺激粘液周转率,这是合成和分泌粘蛋白的宿主上皮的优选能源。事实上,A.muciniphila补充剂增加了小鼠产生粘蛋白的杯状细胞的数量。

抑制炎症

有证据表明A.muciniphila可以调节炎症。在加速衰老的小鼠模型中补充这种细菌可以减轻炎症。其他研究也显示了A.muciniphila在不同小鼠模型中的抗炎特性,包括无菌模型、肝损伤模型和肥胖模型。

A.muciniphila可以减少由牙龈卟啉单胞菌引起的瘦或肥胖小鼠的炎症。

此外,A.muciniphila分泌的囊泡能够降低TLR4(Toll-likereceptor4,TLR4)的表达,从而调节NF-κB通路,减少促炎因子IL-6、IL-8的分泌。

调节免疫

A.muciniphila降解黏蛋白,释放可以被周围非黏液降解细菌利用的短链脂肪酸(SCFAs)、寡糖等代谢物。SCFAs能抑制组蛋白脱乙酰基酶,从而调节NF-κB通路,减少炎症因子的表达。丁酸可以促进Treg细胞的外周活化,增加结肠中Treg细胞亚群的数量,抑制促炎免疫细胞CD4+T淋巴细胞、CD8+T淋巴细胞活性。

银屑病(俗称牛皮癣)是一种免疫介导的慢性炎症性皮肤病。研究表明银屑病和肠道炎症之间存在关联。一项研究评估了来自巴西的21名银屑病患者与24名健康对照者的肠道微生物群组成和多样性。与对照组相比,银屑病患者的Akkermansiamuciniphila数量有所减少。

扩展阅读:牛皮癣看似皮肤病,实则关系到肠道

交叉喂养

除了A.muciniphila外,粘液层中还常见其他微生物。产生丁酸盐的细菌不具有降解粘液的能力,而是利用被粘蛋白降解的物种(如A.muciniphila)降解的碳和氮,这些微生物包括细菌如Faecalibacteriumprausnitzii,罗斯氏菌等其产生抗炎短链脂肪酸(SCFA)。

产生的乙酸能够促进粪厌氧棒状菌(Anaerostipescaccae),霍氏真杆菌(Eubacteriumhallii)。

报道共培养A.muciniphila与非粘液降解丁酸盐产生细菌F.prausnitzii、A.caccae和Eubacteriumhallii导致同养生长和丁酸盐的产生。因此,A.muciniphila不仅自身在保护肠道上皮方面发挥重要作用,而且还支持抗炎肠道微生物群。

A.muciniphila和其他细菌之间的相互作用

HagiT,etal.,ApplMicrobiolBiotechnol.2021

有些细菌不能降解粘蛋白,因此非粘蛋白降解细菌受益于粘蛋白降解细菌。

A.muciniphila产生来自粘液和短链脂肪酸的糖,如乙酸盐和丙酸盐。非粘液降解细菌,如Anaerostipescaccae,EubacteriumhalliiandFaecalibacteriumprausnitzii,利用A.muciniphila从粘液中降解的糖进行生长。

A.muciniphila的粘蛋白降解支持了Anaerostipescaccae的生长和丁酸生产。Anaerostipescaccae诱导AKK中粘蛋白降解基因的表达增加,核糖体基因的表达减少。

防止体重增加

普遍发现A.muciniphila在瘦个体中更为丰富。在超重个体中,细菌的丰度较低。

也有一些数据表明,A.muciniphila干预可能成为人类受试者肥胖改善方案的基础。但是强调只有活的Akkermansia菌才能在小鼠中产生这种效果,但是发现高温预处理杀菌的细胞甚至纯化的Akkermansia蛋白,与活细胞治疗的效果相比,Akkermansia的热杀死细胞似乎对高脂肪饮食肥胖小鼠具有相同甚至增强的有益效果。

此外,A.muciniphila通过分解粘蛋白产生醋酸盐这样的SCFAs,对我们的体重产生积极影响。因为乙酸盐可以阻止我们感到饥饿,从而防止体重增加。

人类肠道微生物群中丰富的A.muciniphila可预防疾病

改善代谢

A.muciniphila补充剂能够恢复肥胖和2型糖尿病小鼠的粘液厚度,其中高脂肪饮食治疗破坏了肠道粘液;该治疗还导致血清脂多糖(LPS)显着减少,这是一种代谢性内毒素血症,并改善了代谢状况。

对肥胖小鼠施用Akkermansia还通过减少循环中的炎性脂多糖和减轻胰岛素抵抗而导致观察到的“代谢性内毒素血症”减少作为小鼠肥胖的心脏代谢并发症,如动脉硬化。至少来自小鼠模型的结论Akkermansia效应得到了许多不同研究的支持。

A.muciniphila及其衍生产物对宿主代谢的影响

CaniPD,etal.,FrontMicrobiol.2017

非酒精性脂肪性肝

酒精性肝病

研究ALD患者队列时,发现与健康受试者相比,ALD患者粪便A.muciniphila数量减少。给乙醇喂养的小鼠口服粘液粘菌A.muciniphila可恢复该细菌的消耗,减少肠漏,增加Claudin-3和Occludin的紧密连接表达。因此,炎症和肝损伤促进细胞因子白介素1β(IL-1β)和肿瘤坏死因子α(TNF-α)明显减少,导致MPO+中性粒细胞浸润,改善肝损伤。

扩展阅读:深度解析|肠道菌群与慢性肝病,肝癌

改善血糖和胰岛素抵抗

A.muciniphila在糖耐量正常的人群中比糖尿病前期或II型糖尿病人群中的数量更多。

事实上,这些细菌已被证明可以增强称为二甲双胍的抗糖尿病药物的作用。在喂食高脂肪饮食的小鼠中,二甲双胍治疗增加了A.muciniphila的数量并改善了它们的血糖水平。

同样,喂食高脂肪饮食的小鼠口服A.muciniphila但不服用二甲双胍,对葡萄糖的耐受性也有所提高。因此,这种细菌通过改变肠道微生物群,可能有助于在未来找到控制2型糖尿病的新方法。

扩展阅读:2型糖尿病如何做到可防可控?肠道菌群发挥重要作用

癌症免疫治疗

Akkermansiamuciniphila也可以积极影响宿主对癌症免疫疗法的反应。研究发现,抗生素的消耗与对免疫治疗PD-1阻断剂的反应较差有关。进一步研究确定较低水平的Akkermansiamuciniphila确实对反应率有直接影响,给抗生素治疗的小鼠口服细菌补充剂,发现它恢复了它们对免疫疗法的反应。根据这项研究,有人建议维持健康的肠道菌群,主要包括Akkermansiamuciniphila,对于提高癌症免疫治疗有效性很重要。

此外,Akkermansiamuciniphila通过刺激DCs产生IL-12并促进CCR9+CXCR3+CD4+的积累来增强ICB功效上皮肿瘤和淋巴结中的T细胞。

根据美国癌症研究中心新研究显示Akkermansiamuciniphila提升免疫检查点抑制剂的效果,还能产生大量调节T细胞反应的肌苷。食用高纤维食物可以有效地调节肿瘤微环境中的单核巨噬细胞的组成,而食用得越多,Akkermansiamuciniphila的肠道菌数量就会更多。

该菌还能产生大量环二腺苷酸,即使是无菌小鼠,仅仅植入Akkermansiamuciniphila,它们也能有更强的抗癌反应。未来,或许一种通过食物和环二腺苷酸联合的促进抗癌疗法就在眼前。

神经退行性疾病

急性ALS小鼠模型经抗生素治疗后显示,微生物群失调在渐冻症的进展和恶化中起着重要作用。

其他疾病,例如,帕金森病与对照组的肠道微生物组组成显著不同,Akkermansia丰度增加。

年龄

年龄和地理环境等因素影响人体A.muciniphila的数量。从婴幼儿时期开始A.muciniphila在人类胃肠道定植,并在一年后迅速接近成年人的水平。随着年龄增长A.muciniphila在人体内的数量逐渐降低。

不同的是,另一研究发现大于60岁人群A.muciniphila的数量升高。此外,另外研究发现在百岁长寿老人中A.muciniphila数量显著增加,提示A.muciniphila水平的升高可能有助于延缓机体的衰老。

对两种类型的早衰综合征小鼠模型,外用该菌A.muciniphila可显著提高小鼠的健康寿命。

地理位置

另外,不同地理位置A.muciniphila在人群中定植也存在差别。如通过细菌16SrRNA分析发现,智利健康受试者粪便中的微生物菌群和巴布亚新几内亚受试者有明显不同;但与美国和阿根廷受试者接近;A.muciniphila在智利受试者的丰富度最高。

工业化生活下微生物群落中的粘液降解菌和基因更普遍,这可能是由西方饮食导致的。

药物

药物是影响肠道A.muciniphila丰度的重要因素之一。首先,抗菌药物作用后可以直接影响肠道A.muciniphila的数量。

在小鼠出生后早期用万古霉素进行干预可以有效预防1型糖尿病,显著降低小鼠血糖值以及减轻胰岛炎症;而对8周龄小鼠未见明显预防效果。万古霉素作用于幼儿时期的小鼠使A.muciniphila成为胃肠道优势菌群,该研究提示A.muciniphila可能是推迟1型糖尿病的关键菌群。

对60例6~11个月的婴儿使用阿奇霉素治疗3d后,婴儿A.muciniphila数量显著减少。此外Dubourg等的研究中,2例成人患者经过抗生素(强力霉素、哌拉西林、羟氯喹、亚胺培南等)治疗后,A.muciniphila数量显著增加,在肠道菌群的比例均大于40%。

有趣的是,在另外一项小鼠模型中也发现类似现象,给小鼠灌胃四联抗生素(氨苄青霉素,万古霉素,新霉素和甲硝唑)可显著逆转免疫抑制剂导致的A.muciniphila数量减少。这些研究表明抗菌药物等药物使用会影响肠道内A.muciniphila数量的变化,其对人体代谢产生的影响需进一步研究。

对14例服用二甲双胍的糖尿病患者进行肠道菌群分析,与未服用二甲双胍的糖尿病患者以及健康受试者相比,A.muciniphila显著增加。在体外实验中,收集二甲双胍治疗组和对照组小鼠的粪便,发现二甲双胍培养组A.muciniphila的比例显著增加。

在另外一项研究使用另外一种代谢病治疗药物利拉鲁肽(Liraglutide)。对高脂饮食诱导的肥胖小鼠进行皮下注射给药,连续15d给药后处死小鼠,收集肠道内容物进行菌群分析,发现治疗小鼠肠道中A.muciniphila显著增加。此外,抗肿瘤药物也可以影响肠道A.muciniphila的丰度。如在胰腺导管腺癌(Pancreaticductaladenocarcinoma,PDAC)异种移植的小鼠模型中发现,吉西他滨(Gemcitabine)治疗后使A.muciniphila在肠道中的数量显著增加(5%~33%)。

饮食方式

饮食对肠道A.muciniphila影响最显著。

与正常饮食组相比,高蛋白饮食显著降低大鼠肠道A.muciniphila。

Akkermansia的数量随着短期(3周)低FODMAPs饮食而减少。这不足为奇,因为FODMAP基本上与益生元纤维相同。

Akkermansia在生酮饮食中显着增加,并且与Parabacteroides一起,可能是减少酮症癫痫发作的原因。

与高脂高糖饮食组相比,小鼠食用热带水果8周后,可以显著增加A.muciniphila在胃肠道中的丰度;同时干预后可以降低高脂高蔗糖饮食喂养小鼠的内毒素血症,改善其胰岛素敏感性。

饱和脂肪含量高的饮食与较高的炎症发生率有关。而富含多不饱和脂肪酸的饮食,如亚麻籽和鱼油中的那些,已被证明可以抵抗炎症,并且与更瘦的人有关。

这些膳食脂肪也会影响肠道中A.muciniphila的水平。

在一项研究中,老鼠被喂食由不同脂肪组成的不同饮食。一组喂猪油,另一组喂鱼油十一周,结果很有趣。

在鱼油喂养组中,A.muciniphila的丰度增加,乳酸杆菌的丰度也增加。

然后将两组的粪便材料移植到新的小鼠组中,在接受鱼油喂养小鼠粪便移植的小鼠中,它们的A.muciniphila水平增加,炎症水平降低。然而,接受猪油喂养小鼠移植的小鼠的炎症水平很高。

因此,摄入的膳食脂肪类型也会极大地影响肠道中A.muciniphila的数量。

我们已经知道多酚可以减少炎症并有助于预防许多疾病,因此高多酚食物可以增加Akkermansia.

多酚是强大的抗氧化剂,可以对抗体内的自由基(与多种疾病有关的化合物,包括糖尿病、心脏病和癌症)。

有许多不同类型的多酚。其中一些不能很好地被身体吸收留在肠道中,这对Akkermansia来说是个好消息,它们吞噬了多酚并因此增强其力量,从而达到双赢。

此外,丁酸钠和菊粉、北极浆果提取物、绿茶提取物和异麦芽寡糖、膳食多酚等这些益生元也能增加Akkermansia丰度。

含有高水平多酚和鱼油的食物是提高A.muciniphila菌最好的食物。

高多酚食品

在自然界中,苦味可以抵御想要攻击植物的昆虫。有超过8000种多酚。一些例子是红酒中的白藜芦醇、辣椒中的辣椒素、百里香中的百里酚、肉桂中的肉桂酸、迷迭香中的迷迭香酸。

食物中多酚的含量在很大程度上取决于其生长的土壤、成熟度以及种植、运输和制备方式,因此以下列表仅供参考。

高多酚食品:

蔓越莓、石榴、山莓、黑莓、蓝莓、草莓、樱桃、李子、亚麻种子、黑巧克力、栗子、红茶、绿茶、苹果汁、苹果、黑麦面包、核桃、榛子、红酒。

其他常见的高多酚食物包括葡萄、橄榄、菠菜、李子和桃子。一般来说,颜色越深越好,所以选择绿色的黑橄榄和葡萄。

油性鱼

Akkermansia喜欢鱼油,但目前还不清楚它们喜欢鱼油的特定成分——例如脂肪酸——或者它们喜欢所有的部分。所以目前,最好吃鱼。

尽管鱼油现在是有争议的,一些科学家认为它的好处被夸大了。研究人员发现,食用整条鲑鱼的一组人的DHA(一种脂肪酸)水平是食用鱼油的一组人的9倍。食用鱼类的同时既增加鱼油,同时增加优质蛋白质摄入,均有助于A.muciniphila。

试着每周吃两到三份鱼:

沙丁鱼、鲭鱼、鲱鱼、三文鱼、鳟鱼、鳀鱼、旗鱼、金枪鱼

补充膳食纤维,选择有机产品。

含纤维的食物:

生菊苣根、绿色蒲公英、麦麸、芦笋、大蒜、香蕉、洋葱、韭菜,也存在于燕麦片、红酒、蜂蜜、枫糖浆、豆类和其他食物中。

避免高脂肪饮食和酒精

微生物多样性是我们肠道健康的主要目标。实现这一目标的最佳方法是均衡饮食,吃能让肠道菌群快乐的食物,从而你的感觉也会良好。

难点

A.muciniphila与机体健康联系紧密,有潜力成为新型益生菌。但目前A.muciniphila是专性厌氧菌且难以培养,成为新型益生菌,还有以下几点重要问题亟待解决:

其次,需确定安全有效的治疗人群。目前A.Muciniphila与改善肝功能、降低葡萄糖毒性、减轻氧化应激和抑制炎症有强关联,但是,在炎症性肠病、动脉粥样硬化等其他疾病中的干预,不同研究中存在不同的结果,对于其作为药物面对的安全问题,其应用仍待商榷。

最后,需要优化A.muciniphila的补充或给药方式。在体外模拟胃肠道的释放实验中,发现包封的A.muciniphila活性比直接分散在模拟胃肠道的系统中活性更高,并且能够定向在肠道释放细菌,显著增加A.muciniphila对胃的抵抗力,对于实现在肠道的定向给药还需要更多的实验进行优化。

最后,尽管已经有研究证明有活性的A.muciniphila或者是巴氏消毒的A.muciniphila对人体是安全的,但目前A.muciniphila的临床研究较少,在临床上应用还需要更多的实验验证。

HasaniA,EbrahimzadehS,HemmatiF,KhabbazA,HasaniA,GholizadehP.TheroleofAkkermansiamuciniphilainobesity,diabetesandatherosclerosis.JMedMicrobiol.2021Oct;70(10).doi:10.1099/jmm.0.001435.PMID:34623232.

ZhangT,JiX,LuG,ZhangF.ThepotentialofAkkermansiamuciniphilaininflammatoryboweldisease.ApplMicrobiolBiotechnol.2021Aug;105(14-15):5785-5794.doi:10.1007/s00253-021-11453-1.Epub2021Jul27.PMID:34312713.

DruartC,PlovierH,VanHulM,BrientA,PhippsKR,deVosWM,CaniPD.ToxicologicalsafetyevaluationofpasteurizedAkkermansiamuciniphila.JApplToxicol.2021Feb;41(2):276-290.doi:10.1002/jat.4044.Epub2020Jul28.PMID:32725676;PMCID:PMC7818173.

KaliaVC,GongC,ShanmugamR,LinH,ZhangL,LeeJK.TheEmergingBiotherapeuticAgent:Akkermansia.IndianJMicrobiol.2021Dec16:1-10.doi:10.1007/s12088-021-00993-9.Epubaheadofprint.PMID:34931096;PMCID:PMC8674859.

YuY,LuJ,SunL,LyuX,ChangXY,MiX,HuMG,WuC,ChenX.Akkermansiamuciniphila:Apotentialnovelmechanismofnuciferinetoimprovehyperlipidemia.BiomedPharmacother.2021Jan;133:111014.doi:10.1016/j.biopha.2020.111014.Epub2020Nov26.PMID:33246225.

ChengD,XieMZ.Areviewofapotentialandpromisingprobioticcandidate-Akkermansiamuciniphila.JApplMicrobiol.2021Jun;130(6):1813-1822.doi:10.1111/jam.14911.Epub2020Nov15.PMID:33113228.

HagiT,BelzerC.TheinteractionofAkkermansiamuciniphilawithhost-derivedsubstances,bacteriaanddiets.ApplMicrobiolBiotechnol.2021;105(12):4833-4841.doi:10.1007/s00253-021-11362-3

Anhê,F.Fetal.(2016).TriggeringAkkermansiawithdietarypolyphenols:Anewweapontocombatthemetabolicsyndrome.Gutmicrobes,7(2),146–153.

SchadeL,MesaD,FariaAR,SantamariaJR,XavierCA,RibeiroD,HajarFN,AzevedoVF.Thegutmicrobiotaprofileinpsoriasis:aBraziliancase-controlstudy.LettApplMicrobiol.2021Dec12.doi:10.1111/lam.13630.Epubaheadofprint.PMID:34897759.

Belzer,Cetal.(2017).MicrobialMetabolicNetworksattheMucusLayerLeadtoDiet-IndependentButyrateandVitaminB12ProductionByIntestinalSymbionts.AmericanSocietyforMicrobiology:8(5).

Caesar,Retal.(2015).CrosstalkBetweenGutMicrobiotaandDietaryLipidsAggravatesWATInflammationThroughTLRSignalling.CellMetab:22(4),pp658-668.

Dao,M,Cetal.(2015).AkkermansiamuciniphilaandImprovedMetabolicHealthDuringaDietaryInterventioninObesity:RelationshipwithGutMicrobiomeRichnessandEcology.Gut.

deVos,W,M.(2017).MicrobeProfile:Akkermansiamuciniphila:AConservedIntestinalSymbiontthatActsasTheGatekeeperofourMucosa.Microbiology:163(5).

Derrien,Metal.(2017).AkkermansiamuciniphilaanditsRoleinRegulatingHostFunctions.MicrobialPathogenesis:106,pp171-181.

Everard,Aetal.(2013).Cross-TalkBetweenAkkermansiamuciniphilaandintestinalEpitheliumControlsDiet-InducedObesity.PNAS:110(22),pp9066-9071.

Geerlings,S,Yetal.(2018).AkkermansiamuciniphilaintheHumanGastrointestinalTract:When,Where,andHowMicroorganisms:6(3).

Krishnan,A.(2016).Akkermansiamuciniphila:WhatYouNeedtoKnowAboutthisBacterium.uBiome.

Naito,Yetal.(2018).ANext-GenerationBeneficialMicrobe:Akkermansiamuciniphila.J.Clin.Biochem.Nutr:63(1),pp33-35.

Ottman,Netal.(2017).Pili-LikeProteinsofAkkermansiamuciniphilaModulateHostImmuneResponsesandGutBarrierFunction.PLOSOne.

Pierre,J,Fetal(2015).CranberryProanthocynaidinsImprovetheGutMucousLayerMorpohologyandFunctioninMiceReceivingElementalEnteralNutrition.JPENJParenterEnteralNutr:37(3),pp401-409.

Shin,N,Retal.(2013).AnIncreaseintheAkkermansiaspp.PopulationInducedbyMetforminTreatmentImprovesGlucoseHomeostasisinDiet-InducedObeseMice.Gut:63,pp706-707.

Zhang,Tetal.(2019).Akkermansiamuciniphilaisapromisingprobiotic.MicrobialBiotechnology.

OuyangJ,LinJ,IsnardS,etal.TheBacteriumAkkermansiamuciniphila:ASentinelforGutPermeabilityandItsRelevancetoHIV-RelatedInflammation.FrontImmunol.2020;11:645.Published2020Apr9.doi:10.3389/fimmu.2020.00645

ZhouK.StrategiestopromoteabundanceofAkkermansiamuciniphila,anemergingprobioticsinthegut,evidencefromdietaryinterventionstudies.JFunctFoods.2017;33:194-201.doi:10.1016/j.jff.2017.03.045

Naito,Y.,Uchiyama,K.&Takagi,T.Anext-generationbeneficialmicrobe:Akkermansiamuciniphila.JClinBiochemNutr63,33–35(2018).

Derrien,M.,Vaughan,E.E.,Plugge,C.M.&deVos,W.M.Akkermansiamuciniphilagen.nov.,sp.nov.,ahumanintestinalmucin-degradingbacterium.Int.J.Syst.Evol.Microbiol.54,1469–1476(2004).

Hansson,G.C.Roleofmucuslayersingutinfectionandinflammation.Curr.Opin.Microbiol.15,57–62(2012).

vanderLugt,B.etal.Akkermansiamuciniphilaamelioratestheage-relateddeclineincolonicmucusthicknessandattenuatesimmuneactivationinacceleratedagingErcc1-/Δ7mice.Immun.Ageing16,6(2019).

Lukovac,S.etal.DifferentialmodulationbyAkkermansiamuciniphilaandFaecalibacteriumprausnitziiofhostperipherallipidmetabolismandhistoneacetylationinmousegutorganoids.MBio5,(2014).

Dao,M.C.etal.Akkermansiamuciniphilaandimprovedmetabolichealthduringadietaryinterventioninobesity:relationshipwithgutmicrobiomerichnessandecology.Gut65,426–436(2016).

Depommier,C.etal.SupplementationwithAkkermansiamuciniphilainoverweightandobesehumanvolunteers:aproof-of-conceptexploratorystudy.Nat.Med.25,1096–1103(2019).

Png,C.W.etal.MucolyticbacteriawithincreasedprevalenceinIBDmucosaaugmentinvitroutilizationofmucinbyotherbacteria.Am.J.Gastroenterol.105,2420–2428(2010).

Anhê,F.F.etal.Apolyphenol-richcranberryextractprotectsfromdiet-inducedobesity,insulinresistanceandintestinalinflammationinassociationwithincreasedAkkermansiaspp.populationinthegutmicrobiotaofmice.Gut64,872–883(2015).

Pierre,J.F.etal.Cranberryproanthocyanidinsimprovethegutmucouslayermorphologyandfunctioninmicereceivingelementalenteralnutrition.JPENJParenterEnteralNutr37,401–409(2013).

Vinson,J.A.&Cai,Y.Nuts,especiallywalnuts,havebothantioxidantquantityandefficacyandexhibitsignificantpotentialhealthbenefits.FoodFunct3,134–140(2012).

Mao,B.etal.Effectsofdifferentdosesoffructooligosaccharides(FOS)onthecompositionofmicefecalmicrobiota,especiallythebifidobacteriumcomposition.Nutrients10,(2018).

↑出现以上症状,可能是身体缺乏蛋白质的信号。

★蛋白质有多重要?

蛋白质不仅是构建人体组织的主要原料,而且对新陈代谢至关重要。膳食蛋白质及其代谢产物氨基酸是人类的必需营养素。

蛋白质提供能量,调节代谢;我们的皮肤、骨骼、毛发都有它的参与;当然免疫系统也少不了它。

★肠道菌群参与蛋白质代谢

肠道微生物群介导蛋白质代谢和宿主免疫反应之间的相互作用,在代谢过程中发挥重要作用。

一方面,进入大肠的氮营养素会影响大肠菌群的代谢和群落结构;另一方面,大肠菌群也能广泛参与氮营养素的代谢与利用,生成许多代谢产物,进而影响人体健康。

我们先来看一下蛋白质的消化分解过程。

蛋白质的消化分解

小肠上皮细胞消化膳食蛋白质,然后吸收氨基酸和肽是一个高效的过程。高可消化的蛋白质可能部分逃脱小肠的消化,大量的含氮物质可能从小肠转移到大肠。未消化的蛋白质和多肽通过肠道微生物和残留的胰腺蛋白酶进行蛋白水解,产生大量的微生物代谢物。

胃肠道中的蛋白质分解代谢物

ZhaoJ,etal.,CurrProteinPeptSci.2019

这些微生物代谢物中有些是中间产物,有些是最终产物。大量的最终产物主要是短链脂肪酸、氨、多胺、硫化氢、酚类和吲哚类化合物。

这些细菌代谢物中的一些可以被运输到结肠细胞,并根据其在腔内的浓度对这些上皮细胞产生有益或有害的影响。一些细菌代谢产物被输送到门脉血,对肝脏和周围器官组织产生各种生理作用(这些代谢物在健康中发挥的作用详见本文后面章节)。

肠道微生物群在膳食蛋白质分解代谢中作用

宿主饮食对肠道微生物群的分布和活性有很大影响。膳食蛋白质或氨基酸调节可作为调节发酵细菌的一种方法。

微生物分泌的酶直接降解分解蛋白

肠道微生物群在促进氨基酸调节以及氨基酸消化和吸收过程中的分泌方面起着至关重要的作用。

蛋白质的转换主要发生在肠道中,结肠细菌降解内源性或外源性蛋白质的效率较高。

拟杆菌属(Bacteroides)、梭状芽胞杆菌属(Clostridium)、丙酸杆菌属(Propionibacterium)、梭杆菌属(Fusobacterium)、乳酸杆菌属(Lactobacillus)和链球菌属(Streptococcus)在蛋白质水解过程中发挥着重要作用。

粪便微生物群与结肠微生物群具有不同的蛋白水解活性。粪便微生物的活性仅在球状蛋白质的蛋白质水解方面较高。

发酵过程中,复杂蛋白质首先被各种细菌肽酶、蛋白酶和内肽酶切割,释放出游离氨基酸和短肽。氨基酸和短肽然后进行发酵。蛋白质发酵产生支链脂肪酸(2-甲基丁酸酯、异丁酸酯、异戊酸酯)、有机酸、气体(H2和CO2)以及微量酚、胺、吲哚和氨。

YadavM,etal.,ArchMicrobiol.2018

肠道微生物参与氨基酸代谢

一些菌群可能在肠道中的氨基酸代谢中发挥重要作用,例如梭杆菌属、拟杆菌属和韦荣球菌,Megasphaeraelsdenii,Selenomonasruminantium.

肠道内的梭菌属细菌(赖氨酸或脯氨酸利用的基础细菌)是氨基酸发酵的关键驱动因素,而消化链球菌属细菌是谷氨酸或色氨酸利用的关键驱动因素。

其他例如瘤胃细菌,Selenomonasruminantium,Megasphaeraelsdenii,Prevotellaruminicola,Misuokellamultiacidas,Butyrivibriofibrisolvens,Streptococcusbovis等含有极为活跃的二肽基肽酶和二肽酶。

微生物从头合成氨基酸

肠道微生物群在产生氨基酸方面也起着关键作用,这包括从头生物合成。

例如,一些体外研究项目表明,瘤胃细菌种类,如Streptococcusbovis,Selenomonasruminantium,Prevotellabryantii,在生理肽浓度存在的情况下参与氨基酸的从头合成。

LinR,etal.,AminoAcids.2017

对18岁以上的人样本进行了检查,这些人被提供了氮充足的饮食,并发现微生物衍生的赖氨酸和苏氨酸对游离血浆赖氨酸和苏氨酸库有显著贡献。

蛋白质或氨基酸摄入对肠道微生物的影响

膳食蛋白质是均衡饮食的重要组成部分。人类无法合成多种氨基酸,因此这些氨基酸必须从食物中获取以维持健康。胃肠道微生物群组成和功能的差异可能是由于膳食蛋白质的变化。

当进展到结肠的远端部分时,碳水化合物被消耗,pH值增加,蛋白质发酵变得更加有效。在消化过程中,蛋白质摄入量的增加总是与消化率的相对降低有关,通常会导致更多可发酵的大量营养物质进入结肠。

不同形式蛋白对肠道微生物群影响不同

植物蛋白

与动物蛋白相比,植物蛋白通常具有较低的蛋白质消化率,因为植物细胞壁不能消化。大豆和花生蛋白都在调节肠道有益细菌组成方面有积极的作用。

添加20%花生蛋白的饲粮改变了大鼠肠道菌群多样性,增加了双歧杆菌,降低了肠杆菌和产气荚膜梭菌的数量。增加的双歧杆菌有助于产生更多的微生物代谢物,包括乙酸和乳酸,导致肠道pH值降低,抑制有毒代谢物,如胺和苯并吡咯。

大豆已被广泛应用于人类和动物,它可以改变肠道微生物的组成,增加了埃希氏杆菌属和丙酸杆菌。系统发育分析显示,埃希氏杆菌属与志贺菌的同源性最高,两者都能在不损害肠道黏膜的情况下调节盐和水的代谢。但大豆中含有的抗营养因子会对生产性能产生负面影响,限制了其在非反刍动物中的应用。

植物蛋白被用于动物饲料行业,因为它的价格普遍低于动物蛋白,并且在食品安全方面具有一些优势。

动物蛋白

与植物蛋白相比,动物蛋白对于牲畜来说是高度易消化的。酪蛋白、脱脂奶粉和鱼粉通常用作猪的饲料,它们可以被消化成丰富的蛋白质底物并在到达大肠之前被吸收。这些动物蛋白的代谢特性有利于宿主健康,特别是,对环境应激导致仔猪断奶后腹泻的预防作用及一些植物蛋白中的抗营养因子。

酪蛋白可以被近端肠道中的宿主酶消化,从而减少大肠中细菌的降解。具体而言,酪蛋白可以增加乳杆菌和双歧杆菌,并减少粪便中葡萄球菌、大肠菌群和链球菌的数量。此外,酪蛋白可以调节直肠真杆菌和Marvinbryantiaformatexigens的减少。

补充脱脂干牛奶可以增加总厌氧菌和需氧菌,而膳食鱼粉可以减少需氧菌,包括大肠菌群,并增加厌氧菌的数量,如乳酸杆菌属。

此外,动物蛋白的特点是短链脂肪酸减少,肠道pH值和氨浓度增加。

蛋白质摄入量与肠道菌群

膳食蛋白质的浓度是影响蛋白质发酵和肠道微生物组成的主要因素。

更高的水平和未消化的蛋白质会导致致病微生物的增加,从而增加代谢疾病的风险。

未被小肠吸收的残留含氮化合物将被转移到远端肠道,并被该位置微生物代谢。微生物代谢物的数量和种类均受膳食蛋白质摄入量的影响。

有些微生物代谢物是有毒的,例如硫化氢、氨和吲哚化合物,并可能对宿主健康产生负面影响。有些代谢物是参与宿主各种生理过程的生物活性分子。

此外,由于肠道微生态系统的稳态破坏和有益菌的减少,高浓度的蛋白质补充会导致潜在病原体数量增加。膳食蛋白质改变的肠道微生物群,通过调节肠道屏障功能、肠道运动和免疫系统来影响宿主代谢。

结肠中过量蛋白质发酵影响肠道微生物群变化

未消化蛋白质的增加与蛋白质摄入水平高、蛋白质消化率相对降低和氨基酸组成不平衡有关。结肠中多余蛋白质的降解始于细菌蛋白酶和肽酶将蛋白质水解成较小的肽和氨基酸。这些含氮化合物会影响肠道微生物群,尤其是结肠。

稍低蛋白浓度有助于减少大肠杆菌,但蛋白浓度过低会增加潜在致病菌

相对低浓度的膳食蛋白质会减少致病菌增殖的底物量。例如,人类饮食中低浓度的蛋白质导致粘膜表面的大肠杆菌群落减少。在较低蛋白质条件下肠道微生物的变化会产生毒性较小的含氮细菌代谢物,例如多胺。

然而,当饮食中蛋白质的浓度过低而不能满足宿主的基本需要时,就会增加潜在病原体的丰度,减少有益菌的数量。

具体来看一项关于蛋白浓度变化对肠道菌群影响的研究。

断奶动物

蛋白水平适量:

当断奶动物饲喂100-200g/kg的膳食蛋白质时,粪便中需氧菌和厌氧菌的数量会增加,这些蛋白质水平会导致肠道中乳酸杆菌的增加以及大肠菌群和葡萄球菌的减少。

蛋白水平过高:

然而,当膳食蛋白质水平大于200g/kg时,致病菌数量会增加,例如大肠菌群、链球菌和芽孢杆菌。

蛋白水平过低:

低浓度的膳食蛋白质会减少产丁酸菌(这些菌群是抗癌和其他肠道疾病的抗炎剂),包括乳酸杆菌、双歧杆菌、saccharolytic(糖酵解菌)。

成年动物

成年动物中,在蛋白质水平的微小变化下,肠道微生物群相对稳健。例如,当成年动物分别用190g/kg和150g/kg蛋白质喂养时,粪便样本中的细菌数量几乎没有差异。

在成年动物中,只有当蛋白质水平发生重大变化时,才能观察到微生物群的变化。

低蛋白饮食还与低浓度的氨、血浆尿素氮和回肠食糜中的短链脂肪酸含量有关。肠道中的氨不是来自宿主脲酶活性,而是来自蛋白水解和微生物活动。因此,回肠食糜中低浓度的氨可能表明蛋白质代谢降低。

蛋白质发酵产物对肠道微生物的影响

大部分膳食蛋白质在小肠中消化,但蛋白质摄入过多会导致结肠输入量增加。结肠中多余蛋白质的降解始于蛋白质被细菌蛋白酶和肽酶水解成更小的肽和AA,这些蛋白酶和肽酶在中性至碱性pH下更为活跃。这些残余蛋白质不仅提高了肠道pH值,而且还可供结肠微生物进一步代谢。

然而,碱性pH有利于病原体增殖,对肠道健康不利。此外,由于向肠道微生物群过量供应膳食蛋白质而导致的蛋白质发酵也被视为肠道疾病发展的一个因素。

虽然有报道称结肠蛋白输注过多会产生有害影响,仍有一些争议,但似乎较低量的蛋白到达远端肠道可能会降低腹泻的发生率,并抑制病原菌的增殖,特别是在应激情况下,如感染高压。

蛋白质的发酵通常与蛋白质发酵细菌以及潜在致病菌的生长有关。通过培养基分析,至少拟杆菌属和丙酸杆菌以及各种杆菌被鉴定为蛋白水解细菌,其中一些细菌的基因组中携带丝氨酸和其他蛋白酶的基因。

氨基酸为细菌提供代谢底物

蛋白质水解后,释放的肽和氨基酸被宿主和胃肠道中的细菌用于各种代谢活动,虽然一些细菌缺乏使用细胞外氨基酸的特定转运体。

蛋白质摄入与肠道屏障

肠道是一个具有高度蛋白水解活性的部位,主要由微生物群介导。这些蛋白水解代谢物以及肠道微生物(可通过蛋白质水平改变)通过调节紧密连接蛋白和Zonulin在调节肠粘膜屏障中发挥重要作用。

MaN,etal.,CurrProteinPeptSci.2017

肠道微生物通过调节紧密连接蛋白ZO-1和ZO-2的表达来影响肠道上皮屏障。研究表明,在高蛋白饮食(HPD)中增加双歧杆菌可有效缓解结肠上皮细胞膜屈曲,上调ZO-1表达,有利于紧密连接修复。

相反,低蛋白饮食(low-proteindiet,LPD)或正常蛋白饲粮(normalproteindiet,NPD)通过降低肠上皮通透性,降低大肠杆菌水平,从而上调ZO-1的表达。抑制大肠杆菌生长也可上调ZO-2的表达,从而保护肠上皮细胞,修复上皮屏障。

连蛋白Zonulin是唯一已知的细胞间紧密连接的生理调节剂,可能是微生物群和紧密连接蛋白之间的一种可能的调节剂。

Zonulin可逆且快速地调节肠道通透性,其在遗传易感个体中的上调可能导致免疫介导的疾病。其释放将由细菌数量的变化触发。

在上皮细胞中结合其受体后,该复合物导致紧密连接的开放并增加肠道通透性。

研究人员选择了4种细菌菌株作为兴奋剂,包括3种大肠杆菌菌株和1种沙门氏菌菌株,它们都是病原体,HPD增加。它们都释放了Zonulin并改变了细胞旁通透性。同时,观察到ZO-1从紧密连接复合物重新分布到细胞单层。

此外,不同的细菌会导致不同水平的Zonulin分泌,这会在不同程度上改变肠道屏障功能,反映微生物和肠道之间的急性调节。

氨基酸不均衡会诱发肠道问题

膳食蛋白质中的氨基酸可通过调节肠道微生物群组成间接影响肠道形态。此前有研究报道,低赖氨酸玉米蛋白会导致肠道绒毛高度降低,隐窝深度加深,提示肠道黏膜的损伤是由于饲粮中氨基酸比例失衡所致。

小肠上皮细胞可将氨基酸和其他营养物质吸收到血液和器官中,营养不良对肠道微生物群的干扰和影响可能导致肠道形态受损。

断奶时观察到的腹泻可以通过低蛋白质水平和平衡氨基酸组成来缓解。然而,饮食中氨基酸的不平衡可能损害肠道形态,增加腹泻风险。因此,饮食中氨基酸失衡会抑制蛋白质吸收,导致肠上皮增生。

注意蛋白过敏或不耐受诱发的肠道问题

大豆中的粗蛋白质相对较高,约为40%,主要由球蛋白组成,球蛋白由伴大豆球蛋白和大豆球蛋白组成。这些球蛋白具有免疫原性和热稳定性。

大豆蛋白补充剂中抗原复合物的形成,如大豆球蛋白、β-伴大豆球蛋白和免疫球蛋白抗体,可能是刺激过敏反应和腹泻的原因。大部分膳食蛋白质在消化后降解为肽和氨基酸。

然而,还有一种可能性是,其他分子如一种抗营养因子,可以通过肠上皮细胞进入血液和淋巴。大豆中具有抗原活性的抗营养因子可刺激宿主的免疫应答。

免疫反应由具有IgE分泌的T淋巴细胞介导,其对肠道形态具有负面影响,导致绒毛损伤和隐窝细胞增殖。

此外,上皮细胞中消化酶活性的降低可能与吸收功能失调和肠道微生物群组成多样性减少有关。

由于其抗原性,膳食大豆蛋白可能有利于病原体增殖,这些抗原也可能是对粪便微生物群一致性产生不利影响的因素。

对大豆蛋白的超敏反应可能导致对病原体过度生长的更高易感性,主要包括蛋白质代谢细菌以及肠致病性大肠杆菌。

大豆蛋白和其他植物蛋白通常含有抗营养因子,包括可溶性非淀粉多糖含量升高,可能增加断奶仔猪腹泻的发生率。

在大豆蛋白质代谢过程中,会产生各种毒素,如组胺、尸碱和腐胺,这些毒素会破坏肠壁,增加肠上皮细胞的通透性。当病原体在管腔内定植时,可能发生肠道微生态失调。

酪蛋白与肠道微生物群

酪蛋白具有特殊的氨基酸组成,可以诱导肠道氨基酸转运蛋白基因的转录水平。肠道微生物群的组成和功能也受到氨基酸平衡改变的影响。

CAT1

阳离子氨基酸转运蛋白(CAT1)参与赖氨酸和精氨酸的转运。研究表明,对十二指肠和回肠中的CAT1没有显著影响。相反,与空肠中的膳食玉米醇溶蛋白相比,补充酪蛋白的CAT1表达水平更高。

因此,可以合理地得出结论,酪蛋白可促进赖氨酸和精氨酸的积累,这与补充酪蛋白的赖氨酸含量高于膳食玉米醇溶蛋白的报告一致。

肠道中赖氨酸和精氨酸的变化可能有助于酪蛋白对肠道微生物群的影响。CAT1的表达随着饮食中赖氨酸水平的增加而上调。

EAAC1

兴奋性氨基酸载体1(EAAC1)参与天冬氨酸和谷氨酸的转运,其作用类似于CAT1。EAAC1在十二指肠中的表达水平被膳食玉米醇溶蛋白下调,而在空肠和回肠中,补充酪蛋白的EAAC1表达水平高于玉米醇溶蛋白或大豆蛋白。

PePT1

因此,具有平衡氨基酸组成的膳食酪蛋白可以促进氨基酸和肽转运蛋白的表达。这种表达可以加速功能性氨基酸在肠道环境中的运输。

氨基酸还通过合成细菌蛋白质以及与肠道微生物群的相互作用对微生物组成起重要作用。

菌群发酵蛋白质主要副产物

短链脂肪酸

短链脂肪酸(SCFA)是细菌在大肠内代谢的最终产物,主要成分为乙酸、丁酸和丙酸。短链脂肪酸的基质主要来自膳食纤维和抗性淀粉。

然而,未消化的蛋白质也是短链脂肪酸产物的底物。膳食蛋白质在大肠中释放的几种氨基酸是短链脂肪酸合成的前体。肠道微生物可以从甘氨酸、丙氨酸、苏氨酸、谷氨酸、赖氨酸和天冬氨酸中产生乙酸盐。

谷氨酸和赖氨酸可以合成丁酸,丙氨酸和苏氨酸可以合成丙酸。

此外,SCFA可以靶向游离脂肪酸受体(FFAR)配体转运到结肠肠细胞,FFAR代谢感知的激活在调节肠道脂肪沉积和营养物质吸收中发挥重要作用。

短链脂肪酸与肠道血流相互作用,促进5-羟色胺的释放,这可能受到肠道-脑内分泌轴的调节。这有助于增加肠道运动和离子转运,从而改变肠道菌群组成和免疫防御。

SCFA参与多种生理过程,在维持肠道完整性、葡萄糖稳态和食欲调节中发挥重要作用。除了为结肠细胞提供能量外,丁酸盐也是SLC5A8的底物。该蛋白编码基因抑制组蛋白去乙酰化酶的活性,而组蛋白去乙酰化酶是一种表观遗传调节因子,在多种肿瘤中诱导细胞凋亡。丁酸可以通过上调宿主防御肽的表达来刺激中性粒细胞群体,有利于破坏病原体,增强抗病能力。

氨在大肠中以毫摩尔浓度存在。与远端结肠相比,近端结肠的特点是pH值低,碳水化合物含量高。因此,从升结肠到降结肠,氨浓度升高,这与远端结肠的蛋白质代谢率高于近端结肠是一致的。

大肠中的氨浓度主要是与氨基酸脱氨和尿素水解有关的微生物代谢物。肠道菌群可利用氨,氨可被上皮细胞吸收。尿素在肠道内的水解是通过细菌脲酶活性进行的。

虽然幽门螺杆菌的脲酶活性已经得到了充分的研究,但关于其他大肠微生物的脲酶活性的信息却很少。最近的一项研究报道,部分氨被谷氨酰胺合成酶的活性与l-谷氨酸缩合,使谷氨酰胺合成。这是一种可能的机制,以控制氨细胞内浓度在结肠细胞。

硫化氢(H2S)

肠道微生物能够通过脱硫酶从半胱氨酸碳链中获得能量。甲硫氨酸可转化为α-酮丁酸酯、氨和甲硫醇。这些代谢物归因于一个特定的分类组的细菌,包括大肠杆菌、肠沙门氏菌、梭菌和产气肠杆菌,通常在大肠中发现。

肠杆菌、肠球菌、肠链球菌、梭杆菌和真细菌能够发酵含硫氨基酸。

多胺

多胺是由精氨酸、鸟氨酸和蛋氨酸等氨基酸前体的结肠细胞产生的聚阳离子分子。从结肠癌中分离出来的结肠上皮具有高的多胺合成能力,这可能是由于肿瘤细胞持续有丝分裂需要高的多胺。

肠道微生物可从鸟氨酸、精氨酸、赖氨酸、酪氨酸和组氨酸等氨基酸前体产生腐胺、胍胺、尸胺、酪胺和组胺等多种多胺。

多胺参与细菌细胞的生长、增殖、分泌和运输活动。大肠生态系统中能够产生多胺的大肠细菌有多种,包括拟杆菌属(Bacteroides)、乳杆菌属(Lactobacillus)、Veillonella、双歧杆菌属(Bifidobacterium)和梭状芽胞杆菌属(Clostridium)。因此,肠道菌群组成是影响结肠多胺分布和分配的因素之一。

苯酚和吲哚

结肠中苯丙氨酸、酪氨酸和色氨酸等芳香族氨基酸可被特定的肠道微生物代谢为酚类和吲哚类化合物。

然而,芳香氨基酸的代谢与结肠微生物群的特定组分之间的相互作用还没有充分的研究。一些代谢产物如酚和吲哚,被怀疑为共致癌物和结肠癌促进剂。

已知发酵芳香氨基酸的厌氧菌包括大肠中的拟杆菌、乳酸菌、双歧杆菌、梭状芽胞杆菌和胃链球菌。与结肠中的其他氨基酸相比,芳香氨基酸在细菌中代谢缓慢。它们可以生产一系列的酚类和吲哚类化合物作为最终产品,如对甲酚、吲哚、酚和粪臭酚。

据报道,酪氨酸可产生苯酚和对甲酚,而苯乙酸和色氨酸在人体浆发酵过程中分解为吲哚乙酸盐和吲哚。

在一项研究中,远端结肠中的酚类化合物浓度增加,表明大肠远端区域的氨基酸代谢较高。吲哚和酚类代谢物的浓度取决于细菌产生率和结肠吸收率之间的平衡。酚类化合物似乎大部分被结肠内容物吸收。它们在从管腔转移到血液和肝脏的过程中部分代谢,最后通过尿液排出。

对无菌和常规小鼠血浆代谢物的对比分析表明,无菌小鼠的色氨酸和酪氨酸水平至少增加了1.5倍。涉及这些芳香族氨基酸的细菌代谢产物包括硫酸吲哚氧基、硫酸苯酯、硫酸对甲酚和苯丙酰甘氨酸,仅在常规小鼠中发现。

关于酚类和吲哚类化合物对结肠上皮细胞的影响知之甚少。体外实验表明,苯酚会降低屏障功能的完整性。需要注意的是,当苯酚浓度高于1.25mM时,它会损害结肠上皮细胞。

如果蛋白质摄入过量,或者肠道里消化蛋白质的菌群构成不理想,那么蛋白质发酵发生的胺,硫化氢,苯酚等肠道毒素过量积累,会诱发肠道炎症,便秘,腹胀等问题,因此正确摄入适量优质蛋白对于维持肠道菌群和身体健康很重要。

蛋白质摄入要因人而异

实际上,我们摄入的一些蛋白质可以转化为葡萄糖,特别是当蛋白质的消化速度快且人体糖原储存量低时,有些蛋白质可以被微生物群发酵,特别是当蛋白质的消化速度慢时。

每个人对蛋白质的需求量各不相同,比如经常运动人群和久坐人群对蛋白质的需求量不一样,孕妇、老人、儿童、肥胖等群体都有各自不同的需求。当然,每个人的不同状态对蛋白质的需求量也都不同,比如爬山的一天,和在家刷剧的一天,也是不一样的。

因此,我们说最佳每日蛋白质摄入量取决于你的身高体重、健康状况、目标、身体活动水平。

素食主义者对蛋白质的需求较高,因为植物蛋白在生物利用度上通常不如动物蛋白。植物蛋白消化率为60-80%,而动物蛋白消化率超过90%.

注意植物蛋白的较难消化吸收

因为植物含有抑制蛋白质消化和吸收的抗营养物质,如胰蛋白酶抑制剂、植酸盐和单宁。虽然烧熟后确实降低了抗营养物质的浓度,但并不能完全消除它们。

另外,植物性蛋白质也含有限制性氨基酸,这些氨基酸是必须氨基酸但数量太少,以至于不够蛋白质的合成所需。

注:限制性氨基酸是指食物所含必需氨基酸的量与动物所需的蛋白质必需氨基酸的量相比,比值偏低的氨基酸。比如说一种食物里特别缺少某一种氨基酸,即使其它的氨基酸含量很高,因为这个氨基酸导致它的各个氨基酸比例不平衡。人体对这种食物的吸收依然不理想,这种氨基酸就叫限制性氨基酸。

结合不同的植物性蛋白质可以帮助弥补它们各自的不足。

摄入蛋白注意其氨基酸构成

比如说,赖氨酸是最常见的限制性氨基酸,特别是在谷类中,如小麦和水稻。坚果往往也含有赖氨酸作为限制性氨基酸。另一方面,豆类含有足够的赖氨酸,可以弥补,但缺乏硫氨基酸,如蛋氨酸和半胱氨酸。

蛋白质能否被人体吸收利用,还应该考虑蛋白质的氨基酸组成。

因此,了解一下评估蛋白质的另一个标准:氨基酸的组成。

氨基酸组成

蛋白质由氨基酸组成,身体可以合成其中一些氨基酸,而另一些则不能。

需要但不能合成、需要从食物中摄取的九种氨基酸被称为必需氨基酸(EAA)。

氨基酸:成人的需求和不同食物的含量

WorldHealthOrganization.ProteinandAminoAcidRequirementsinHumanNutrition

人群范围蛋白质摄入量如何?

使用谷禾检测人群,基于肠道菌群分析营养膳食摄入构成,图中给出了蛋白质占总能量摄入的占比,正常比例在10~20%范围。可以看出0~3岁蛋白质占比较高,3~15岁蛋白质占比较低,80~100岁比例又进一步下降。

<谷禾健康肠道菌群检测数据库>

结语

不同的细菌有不同的代谢能力,依靠我们摄入的营养物质繁殖生存,其中拟杆菌属(Bacteroides)、梭状芽胞杆菌属(Clostridium)、丙酸杆菌属(Propionibacterium)、梭杆菌属(Fusobacterium)、乳酸杆菌属(Lactobacillus)和链球菌属(Streptococcus)在蛋白质水解过程中发挥着重要作用。通过肠道菌群检测评估的蛋白质摄入水平显示不同人蛋白质摄入及营养占比差异很大,过高或者过低均伴随肠道菌群问题,包括过低导致潜在病原体数量增加,有益菌减少,同时导致部分氨基酸缺乏,过高又导致例如大肠菌群、链球菌和芽孢杆菌增殖,蛋白质发酵产生的副产物如,腐胺,苯酚,硫化氢等增诱发便秘,腹痛等健康问题。

除了蛋白质的摄入量,不同的蛋白形式,如植物蛋白,乳蛋白、动物蛋白以及蛋白质与其他营养摄入的相对比例构成,如膳食纤维、抗性淀粉、脂肪、微量元素等的比例都会影响肠道菌群进而反过来影响其消化降解,改变氨基酸的合成和代谢,最终影响宿主营养代谢健康。

常见食物中氨基酸含量见附录。

附录

供人类食用的植物性食品中总氨基酸的含量

(肽结合氨基酸加上游离氨基酸)mg/g

AminoAcidsinNutritionandHealth,2021

人类动物性食品中总氨基酸的含量

主要参考文献:

向上滑动阅览

AbdallahA,ElembaE,ZhongQ,SunZ.GastrointestinalInteractionbetweenDietaryAminoAcidsandGutMicrobiota:WithSpecialEmphasisonHostNutrition.CurrProteinPeptSci.2020;21(8):785-798.

doi:10.2174/1389203721666200212095503.PMID:32048965.

MaN,TianY,WuY,MaX.ContributionsoftheInteractionBetweenDietaryProteinandGutMicrobiotatoIntestinalHealth.CurrProteinPeptSci.2017;18(8):795-808.

YadavM,VermaMK,ChauhanNS.Areviewofmetabolicpotentialofhumangutmicrobiomeinhumannutrition.ArchMicrobiol.2018Mar;200(2):203-217.doi:10.1007/s00203-017-1459-x.Epub2017Nov29.PMID:29188341.

ZhaoJ,ZhangX,LiuH,BrownMA,QiaoS.DietaryProteinandGutMicrobiotaCompositionandFunction.CurrProteinPeptSci.2019;20(2):145-154.

LinR,LiuW,PiaoM,ZhuH.Areviewoftherelationshipbetweenthegutmicrobiotaandaminoacidmetabolism.AminoAcids.2017Dec;49(12):2083-2090.doi:10.1007/s00726-017-2493-3.Epub2017Sep20.PMID:28932911.

运动对心肺健康、肌肉力量、葡萄糖代谢、免疫系统和心理健康有影响。新的横断面研究证据表明,运动锻炼与肠道微生物群组成之间可能存在密切关联。

本文就以下方面进行详细阐述:

最近的研究表明,运动对肠道微生物群有很多好处。它与有益微生物物种数量的增加和微生物多样性的丰富以及短链脂肪酸合成和碳水化合物代谢的增强有关。

适度运动的频率会导致厚壁菌门的多样性更大。包括Faecalibacteriumprausnitzii(产生丁酸,抗炎共生菌),颤螺菌属(Oscillospira),有助于更健康肠道环境的Lachnospira和Coprococcus属的成员。

研究发现,锻炼与女性中具有促进健康功能的细菌的比例更高有关。包括以产生丁酸盐的能力而闻名的F.prausnitzii(普拉梭菌)和Roseburiahominis,以及运动员体内丰富的Akkermansiamuciniphila,低水平与肥胖和糖尿病等代谢状况有关。

一项研究调查了40名国际职业橄榄球联盟球员的微生物组,并将其与BMI高或低的相似年龄的对照组进行比较。结果表明,运动员肠道微生物多样性显著著增加。

与对照组相比,许多其他参数也显示出显著改善的结果。其中包括短链脂肪酸(SCFA),该研究发现与对照组相比,运动员体内的乙酸盐、丙酸盐、丁酸盐和戊酸盐水平明显更高。”

然而,这些观察性研究的结果只能确认训练状态和微生物群之间的关联,而不能确定因果关系。

运动与肠道微生物群组成之间的关联似乎是双向的。来自动物研究的越来越多的证据也表明肠道微生物群在宿主的身体机能中起着重要作用。肠道微生物群的组成和代谢活动可能有助于消化膳食化合物并改善运动期间的能量收集,这可以为运动员在高强度运动和恢复期间提供代谢益处。

在肠道中,细菌将不易消化的碳水化合物发酵成短链脂肪酸乙酸盐、丙酸盐和丁酸盐。训练和定期锻炼与人类粪便短链脂肪酸含量增加有关,并且在动物研究中,特定短链脂肪酸与改善身体机能有关。

大多数短链脂肪酸从肠道吸收并有助于宿主的能量代谢。

乙酸盐在肌肉组织中代谢,但也可以穿过血脑屏障。

丙酸盐可用作肝脏中葡萄糖合成的前体。

此外,短链脂肪酸可改善肠道屏障完整性,降低局部和全身炎症风险。临床前研究强烈表明短链脂肪酸可能是身体机能的关键调节剂。

值得注意的是,宿主可能不是唯一受益于运动期间与微生物群的共生关系的一方。

目前关于肠道微生物群与身体机能之间相互作用如下:

MaijaMarttinenetal.,Nutrients.2020

你可能想知道运动是否会改变微生物群,或者拥有健康的微生物群是否会让你更加活跃想运动。其实这用一句俗话讲就是“先有鸡还是先有蛋”的情景。

例如,肠道菌群失调会引起炎症,从而导致负面情绪,抑郁等症状,而抑郁不利于外出和积极运动锻炼。

多项研究表明,运动实际上可以改变你的肠道微生物群。

女性:运动与久坐女性菌群有差异

2017年一项针对女性的研究表明,积极活动方式的女性和久坐女性之间肠道微生物群特征的差异。

积极参与者被选为在试验期间在7天内进行至少10小时运动的组。久坐组参加安静的活动,并从日常生活中不是经常运动的女性中挑选出来,每周进行3次不超过30分钟的适度运动。

11个属(细菌的分类等级)在运动女性和久坐女性之间存在显著差异。重要的是,运动的女性群体拥有更丰富的促进健康的细菌,包括Faecalibacteriumprausnitzii、Roseburiahominis和Akkermansiamuciniphila.

换句话说就是,过着积极的生活方式更能取悦某些细菌,这是一种正向反馈。

橄榄球运动员比久坐者具有更高的α多样性

一项对爱尔兰男性职业橄榄球运动员的研究表明,与久坐的对照组相比,运动员肠道微生物群的α多样性(细菌丰富度,例如在粪便样本中鉴定了多少细菌种类)更高。

与高BMI对照组的比例相比,在橄榄球运动员和低体重指数(BMI)对照组中检测到的Akkermansia细菌比例更高。与低BMI的对照组相比,运动员中拟杆菌属的含量显著减少。

在微生物代谢水平上也检测到橄榄球运动员和久坐对照组之间的差异,在运动员中检测到的氨基酸和碳水化合物代谢途径活性增加。此外,与久坐的对照组相比,橄榄球运动员的粪便SCFA(乙酸盐、丙酸盐和丁酸盐)水平更高。

竞技自行车运动员中:经常训练者普氏菌高

在竞技自行车运动员中,每周训练超过11小时的自行车手比那些不经常训练的人的普氏菌相对丰度更高。

遗憾的是,该研究没有饮食控制和非运动员对照组。与在骑自行车的人中观察到的结果一致,在一小群精英竞走者中,粪便微生物群被分为普氏菌或拟杆菌为主的肠型。

马拉松运动员:韦荣球菌增加

中强度锻炼的人:促进健康和抗炎细菌增加

除了由专业或竞技运动员进行的高强度训练外,根据世界卫生组织(WHO)每周进行150分钟中等强度运动的指导方针,以推荐的最低水平进行运动,似乎足以改变肠道微生物群的组成。

此外,运动组和久坐组之间不同的饮食模式可能影响了肠道微生物群的组成,与久坐的女性相比,运动女性的膳食纤维摄入量明显更高,久坐组加工肉类的摄入量比例明显更高。

长期运动的人:菌群多样性更高

在迄今为止最长的运动干预中,研究了在6个月内,具有相似运动能耗的不同强度和方式的定期有氧训练对肠道微生物群的影响。

与对照组相比,所有运动组的β多样性(样本间差异)都发生了变化,剧烈运动组的参与者组内菌群差异度变小,换句话说就是构成趋向一致。

此外,与对照组相比,剧烈运动组在3个月时的α多样性增加更多。这表明可能需要更剧烈的运动来诱导久坐、超重/肥胖受试者的肠道微生物群发生变化。

在一项关于剧烈运动的研究中,拟杆菌门增加,厚壁菌门/拟杆菌门比率下降。这一结果与运动员有关,因为拟杆菌的增加在复杂糖聚合物的代谢转化和蛋白质降解中起着至关重要的作用。

这些结果强调了肠道底物摄取对全身的重要性,尤其是葡萄糖和蛋白质摄取,可能对肠道微生物群产生积极影响。

Lensu,S.etal.,Metabolites,2021

在儿童和老年人中也证明了身体活动水平与肠道微生物群组成之间的关联。

儿童:运动者菌群中梭菌目、毛螺菌科增加

来自美国肠道项目的7-18岁儿童研究队列中,在控制协变量(年龄、性别和使用抗生素和益生菌)。运动频率与富含厚壁菌门的肠道微生物群有关。此外,每天锻炼的儿童在梭菌目、毛螺菌科中的属增加了。

老年男性:与粪杆菌和Lachnospira菌有关

在老年男性中,根据步数和自我报告的活动测量的体力活动与微生物α多样性无关,但体力活动水平与粪杆菌属和Lachnospira属之间存在适度关联。

这些研究表明,运动员或经常运动人群与久坐人群之间的肠道微生物群组成存在差异。

运动者菌群特征可能与饮食有关

然而,运动员和身体活跃的人体内微生物群组成的一些特征可能是通过饮食来解释的,而不是运动的影响。

运动员经常遵循支持训练和表现的严格饮食,而极端运动通常与极端饮食有关。与正常人群相比,运动员的蛋白质摄入量可能要高得多。蛋白质补充剂通常用于满足训练者对蛋白质的更高需求,尽管蛋白质补充剂的流行也可能受到有关增加肌肉质量和改善性能和恢复的说法的影响。

摄入大量蛋白质后,未被吸收的蛋白质会进入结肠并促进特定细菌的生长和选择。

动物研究:运动产生的变化与年龄、饮食、是否自愿、个体生理状态等因素都有关

大鼠定期跑步运动与产丁酸菌的增加以及丁酸盐浓度的增加有关。其他动物研究表明,通过影响小鼠肠道微生物组成,每日轮式跑步运动可能会改善不健康状态的某些方面,例如饮食引起的肥胖、糖尿病和毒性。这些影响包括改变优势门厚壁菌门和拟杆菌门之间的比例。然而,这在研究之间并不总是相同。

运动所产生的变化似乎取决于个人的生理状态。例如,无论是肥胖-高血压大鼠还是正常大鼠,有规律的强迫运动对微生物群的丰度都有不同的影响。高脂饮食的大鼠运动对微生物群的改变与正常饮食的大鼠不同,并且糖尿病小鼠产生的改变与其对照小鼠不同。

总的来说,这些发现表明,长期运动对微生物群的调节不仅取决于个体的生理状态,还取决于饮食。此外,动物强制运动与自愿运动之间的另一个显著差异是运动量。这在人类骑自行车的数据中得到了概括,需要在动物模型中进一步研究。

此外,年龄,性别也会呈现不同效果。据观察,与成年大鼠相比,运动对幼年大鼠的微生物群产生更有效的改变。在这些检查运动训练对肠道微生物群的影响的小鼠研究中,一个共同的发现是增加了α多样性。

在研究人类肠道微生物群时,很难分别研究运动和饮食。这种关系因饮食摄入变化而变得更加复杂(例如,抗阻力训练运动员的蛋白质摄入量增加或耐力运动员的碳水化合物摄入量增加,以及总体能量和营养摄入量的增加)。

为什么部分运动人群和久坐人群的菌群无显著差异?

高蛋白+膳食纤维少=运动改变菌群无效

韩国的一项研究表明,高蛋白/限制性膳食纤维与健康久坐人群之间的肠道微生物多样性或有益细菌没有显著差异。然而,当蛋白质或膳食纤维摄入量符合KRDA(韩国推荐膳食允许量)时,肠道微生物多样性和有益细菌的相对丰度与健康久坐的受试者相比有显著差异。这些结果表明,运动对肠道微生物群的积极影响取决于蛋白质和膳食纤维的摄入量。结果还表明,在补充益生菌之前,应解决营养充足的问题。

研究人群之间膳食摄入量的差异,可能解释了不同研究结果之间观察到的一些不一致之处。

未消化的膳食纤维是肠道微生物群的重要能量和碳源,是短链脂肪酸合成的底物,是微生物多样性的关键贡献者。高蛋白饮食与低膳食纤维饮食相结合,可能对肠道微生物群组成有害,而不是单独摄入高蛋白。

营养补充剂介入运动和微生物关联

此外,主要来自动物研究的有限数据表明,流行的运动营养补充剂,如咖啡因、支链氨基酸、碳酸氢钠和肉碱,可以改变肠道微生物群的组成。大型研究队列的结果表明,运动与梭菌和毛螺菌科中的属增加有关。

其他小样本人群研究

尽管有几项研究调查了可能缺乏足够统计功效的小样本群,但有趣的是,通常诸如Akkermansia和Prevotella等属在运动员和身体活跃的受试者中含量更高。然而,由于临床研究的数量仍然有限,参与者的人口统计学和膳食摄入量(特别是膳食纤维摄入量)差异很大,因此应谨慎得出结论。

运动前后营养变化不大,但是菌群有变化

运动对肠道菌群的影响需要考虑运动期间的饮食因素,那么运动前后对营养元素是否会显著变化?

一个研究小组表明,运动训练干预改变了久坐、未受过训练的芬兰女性的肠道微生物群组成,而饮食习惯、体重或身体成分没有改变。

作者证明,耐力运动改变了超重、久坐女性的肠道微生物群,这些女性参加了一项运动干预,包括每周3次、持续六周的自行车训练。研究表明,在训练干预后,总摄入量或常量营养素或膳食纤维的摄入量没有差异。

下表总结了关于运动和/或运动饮食对肠道微生物群影响的研究

MohrAE,etal.,JIntSocSportsNutr.2020

运动后的生理效应

为什么耐力运动员中常出现胃肠道问题?

胃肠道问题很常见,特别是在耐力运动员中,30-50%的运动员出现胃肠道不适症状。这些症状可以通过生理,机械,心理,营养因子,包括血流量减少,增加的肠通透性引起的,产量增加应激激素和炎症细胞因子,胃排空不足。

然而,在耐力跑之外,很少评估胃肠道症状。例如,一项对参加4天严格越野滑雪行军的士兵的研究显示肠道通透性增加,但没有报告胃肠道症状,这使得对主观体验的影响和对运动表现的影响尚不清楚。

根据运动类型、强度、年龄和其他因素,20-50%的运动员会出现胃肠道症状,并且随着运动强度的增加而增加。

高强度运动带来的负面影响

在对29名训练有素的男性铁人三项运动员的研究中,在比赛中,93%的人报告消化功能紊乱,两名参与者因严重呕吐和腹泻而不得不放弃比赛。这些在运动员中很常见,因为在剧烈运动期间体温升高,血液从胃肠道流向周边肌肉和器官,如心脏和肺。远离肠道的血流重新分布以及对肠黏膜的热损伤可导致肠道屏障破坏,继而引发炎症反应。

在每周进行4-10小时耐力运动的健康年轻成年男性骑自行车者中,仅以70%的最大工作负荷进行1小时的运动就会产生内脏灌注不足,这会导致胃肠道循环减少、肠道通透性增加和小器官受损。

另一项研究表明,在70%VO2max下运动的人会导致内脏血流量减少60-70%,当血流量减少50%时,运动引起的缺血会导致肠道通透性增加。

加一句题外话,例如明星,网红为了美,限制碳水摄入,同时大量高强度锻炼来达到快速瘦身的效果,其实损害了肠道健康,可能会引起全身炎症反应,不要盲目效仿。

剧烈运动->胃肠道紊乱->影响肠道微生物群

导致胃肠道症状的氧化应激增加和肠道屏障功能紊乱也会影响肠道微生物群。LPS(由肠道通透性增加引起的革兰氏阴性菌的成分)的易位会导致内毒素血症并触发促炎细胞因子分泌到胃肠道中,这可能会影响肠道微生物群并进一步加剧病情。

反过来:肠道微生物群失调->胃肠道紊乱

肠道微生物群可作为生物标志物

由于微生物组成和多样性的改变与运动员胃肠道不适的流行有关,因此肠道微生物群组成可用作运动后代谢和全身压力的生物标志物。

例如,一项研究运动对血清和粪便代谢组以及肠道微生物群的急性影响的研究表明,一次运动上调骨骼肌底物利用和血清中碳水化合物代谢物的代谢途径,增加粪便氨和氨基酸代谢物,并增加梭菌的丰度。因此,微生物和代谢物谱的急剧变化可以提供有关运动对胃肠道和代谢影响的信息。

此外,考虑到运动对肠道微生物群的影响以及对以肠道为中心的饮食策略的需求,胃肠道症状评估可以补充有关肠道微生物群组成的信息。

一般运动员在运动训练中摄入大量单糖,以最大限度地储存糖原和维持血糖,同时尽量减少膳食纤维和抗性淀粉的摄入,以防止胃肠道紊乱。膳食纤维和抗性淀粉摄入不足可能会导致排便减少,从而导致肠道功能下降,也会降低肠道微生物群的多样性。

此外,运动员比非运动员消耗更多的动物蛋白来满足肌肉增生的需要。蛋白质摄入过多会导致肠道微生物中氮底物过量,产生腐败的发酵产物,如氨、硫化氢、胺、酚、硫醇和吲哚。随着食糜通过肠道,碳水化合物含量减少,腐烂的发酵变得更加有害。

实际上,蛋白质摄入过量,同时结肠中可发酵的膳食底物较低,会导致结肠黏膜DNA损伤。

高强度运动通过血液影响肠道微生物群

此外,高强度运动刺激血液从肠道器官重新分配到肌肉,同时它们积极进行细胞呼吸。血液的频繁重新分布可能会通过内脏低灌注和缺血以及随后的再灌注来扰乱肠道微生物群。因此,需要研究特定运动类型和运动员饮食对肠道微生物群的长期影响。

肠道微生物群在胃肠道功能、肠道免疫、内分泌以及调节氧化应激和水合水平等方面扮演多种角色,对肠道微生物群改善运动员肠道屏障功能的机制的研究也就越来越多。

微生物群产生的SCFA影响一系列宿主过程

运动引起的压力会改变分解代谢激素、细胞因子和肠道微生物群,这可能会导致胃肠道紊乱、焦虑、抑郁和表现不佳。肠道微生物群在人类生物学的许多方面都具有基础性作用,包括新陈代谢、内分泌、神经元和免疫功能。

AllisonClark&NúriaMach,JIntSocSportsNutr.2016

适当的肠道屏障功能对于维持健康和免疫力至关重要。但是训练和比赛数小时的精英运动员会经历身体和情绪压力,导致生理稳态发生变化,刺激SAM(交感神经-肾上腺髓质轴)和HPA轴(下丘脑-垂体-肾上腺轴)高强度运动期间的胃肠道紊乱。

由于活性氧(ROS)的产生增加以及肠道微生物群组成和活性的改变(所谓的生态失调),肠道通透性可能会变得更糟。

胃肠道通过释放GABA、神经肽Y(NPY)和多巴胺等激素来应对压力,这些激素会导致胃肠道紊乱、焦虑、抑郁、食物摄入减少和压力应对能力降低。相反,微生物群产生的丁酸盐和丙酸盐可以增加跨上皮抵抗,从而改善肠道屏障功能并减少炎症。

胃肠道通过释放GABA、NPY和多巴胺等激素来应对压力

GABA,这是身体的主要抑制中枢神经系统的神经递质,调节血压和心率和在各种胃肠道功能中起着重要作用,如运动性,胃排空和瞬态下食道括约肌放松,以及焦虑、抑郁,疼痛感和免疫反应。

适度运动可以增加下丘脑中的GABA水平,从而降低静息血压、心率和交感神经张力。在25°C水中强迫游泳时,发现大鼠海马GABA水平下降(基线的70%)。

神经肽Y(NPY)也会在胃肠道中响应各种压力刺激(例如剧烈运动)而释放,并在减弱HPA轴方面发挥作用。

注:神经肽Y是一种36个氨基酸的肽,位于整个肠脑轴,是大脑中最普遍的神经肽,在压力恢复和炎症过程中发挥作用。

检测了12名训练有素的赛艇运动员的神经肽Y血清水平,发现运动后神经肽Y的浓度显著增加。虽然很少有研究研究了血清和海马NPY水平对运动的反应,但这些结果表明它在减少剧烈运动时的压力反应方面发挥作用。

多巴胺(去甲肾上腺素和肾上腺素的前体)也可以在胃肠道压力期间合成。

多巴胺的产生取决于几个因素:

整个肠道中有多种多巴胺受体,表明它在肠-脑轴中发挥作用。胃肠道、脾脏和胰腺会产生大量的多巴胺。在人胃上皮细胞中发现了多巴胺合成的限速酶酪氨酸羟化酶,表明其功能存在于大脑中的神经传递之外。每天大约1-2小时的习惯性运动已被证明会增加大脑中的多巴胺水平。

肠道微生物群如何与周围组织(如胃肠道粘膜层)的应激激素直接相互作用?

去甲肾上腺素(NE)已显示对肠道嗜水气单胞菌(Aeromonashydrophila)、博德特氏菌属(Bordetella)、空肠弯曲杆菌(Campylobacterjejuni)、幽门螺杆菌(Helicobacterpylori)、李斯特菌(Listeria)和沙门氏菌(Salmonellaenterica)有直接影响。

此外,去甲肾上腺素还会增加非致病性大肠杆菌和其他革兰氏阴性菌的水平。

微生物组如何调节运动引起的压力反应?

最近发表了一项研究,揭示了对胃肠道和全身健康很重要的,独特微生物群—宿主相互作用。

此外,与久坐组相比,强制组中的瘤胃球菌(Ruminococcusgnavus)在肠道粘液降解中具有明确的作用,以及增加了丁弧菌属、Oscillospira属和粪球菌属。

这项针对运动和压力动物的初步研究表明,运动可以改变微生物群的组成以及代谢功能,这可能根据运动强度和自愿性等对菌群产生积极或消极的影响。

由于营养、遗传和环境因素,在人类临床研究中剖析肠道微生物群对运动表现的确切作用可能很困难。无菌动物模型克服了其中的许多挑战,并已被用于证明肠道微生物群对身体表现结果所起的作用。

失去肠道微生物群的小鼠,运动表现下降

其他研究:失去肠道微生物群的小鼠运动表现无影响,但肌肉功能下降

与上述相反,另外的研究,GF小鼠和SPF小鼠在运动至精疲力竭时的身体表现没有差异。然而,与SPF小鼠相比,GF小鼠表现出肌肉质量减少、肌纤维减少和肌肉力量降低。GF小鼠的肌肉萎缩与线粒体生物合成失调和氧化能力降低有关。SPF小鼠肠道微生物群的移植恢复了GF小鼠的肌肉质量,与未治疗的GF小鼠相比,用短链脂肪酸混合治疗增加了GF小鼠的骨骼肌质量和肌肉力量。

抗生素治疗极大地改变了肠道微生物群的组成

SCFA产生的影响及其对运动表现的作用

为了进一步探索SCFAs在表现能力中的假定作用,对抗生素治疗的小鼠进行皮下注射乙酸盐或丁酸盐。乙酸盐而非丁酸盐的输注改善了抗生素引起的剧烈运动带来的不良反应。

无菌动物当然是一种极端模型,可能无法解释在人类微生物群中观察到的更细微的差异。不过,无菌动物模型的研究已经建立了肠道微生物群与身体机能之间的因果关系。

总体而言,恢复肠道微生物群失调似乎可以有效恢复啮齿动物的运动能力和骨骼肌参数。

身体活动分为力量和耐力两大类,这取决于你的身体如何产生能量来维持你的运动表现。

无氧运动

力量运动通常高强度,如举重、短跑和拳击。这些运动通过锻炼细胞的无氧途径来增强肌肉质量。这就是说你的肌肉利用其有限的糖原储备来制造ATP(肌肉的燃料),而无需使用氧气。

最近的一项研究表明,宿主骨骼肌在无氧运动期间产生的乳酸通过循环进入肠腔,为结肠中利用乳酸的物种提供了选择性优势。这项开创性工作的结果表明,在高强度运动期间,宿主以乳酸的形式为特定细菌提供燃料,这些细菌又会产生代谢物,例如丙酸盐,对运动宿主有益。

有氧运动

测量心血管健康最流行的方法是V02最大值,它可以查看你的身体在剧烈运动期间可以使用的最大氧气量。用于评估耐力表现,并且可以通过高强度运动得到显著改善。

几项研究表明,微生物群组成与心肺健康之间的关系可以解释“分类丰富度”(微生物组中鉴定的细菌多样性)的20%以上的变化。注意到这些变化与其他因素无关,包括年龄、脂肪摄入量和碳水化合物摄入量。

有氧运动对微生物群及身体的益处

研究表明,有氧运动对你的微生物群有好处,包括有益菌和整体多样性丰度增加。

有氧运动还会增加粪便SCFA浓度,从而降低结肠腔的pH值。

有氧运动类型及建议

有氧运动是长期的。放轻松,坚持下去,你的身体会适应的。

NHS已经发布了成人的运动建议:

至少150分钟中等的有氧运动,如骑自行车或快走每周进行2天或更多天的力量锻炼,可以锻炼所有主要肌肉(腿部、臀部、背部、腹部、胸部、肩部和手臂)或者每周进行中等强度和剧烈有氧运动的组合——例如,两次30分钟的跑步加上30分钟的快走相当于150分钟的中等有氧运动每周进行2天或更多天的力量锻炼,可以锻炼所有主要肌肉(腿部、臀部、背部、腹部、胸部、肩部和手臂)

适当的训练计划旨在平衡精英运动员所经历的全身压力因素以及个性化的饮食计划,以提高表现并减少运动引起的压力症状。

饮食设计应考虑肠道微生物群

目前和未来运动员或经常的锻炼计划应根据其对肠道微生物群的潜在影响来考虑饮食策略,包括以运动为中心的饮食策略(例如,蛋白质补充剂、碳水化合物负荷)对肠道微生物群的影响以及以肠道为中心的饮食策略的影响。

蛋白质

蛋白质是骨骼肌的主要成分。然而,特定氨基酸在肝脏和骨骼肌的吸收和分解代谢以及它们调节肌肉蛋白质合成反应的能力方面有所不同。

必需氨基酸,尤其是支链氨基酸(BCAA),对于肌肉蛋白质合成至关重要,并且比非必需氨基酸产生更大的肌肉蛋白质合成反应。因此,膳食蛋白质会影响蛋白质利用和骨骼肌对运动的合成代谢反应。

补充亮氨酸导致血浆亮氨酸和总支链氨基酸浓度显著增加,并改善耐力表现和上肢力量,影响血浆色氨酸:支链氨基酸比率。BCAA的补充也被用于通过改变大脑神经递质的产生(如5-HTP、多巴胺和去甲肾上腺素)来调节运动期间疲劳的影响。由于缺乏证据,无法对运动员应服用的BCAA类型或数量提出建议。

运动员可能需要的蛋白质是一般人群的两倍

用以维持蛋白质合成、能量产生、免疫功能和肠道完整性和运动引起的压力的结果。

这对于耐力和阻力训练的运动员来说比较重要。耐力运动员可能需要在运动后恢复期摄入更多的蛋白质,尤其是在禁食状态下进行耐力运动时,因为这可能会增加肌丝蛋白水解。

虽然根据饮食和生理因素而变化,例如消化率、氨基酸的数量和组成、食物基质以及其他营养素的存在,但约10%的蛋白质未被消化,可能会到达结肠被肠道细菌分泌的蛋白酶进行蛋白水解。

HughesRL,etal.,AdvNutr.2021

关于肠道微生物群代谢,氨基酸可以根据其发酵代谢产物进行分类:含硫氨基酸、芳香族氨基酸和色氨酸。

过量蛋白质摄入的不利影响

这些代谢物包括支链脂肪酸和短链脂肪酸、氨、硫化物、吲哚和酚类化合物。虽然其中一些代谢物(例如SCFA和吲哚)可能具有改善肠道完整性等有益效果,但其他代谢物(例如氨和对甲酚)会降低肠道上皮完整性。过量的蛋白质摄入可能会导致蛋白水解代谢物的产生水平超过宿主吸收、转化或解毒有害代谢物的能力,导致对肠道屏障功能、炎症和结肠健康的不利影响。

非蛋白质成分有助于运动后的蛋白质合成反应

另一个领域是全食物蛋白质与蛋白质补充剂的影响,因为全食物具有相同或更好的增效作用。例如,摄入全鸡蛋与蛋清相比,摄入全脂牛奶与脱脂牛奶相比,会导致更多的氨基酸摄入和运动后肌原蛋白合成,表明非蛋白质成分(例如,脂质、碳水化合物、微量营养素和其他生物活性化合物)有助于运动后的蛋白质合成反应。

过量蛋白质补充剂增加结直肠癌风险

蛋白质补充剂,包括添加到能量饮料中的支链氨基酸和牛磺酸,通常被运动员用来增强运动对骨骼肌的合成代谢和适应性作用,并促进恢复。过量的牛磺酸会导致牛磺胆酸(TCA)、脱氧胆酸(DCA)和硫化氢(H2S)浓度升高,这与结直肠癌风险增加有关;然而,这些补充剂对运动肠道微生物群的影响尚不清楚。

谷氨酰胺

运动前几天食用高蛋白、低碳水化合物的饮食会导致运动后血浆谷氨酰胺浓度降低。然而,谷氨酰胺补充剂几乎没有得到对健康、营养良好的运动员的严格控制的科学研究的支持。此外,研究者指出谷氨酰胺补充剂应取决于症状(即血浆谷氨酰胺水平低、肠漏)。

酪氨酸

新的中央疲劳假说指出,当血清素水平升高而多巴胺水平降低时,疲劳就会开始,这可能是许多运动员服用酪氨酸补充剂以防止其消耗的原因,尽管尚未确定推荐的补充剂量。酪氨酸或4-羟基苯丙氨酸可在体内由苯丙氨酸合成,存在于许多高蛋白食物中,如豆制品、鸡肉、火鸡、鱼、花生、杏仁、鳄梨、牛奶、奶酪、酸奶和芝麻。

肠道微生物群通过增加膳食蛋白质的生物利用度和吸收以及增加肌肉蛋白质合成影响肌肉功能

有证据表明,肠道微生物有助于蛋白质的吸收和利用。例如,益生菌补充剂(副干酪乳杆菌)增强了植物蛋白的生物利用度,将必需氨基酸和支链氨基酸的浓度提高到与动物蛋白相当的浓度。此外,当与蛋白质共同给药时,益生菌凝结芽孢杆菌(GBI-30,6086)减少了上皮细胞炎症,改善了营养吸收,并产生了增加人类氨基酸吸收的蛋白酶。这些作用可以减少肌肉损伤并促进肌肉恢复,从而提高适应能力和表现。

需要注意的是,细菌虽发酵氨基酸,但它们代谢动物和植物蛋白的方式不同。每个饮食计划都伴随着微生物群组成和功能的同步调整。因此,纯素食者、素食者、杂食者和红肉摄入量高的饮食的微生物群组成差异很大。

多项研究表明在高蛋白饮食中添加抗性淀粉可以抵消高蛋白摄入的负面影响,进一步说明摄入足够的膳食纤维对肠道和整体健康的重要性。

碳水化合物

毫无疑问,充足的碳水化合物消耗对于繁重的训练计划和成功的运动表现至关重要。

碳水化合物怎么补充?

对于每天训练超过2小时的运动员,膳食碳水化合物的摄入量为每天7至12克/千克,脂肪摄入量通常小于每天体重的1克/千克(消耗总卡路里的20%)。

运动前和运动中摄入大量简单碳水化合物

针对运动员的饮食建议在运动前摄入大量简单碳水化合物以维持葡萄糖稳态,并在运动前摄入低纤维以减少胃肠道不适,同时补充说,以植物为基础的高纤维饮食可能会降低能量供应。在运动前和运动期间摄入简单碳水化合物(例如,葡萄糖、果糖、蔗糖、右旋糖)可以减轻疲劳、提高运动表现、促进水重吸收和维持水分充足。

摄入等量的果糖和葡萄糖,优化果糖吸收减轻不适

然而,葡萄糖和果糖负荷以及果糖与葡萄糖的比例会影响肠道微生物发酵和胃肠道应激。葡萄糖和果糖的组合导致比摄入单一碳水化合物更高的碳水化合物氧化率,减少运动期间内源性能量储存的消耗。摄入等量的果糖和葡萄糖可优化果糖吸收,减少微生物发酵,从而减轻胃肠道不适症状。

乳糖提高运动表现和恢复能力

注意:

高碳水化合物饮食不会改善免疫功能,也不会防止经过大量训练后血浆谷氨酰胺浓度降低。

富含简单和精制碳水化合物的饮食不会促进健康的肠道微生物群组成,也不会产生有益的短链脂肪酸。

需要更多的研究来了解微生物群从饮食中提取营养的能力,并包括宿主的代谢变化。

膳食纤维

一般每1,000卡路里摄入足够的纤维总量为14克,即成年女性为25克,成年男性为38克。

运动员或运动锻炼期间可以通过增加植物性食物的摄入量(例如全谷类、豆类、蔬菜、水果和坚果),同时在恢复期和训练期减少来自高添加糖、精制碳水化合物和脂肪的加工食品的能量,从而获得足够的膳食纤维摄入量,因为在激烈的训练或比赛之前吃高纤维饮食可能会导致胃肠道不适,如腹胀、胀气。

腹胀详见:“肚子像气球?”“好像怀孕?”——可能是腹胀惹的祸

此外,膳食纤维和大量食用植物性食物似乎会抑制细菌从蛋白质中产生有害代谢物,这强调了摄入足够的复合碳水化合物以维持肠道微生物组碳水化合物发酵的重要性。

脂肪和多不饱和脂肪酸

高脂肠内营养可以减轻肠道灌注不足导致消化功能紊乱后的肠道炎症、细菌易位和肠道损伤。

高脂饮食的危害

另一方面,高脂饮食会导致类似焦虑的行为增加,选择性破坏探索性、认知性和刻板行为,神经炎症破坏肠道屏障功能的标志物,以及与高脂肪饮食的小鼠相比增加循环内毒素和淋巴细胞表达。

在人类中,与高碳水化合物饮食(65%的饮食能量)相比,富含脂肪的饮食(62%的饮食能量)可能对免疫功能有害。

这些作者比较了10名未经训练的年轻男性在每周3-4次持续7周的耐力训练期间食用富含碳水化合物的饮食,和10名高脂饮食的受试者。高脂饮食的运动员的NK细胞活性较低。

注:NK细胞溶解一定数量肿瘤靶细胞的能力

Omega-6多不饱和脂肪酸

它可以改变细胞膜流动性并间接影响免疫功能,包括减少IL-2的产生和抑制有丝分裂原诱导的淋巴细胞增殖,从而在运动期间和运动后产生潜在的不良免疫功能。

omega-3多不饱和脂肪酸

它的最佳剂量约为1–2g/d,二十碳五烯酸与二十二碳六烯酸的比例为2:1,可能会减少运动过程中ROS的产生。

高脂饮食对运动的影响不明确

最重要的是,摄入高脂肪和卡路里的饮食与慢性“低度”全身炎症、肠道通透性和血浆LPS增加以及总细菌多样性降低以及拟杆菌和梭菌的相对比例增加有关。因此,似乎食用高脂肪饮食也可能导致肠道微生物群发生不利变化。

维生素和抗氧化剂

运动员通常不会补充维生素和其他抗氧化剂,但建议运动员应考虑增加抗氧化剂的摄入量,如维生素C、E、β-胡萝卜素和多酚,以减少ROS的形成和脂质过氧化。

用蓝莓和绿茶提取物(作为布洛芬替代品)补充多酚并没有改变既定的炎症和氧化应激,但增加了肠道细菌多酚代谢特征的代谢物(例如马尿酸盐、4-羟基马尿酸、4-甲基儿茶酚硫酸盐)和跑步者在3天剧烈运动后恢复期间的生酮。

不推荐补充个别微量营养素或食用大剂量的简单抗氧化剂混合物

尽管没有任何负面影响的报道,但富含多酚提取物(蓝莓和绿茶)的运动员饮食并没有减轻剧烈运动带来的生理压力,也没有提高恢复速度。

摄入大剂量的个别维生素(在运动员中并不少见)可能弊大于利,因为大多数维生素在体内主要作为辅酶发挥作用。一旦这些酶系统饱和,游离形式的维生素就会产生毒性作用。因此,运动锻炼期间应该通过增加水果和蔬菜的摄入量来获得复杂的抗氧化化合物混合物。

益生菌

常规益生菌包括双歧杆菌属和乳酸杆菌,尽管在运动员中研究的其他细菌包括芽孢杆菌属、肠球菌属、链球菌属、韦永氏菌或酵母布拉氏酵母菌。

益生菌带来的健康益处及对运动效果的影响

呼吸道症状改善的研究包括来自乳酸杆菌家族的有机体。L.salivarius也可能通过增加产生丁酸盐的类群Roseburia和Lachnospiraceae来降低胃肠道通透性,并减少疣微菌。虽然有证据表明益生菌功能的共享机制,但益生菌的益处通常取决于益生菌的菌株和剂量。

益生菌可以通过改善肠道通透性和抗氧化状态以及减少炎症来减轻剧烈运动对运动员胃肠道不适和肌肉酸痛的影响。布拉氏酵母菌和嗜酸乳杆菌和双歧双歧杆菌的组合有助于预防旅行者腹泻。

益生菌还可以通过生物活性代谢物的产生(例如短链脂肪酸、神经递质)、肠道pH的调节和肠道的改变等机制改善营养吸收和利用、糖原储存、身体成分、能量收集、激素产生以及认知和情绪微生物群的活动。例如,植物乳杆菌增加了铁人三项运动员的耐力表现,同时增加了粪便短链脂肪酸。

一项对小鼠的研究表明,从一名奥林匹克举重运动员身上分离出的细菌菌株[L.salivarius亚种salicinius(SA-03)]通过增加肝脏和肌肉糖原并降低乳酸、血尿素氮、氨和肌酸激酶在运动后提高耐力表现和肌肉力量。

然而,更多的研究表明,多菌株益生菌比单菌株益生菌具有更强的增效作用,这表明多种菌株可能以互补的方式发挥作用以提供性能优势。

益生菌可能因此有利于通过直接和间接的机制,提高运动成绩,虽然增补效应的证据仍然稀少。

益生菌如何补充?

益生菌菌株和剂量的差异以及个人的基线饮食、免疫状态和微生物群组成可能会导致研究之间的结果存在差异,从而使比较和得出结论变得困难。

大多数针对运动员的益生菌补充研究并未评估肠道微生物群,因此很难确定疗效是否取决于基线或参与者肠道微生物群组成的变化。同时饮食摄入,尤其是纤维和益生元底物的摄入,也可能影响益生菌的作用,因此应在分析中加以考虑。因为消费者应该意识到,如果没有足够营养的饮食支持,单独补充益生菌可能不会产生预期的效果。

此外,针对运动的益生菌补充研究通常样本量较小(即10至30名参与者),并且通常仅包括或主要包括男性参与者,这是有问题的,因为存在可能是性别特定的影响。

发酵食品对运动的影响

三项使用开菲尔或发酵乳的研究报告称,运动诱发的CRP或肌酸磷酸激酶和肌肉酸痛降低,表明这些发酵食品对减少炎症有积极作用。一项小鼠研究报告了开菲尔对力量和耐力的增效作用。因此,含有活微生物的发酵食品可能对炎症和运动表现有益。

合生元

合生元是“包含活微生物和宿主微生物选择性利用的底物的混合物,它赋予宿主健康益处”。合生元可能是益生菌和益生元的组合(互补合生元),尽管单个成分不一定需要满足益生菌和益生元的标准,只要它们在共同给药时协同作用(协同合生元)。因此,益生元成分可以增强益生菌(协同合生元)的功能,或者这两种成分在引入肠道及其常驻微生物(互补合生元)后可以提供独立的有益功能。

微量营养素

微量营养素有助于免疫功能、炎症、能量代谢和骨骼健康,影响运动表现。充足的铁、锌和维生素A、E、C、B-6和B-12的摄入量对于适当的免疫功能至关重要,在运动员的高强度训练和比赛条件下可能会受到影响。

此外,由于汗液和尿液的流失以及氧化应激的增加,运动员对某些微量营养素的饮食需求可能会增加。此外,女运动员或女性增加锻炼缺铁的风险更高,影响健康和表现。

微量营养素与肠道微生物群

缺乏抗氧化微量营养素(例如,维生素C和E以及硒)会减少共生肠道细菌的数量,同时促进大肠杆菌的增加。

在压力增加的动物中,维生素C、维生素E、多酚、硫辛酸和微生物抗氧化剂的抗氧化剂混合物可恢复肠道氧化还原状态,这与双歧杆菌和乳杆菌增加以及大肠杆菌减少有关。然而,过量摄入某些微量营养素也可能增加感染易感性。例如,婴儿过量补铁会增加病原微生物,包括大肠杆菌,并导致肠道炎症。

因此,在压力增加或微量营养素缺乏的情况下补充微量营养素可能对免疫和炎症具有微生物群介导的益处。

钙和维生素D

需避免的食物

胃肠道问题在运动员和长期运动锻炼人群中比较常见。为了缓解症状,运动员可能会避免或限制某些会引发症状的食物。运动员还可以采用营养策略来增加胃排空并改善水和营养物质的吸收,包括避免高FODMAP食物和含麸质食物。

FODMAP是不易消化的短链碳水化合物,可增加胃肠道内的渗透负荷。肠道微生物可以将这些膳食成分发酵形成气体,从而导致有些人出现腹胀和胃肠道不适。

最近一项调查耐力运动员FODMAP摄入量的研究报告称,高摄入量都会导致胃肠道症状。初步结果表明,低FODMAP饮食减轻了运动员胃肠道症状。然而,FODMAP也充当肠道微生物群的燃料,它们的限制可能会影响群落的组成和功能。

有一种推测,无麸质饮食之所以能改善胃肠道症状,并不是其本身,而是其中FODMAP食物的减少。

只有一项研究调查了无麸质饮食对非腹腔耐力运动员的影响,其中报告无麸质饮食对表现、胃肠道症状、健康、肠道损伤或炎症没有影响。

运动可能是改变肠道菌群组成和恢复肠道共生的重要干预措施

目前的研究支持运动作为一种重要的行为因素的作用,它可以影响肠道微生物组成和功能的定性和定量变化,并对宿主有益。运动可以丰富微生物群的多样性,刺激可以调节粘膜免疫、改善屏障功能的细菌的增殖,并刺激能够产生防止胃肠道疾病和提高性能的物质的细菌和功能通路。

尽管这些变化可能不会以类似的方式在个体间发生,也可能取决于微生物群和宿主的基线特征。

运动带来的益处涉及内在和外在因素的结合

常运动的人更有可能接触到他们的环境生物圈,并遵循整体健康的生活方式,因此拥有更健康的微生物群。

目前对人体肠道微生物群与运动之间相互作用的研究仍然缺乏

尤其是与控制饮食相结合的研究,这是一个重要的混杂因素。准确测量营养成分和饮食质量,将有助于把运动对肠道微生物群的影响与其他混杂因素区分开来。

研究还应记录液体摄入量或测量水合生物标志物(如和肽素),以确定水合状态是否影响肠道微生物群,反之亦然。

此外,饮食和运动对肠道微生物群的影响通常是短暂的,并且在干预完成后不会持续。这表明长期的生活习惯对于诱导肠道微生物群的稳定变化是必要的。在关键发育窗口期间的干预措施可能对肠道微生物群产生更持久的影响,当然这需要进一步研究。

未来的研究应侧重于使用分层方法,使用人体临床试验来识别可能有益于运动表现的目标细菌,并使用动物和体外研究来确定因果关系和机制。

然后可以再次使用人体试验来确定是否补充已鉴定的细菌或实施饮食习惯(例如,益生元/不易消化的碳水化合物、-3脂肪酸补充剂、蛋白质摄入量的类型/数量),以提高细菌丰度和/或功能有利于运动表现。

此外,需要更多的研究来阐明膳食脂肪的数量和类型对肠道微生物群的影响以及随后微生物群介导的(例如,通过胆汁酸)对运动表现的影响。

总之,人们越来越意识到,微生物群的个体差异会导致运动反应和健康结果的差异性。

未来的研究还应该整合其他“组学”数据

整合其他“组学”数据,以确定可能导致、促成、介导或调节饮食和运动对肠道微生物群的影响的潜在代谢物、基因和表观遗传修饰。

“组学”数据的使用与机器学习方法相结合,有可能揭示肠道微生物群与其代谢物、饮食和运动表现之间的新关联,并预测对饮食策略的个性化反应。这些发现的影响包括提高运动员成绩和改善健康,尤其是胃肠道和呼吸系统健康的潜力。

此外,研究应对肠道微生物群、饮食和人类健康之间的相互作用有更深入的了解,这些相互作用可能具有超越运动人群的影响和应用,以造福所有人的健康。

ClarkA,MachN.Exercise-inducedstressbehavior,gut-microbiota-brainaxisanddiet:asystematicreviewforathletes.JIntSocSportsNutr.2016;13:43.Published2016Nov24.doi:10.1186/s12970-016-0155-6

Lensu,S.;Pekkala,S.GutMicrobiota,MicrobialMetabolitesandHumanPhysicalPerformance.Metabolites2021,11,716.

MohrAE,JgerR,CarpenterKC,etal.Theathleticgutmicrobiota.JIntSocSportsNutr.2020;17(1):24.Published2020May12.doi:10.1186/s12970-020-00353-w

JangLG,ChoiG,KimSW,KimBY,LeeS,ParkH.Thecombinationofsportandsport-specificdietisassociatedwithcharacteristicsofgutmicrobiota:anobservationalstudy.JIntSocSportsNutr.2019;16(1):21.Published2019May3.doi:10.1186/s12970-019-0290-yHughesRL,

HolscherHD.FuelingGutMicrobes:AReviewoftheInteractionbetweenDiet,Exercise,andtheGutMicrobiotainAthletes.AdvNutr.2021;12(6):2190-2215.doi:10.1093/advances/nmab077

JolletM,NayK,ChopardA,etal.DoesPhysicalInactivityInduceSignificantChangesinHumanGutMicrobiotaNewAnswersUsingtheDryImmersionHypoactivityModel.Nutrients.2021;13(11):3865.Published2021Oct29.doi:10.3390/nu13113865

MarttinenM,Ala-JaakkolaR,LaitilaA,LehtinenMJ.GutMicrobiota,ProbioticsandPhysicalPerformanceinAthletesandPhysicallyActiveIndividuals.Nutrients.2020;12(10):2936.Published2020Sep25.doi:10.3390/nu12102936

SohailMU,YassineHM,SohailA,ThaniAAA.ImpactofPhysicalExerciseonGutMicrobiome,Inflammation,andthePathobiologyofMetabolicDisorders.RevDiabetStud.2019;15:35-48.doi:10.1900/RDS.2019.15.35

MondaV,VillanoI,MessinaA,etal.ExerciseModifiestheGutMicrobiotawithPositiveHealthEffects.OxidMedCellLongev.2017;2017:3831972.doi:10.1155/2017/3831972

ClaussM,GérardP,MoscaA,LeclercM.InterplayBetweenExerciseandGutMicrobiomeintheContextofHumanHealthandPerformance.FrontNutr.2021;8:637010.Published2021Jun10.doi:10.3389/fnut.2021.637010

OkamotoT,MorinoK,UgiS,NakagawaF,LemechaM,IdaS,OhashiN,SatoD,FujitaY,MaegawaH.Microbiomepotentiatesenduranceexercisethroughintestinalacetateproduction.AmJPhysiolEndocrinolMetab.2019May1;316(5):E956-E966.doi:10.1152/ajpendo.00510.2018.Epub2019Mar12.PMID:30860879.

TicinesiA,NouvenneA,CerundoloN,etal.GutMicrobiota,MuscleMassandFunctioninAging:AFocusonPhysicalFrailtyandSarcopenia.Nutrients.2019;11(7):1633.Published2019Jul17.doi:10.3390/nu11071633

HughesRL,HolscherHD.FuelingGutMicrobes:AReviewoftheInteractionbetweenDiet,Exercise,andtheGutMicrobiotainAthletes.AdvNutr.2021Dec1;12(6):2190-2215.doi:10.1093/advances/nmab077.PMID:34229348;PMCID:PMC8634498.

ZhaoJ,ZhangX,LiuH,BrownMA,QiaoS.DietaryProteinandGutMicrobiotaCompositionandFunction.CurrProteinPeptSci.2019;20(2):145-154.doi:10.2174/1389203719666180514145437.PMID:29756574.

我们知道肠道菌群代谢产生短链脂肪酸,丁酸是短链脂肪酸之一,它支持消化系统健康和疾病预防,地位不容小觑。

丁酸作为一种有效的调节因子,是宿主-微生物串扰的关键介体。本文整理了丁酸盐的特性,探讨其健康益处及改善健康的潜力。

肠道菌群消化膳食纤维,并将它们转化为多种有机化合物,这些化合物对人体健康有益,包括氨基酸、短链脂肪酸等。内源性丁酸主要是肠道内产丁酸细菌利用糖类发酵产生一类短链脂肪酸。

1、为肠道细胞提供燃料

厚壁菌属的成员以产生丁酸盐而闻名,像Roseburia,Faecalibacteriumprausnitzii,直肠真杆菌E.rectale等。

这种关系是相互的。丁酸盐为结肠细胞提供燃料,作为回报,这些细胞有助于提供一个无氧环境,有益的肠道微生物在其中茁壮成长。这可以控制炎症,保持肠道细胞健康,并使肠道细菌保持健康。

2、促进肠道运动

丁酸盐还可以穿过上皮屏障,通过连接胃肠道、脾脏和肝脏的肝门静脉进入循环。肝脏似乎是内脏产生的SCFA的主要库,它们可能通过β-氧化代谢,用于合成酮体或转化为AcCoA。

短链脂肪酸转运体的表达受到短链脂肪酸存在的调控,未在结肠中代谢的短链脂肪酸通过门静脉进入肝脏,作为肝细胞的能量底物,因此在体循环中只留下极少的丁酸。

实验室研究表明,丁酸盐通过作为SCFA受体的配体和激活剂,诱导肠道激素肽YY24或介导肠嗜铬细胞释放5-羟色胺来促进肠道运动。

★增强电解质吸收

丁酸盐通过上调Na+-H+交换器和诱导ATPase离子交换器基因来增强水和电解质的吸收。并且可能有益于预防某些类型的腹泻。

3、激活AMPK

丁酸盐激活AMPK(AMP-activatedproteinkinase,AMPK)。AMPK的作用是促进细胞内的平衡。它在我们的新陈代谢功能中也扮演着重要的角色。一些科学家把减肥归功于AMPK的激活。

在有和没有NAFLD的小鼠中,当AMPK被激活时,肝脏中的脂肪水平下降,也就是说,新的脂肪产生减慢,现有的脂肪被代谢。此外,在喂食高脂肪食物的小鼠中当AMPK被激活时,小鼠的体重增加和肥胖缓解,肝脏炎症的迹象也更少。

AMPK对食欲调节至关重要。它在减肥方面也有重要作用。

反过来,来自器官的颗粒和毒素不会渗透导致肠漏的问题。因此,丁酸盐可以帮助修复肠道内壁。

4、抗氧化能力

丁酸盐保护细胞免受有害物质的侵害,以维持肠道健康。

说起抗氧化,我们先了解一下自由基。它基本上是体内化学反应产生的废物。另一方面,抗氧化剂是身体抵御它们的防御措施。大量自由基会造成损害并压倒身体的修复系统。我们称之为氧化应激。氧化应激被认为是导致衰老和疾病的一个重要因素。

丁酸增加谷胱甘肽,可以中和自由基

结肠或大肠是身体产生的废物的储存容器。较高的丁酸盐水平已被证明会增加谷胱甘肽的水平,谷胱甘肽是一种在人体细胞中产生的抗氧化剂,可以中和肠道中的自由基(自由基与炎症和许多疾病有关)。

5、防止肠漏

肠道内壁需要丁酸盐来保持健康和正常运作。

肠道内壁是肠道屏障。它促进绒毛的生长,微小的手指状挤压物排列在肠道内,并增加粘蛋白的产生,粘蛋白是一种覆盖肠道内部的凝胶状物质。它选择性地让维生素和矿物质等物质离开肠道,进入血液,并到达需要它们的地方。同样,它可以阻止毒素、病原体和食物化合物进入血液。

当屏障健康时,称为紧密连接的小孔会放松,让水和营养物质通过。

一些习惯,比如频繁吃零食,会阻止这些紧密连接在两餐之间的关闭,因此细菌和不需要的物质会进入血液,于是肠漏就发生了。

肠道微生物从膳食纤维中产生的丁酸盐提供了肠道内壁细胞所需的燃料。通过这样做,它可以保持肠道内壁的完整性,防止发生肠漏。

6、抗炎、抗癌特性

丁酸盐对肠道具有抗炎和抗癌功能。

丁酸盐会阻止体内的一些促炎物质发挥作用。丁酸盐的抗炎作用可减少氧化应激并控制自由基造成的损害。

丁酸盐的抗炎特性,部分原因是其抑制转录因子核因子-κB(NF-κB)的激活,通过下调NF-κB信号通路,丁酸盐可以调节促炎细胞因子的产生。

丁酸盐对免疫功能的调节作用

前面我们知道,丁酸盐通过直接诱导上皮中的紧密连接蛋白来增强肠粘膜屏障。此外,丁酸盐诱导ILC3细胞分泌IL-22进一步增强了这种作用。通过与GPCR43和41的相互作用,丁酸抑制中性粒细胞的促炎细胞因子分泌。丁酸通过GPCR直接作用于巨噬细胞和树突状细胞,并通过增加Foxp3T细胞调节T细胞功能,同时抑制产生IFN-的T细胞。丁酸增加5-羟色胺的产生,也是HDAC的抑制剂。它通过这些途径调节B细胞功能,增加抗炎细胞因子IL-10,同时降低IL-17。丁酸盐通过增加B细胞的IgA和IgG抗体反应,增强特异性免疫和抑制自身免疫。

抗炎->抗癌

丁酸盐也是一种组蛋白脱乙酰酶(HDAC)抑制剂。组蛋白脱乙酰酶是大多数癌症中产生的酶。因为丁酸盐是一种抑制剂,它实际上会改变基因表达,抑制细胞增殖,诱导细胞分化或凋亡。因此,它可以阻止癌细胞的发展。

炎症性肠病

炎症性肠病(IBD)是一种慢性肠道炎症性疾病,有两种主要亚型:克罗恩病和溃疡性结肠炎。

虽然IBD的确切发病机制尚不完全清楚,但IBD涉及遗传、肠道微生物群和粘膜免疫等多种影响因素之间的复杂相互作用,包括先天性和适应性免疫反应。

据报道,在这两种IBD亚型中,产生丁酸的肠道微生物减少。丁酸对肠道防御机制具有多阶段调节作用,包括通过促进肠上皮中的紧密连接蛋白保护肠粘膜屏障,支持先天性和适应性免疫反应,以及通过降低环氧合酶-2(COX-2)水平抑制氧化应激,并通过诱导过氧化氢酶,改善过氧化氢(H2O2)的解毒作用。

肠粘膜溃疡是IBD的主要表现之一,丁酸对肠上皮细胞生长和细胞死亡过程的影响已被充分证明。

母乳通过丁酸保护宝宝的抗炎环境

据报道,母乳喂养等早期接触对IBD的发展和发病机制具有保护作用。母乳通过其代谢物丁酸诱导紧密连接蛋白和粘液产生基因的表达,从而诱导新生儿胃肠道的抗炎环境。

在肠炎症的体外共培养模型中,丁酸已被证明可调节促炎症信号并抑制几种核苷酸结合寡聚化结构域样受体-3(NLRP3)炎症体标记物。

丁酸盐结合其他疗法

一项研究报告称,当IL-1β被其他IBD疗法(如5-ASA)抑制时,丁酸盐显著降低IL-8分泌,从而降低IL-8介导的趋化性,突出了单独丁酸盐不一致临床反应背后的机制,以及丁酸盐与IBD其他治疗方式相结合的可能性。

通过添加产丁酸菌改善屏障完整性

通过添加产丁酸菌(prausnitzii杆菌、白痢丁酸球菌和六种丁酸产生菌的混合物)来增加克罗恩病患者的微生物群中的产丁酸菌,从而改善体外上皮屏障完整性。

丁酸治疗潜力

丁酸盐显示出更一致有效性的一个领域是转移性结肠炎,这是一种术后表现,当结肠的一部分失去连续性时,丁酸盐消耗被认为是导致炎症的主要因素。虽然手术治疗或结肠再连接或切除转移是一种更确切的治疗方法,但在考虑医疗管理时,丁酸灌肠已被证明具有治疗价值。

癌症

丁酸盐使肠道环境保持稳定,并且是膳食纤维对某些癌症的保护作用的一部分。

肠癌,是西方世界的主要健康负担,主要归咎于饮食。膳食纤维含量低的饮食会影响肠道中的细菌。结肠细胞需要丁酸盐作为能量,如果它们没有能量,就无法工作。

低膳食纤维->丁酸盐↓->肠癌

据报道,结直肠癌患者包括丁酸盐在内的短链脂肪酸水平较低。

丁酸盐对肠上皮细胞的增殖具有双面作用,一方面支持健康细胞处于稳态,但另一方面抑制癌症诱导的过度增殖。丁酸钠已被证明以p-53非依赖性途径诱导人结肠癌细胞系凋亡。丁酸盐还可以防止氧化应激和DNA损伤。

据报道,丁酸盐还通过多种途径具有癌症保护作用,包括抑制神经纤毛蛋白-1(NRP-1)、抑制丝裂原活化蛋白激酶(MAPK)信号通路、差异调节Wnt-β-连环蛋白信号通路、上调microRNAmiR-203和促进细胞凋亡,和促增殖miR-92a的抑制。

由于饮食模式在结直肠癌发病中的作用已得到充分证实,大多数人体试验研究了通过改变膳食纤维摄入量进行干预的方法,并报告了结直肠癌复发风险的降低。

越来越多的证据表明饮食、肠道微生物群和代谢紊乱之间存在复杂的相互作用。

★肥胖

对人类的研究表明,肥胖和瘦人群的肠道细菌存在差异,微生物多样性的减少与胰岛素抵抗和血脂异常有关。

包括丁酸盐在内的SCFA可通过激活肠细胞内的FFAR来降低食欲和体重。这促进胰高血糖素样肽1(GLP-1)和肽YY(PYY)的释放,前者促进胰岛素分泌并抑制胰高血糖素分泌,后者降低食欲并减缓胃排空。

SCFA还能减少所谓的“饥饿激素”——ghrelin的分泌;FFAR2存在于ghrelin分泌细胞上,包括乙酸盐和丙酸盐在内的FFAR2激动剂可减少ghrelin分泌。

也有证据表明短链脂肪酸作用于交感神经系统,交感神经节中FFAR3的激活导致能量消耗增加。

然而,关于丁酸盐对食物摄入的影响,有相互矛盾的结果报道。

食物摄入量减少->抗肥胖

有研究发现,丁酸盐在9天内使喂食HFD的小鼠的食物摄入量减少了22%。这与直接服用丁酸后GLP-1和PYY分泌增加有关。FFAR3基因敲除小鼠减少了丁酸刺激的GLP-1分泌,尽管丁酸减少了体重增加和食物摄入的程度与野生型小鼠相似,这表明FFAR3和GLP-1对于丁酸的抗肥胖作用不是必需的。

另一研究发现类似的结果,在HFD喂养的小鼠中,急性口服(而非静脉注射)丁酸盐在24小时内减少了21%的食物摄入量,而丁酸盐的慢性补充在9周内减少了相似量的摄入量。

在迷走神经切断术后,丁酸盐并没有改变小鼠的食物摄入量,因此作者认为丁酸盐通过肠-脑神经回路诱导饱腹感。这可能与GLP-1有关,因为GLP-1作用于迷走神经。

食物摄入量增加,体重不变->抗肥胖

在小鼠中,丁酸增加棕色脂肪组织(UCP1)和骨骼肌(UCP2和UCP3)中解偶联蛋白、促进热量生成的线粒体蛋白的表达。在丁酸盐处理的小鼠骨骼肌中Ucp2和Ucp3基因的启动子处发现组蛋白乙酰化增加,这表明丁酸盐可能通过HDAC抑制增加解偶联蛋白表达来增加产热,从而增加能量消耗。

★糖尿病

研究发现,糖尿病患者和糖尿病前期受试者中丁酸盐水平降低。

丁酸盐通过多种途径影响糖代谢的调节

AroraT,etal.,FrontEndocrinol(Lausanne).2021

膳食纤维经肠道菌群发酵产生短链脂肪酸,包括丁酸盐。丁酸盐介导的PPAR-γ的激活,诱导β-氧化和氧的消耗,从而促进厌氧条件的建立,这是几种厌氧肠道共生体生长和功能所需的条件。

丁酸在肠内分泌细胞(EEC)中与游离脂肪酸受体(FFAR)FFAR2和FFAR3结合,调节肠道激素释放,如胰高血糖素样肽1(GLP-1)和肽YY(PYY)。

S.C.Bridgemanetal.PharmacologicalResearch,2020

GLP-1增加胰岛素的产生并减少胰腺中胰高血糖素的产生。

PYY会增加肌肉和脂肪组织对葡萄糖的吸收。

这些激素共同作用以保持血糖水平稳定。当血糖过高时,胰岛素会告诉身体的肌肉和脂肪细胞吸收多余的葡萄糖,所以说这些激素对肥胖和糖尿病很重要。丁酸盐增加这些肠道激素的释放,表明对控制血糖水平和防止体重增加有潜在的好处。

丁酸还可作为组蛋白去乙酰酶(HDAC)抑制剂,调节EEC和肠上皮细胞的基因表达。残余丁酸被结肠细胞吸收利用后,先排入门静脉循环,再排入外周体循环。在体循环中,丁酸可能调节棕色脂肪组织的产热和胰腺β细胞的功能。

增加丁酸水平的临床研究

一项随机临床研究中,对T2D患者补充混合膳食纤维可改善血糖参数,同时增加产生乙酸和丁酸的细菌丰度,并增加粪便中乙酸和丁酸水平。

在另一项研究中,将产丁酸菌(E.hallii,Clostridiumbeijerinckii,C.butyricum)与其他肠道细菌(A.muciniphila,婴儿双歧杆菌)和菊粉作为可发酵纤维混合,适度增加了T2D患者的丁酸水平,改善了口服葡萄糖耐量和糖化血红蛋白水平。

最后,添加菊粉和丁酸钠胶囊45天可改善T2D个体的空腹血糖和腰臀比。

这些研究清楚地表明,膳食纤维本身或与ngp或丁酸盐联合可以改善T2D的葡萄糖控制。

然而,维持患者依从性的策略和对这些补充剂的长期影响的调查仍然是值得的。此外,显然基线肠道菌群是饮食干预、益生菌注射和微生物移植成功的一个强有力的预测因素,基于微生物群对个体进行T2D分层可能有助于实现更好的代谢结果。

神经系统疾病

除了在肠道中的作用外,丁酸盐还具有支持大脑健康的巨大潜力。

由结肠中的细菌产生的丁酸盐具有一系列生物学功能。这些功能还与神经保护作用有关(有益于大脑和中枢神经系统)。

丁酸盐对宿主生理和脑功能影响的示意图

R.M.Stillingetal./NeurochemistryInternational,2016

由于抑郁症和其他神经精神疾病具有促炎症表型,反之亦然,丁酸盐在这些情况下也可能活跃。重要的是,丁酸盐的抗炎特性也对宿主(大脑)衰老具有根本意义,特别是考虑到许多组织(包括大脑)都会发生炎症衰老的慢性炎症状态。具体而言,丁酸盐通过减少NF-kB信号传导和诱导凋亡,从而促进神经保护,在脑内巨噬细胞(小胶质细胞)中显示出抗炎作用。

因此,丁酸盐会影响大脑健康,而饮食可能是改善疾病结果的一种简单方法。

压力、焦虑、抑郁等情绪都涉及肠道微生物群。

通过饮食提高丁酸盐的产量既简单又风险低。研究发现在加速老化的SAMP8小鼠模型中,长期喂养益生元纤维可改善认知能力下降,并具有抗炎、延缓衰老的作用。

未来有一天,它甚至可能成为脑部疾病的潜在治疗选择。

睡眠

丁酸是一种短链脂肪酸,由肠道细菌通过不易消化的多糖发酵产生。研究人员验证了丁酸可能作为细菌源性促睡眠信号的假设。经口灌胃给予丁酸酯前药三丁酸甘油酯,在治疗后4小时内使小鼠非快速眼动睡眠(NREMS)增加近50%。

类似地,门脉内注射丁酸盐导致大鼠NREMS迅速而强劲地增加。在丁酸盐注射后6小时内,NREMS增加了70%。口服和门静脉注射丁酸盐都会导致体温显著下降。全身皮下或腹腔注射丁酸对睡眠或体温没有任何显著影响。

结果表明,丁酸盐的睡眠诱导作用是由位于肝脏和/或门静脉壁的感觉机制介导的。肝门丁酸盐敏感机制可能在肠道微生物群的睡眠调节中发挥作用。

扩展阅读:睡眠与肠道菌群

社交行为

微生物群可能会影响你的社交行为,虽然听起来可能有点夸张。

简而言之,丁酸盐很臭。

“butyrate”这个词实际上源自拉丁语butyrum,意思是黄油。你可能熟悉牛奶变质或变质黄油的气味,丁酸盐就是那个味儿。丁酸是哺乳动物最强烈的气味之一,人类可以通过嗅觉受体OR51E1检测到它的浓度约为亿分之240。

哺乳动物鼻子对丁酸酯气味敏感的一个合理原因是,丁酸酯是一种仅在厌氧条件下发生的细菌产物,如生物分解、腐败或发酵,也可能产生有害毒素。对丁酸盐高度敏感的另一种非互斥解释可能是其存在于体味中。

因此,它可以作为一种社会线索,携带有关微生物群组成和活动的信息,从而间接承载宿主免疫系统特征,类似于主要组织相容性复合体(MHC)中遗传变异性的公认社会信号功能。

“气味相投”——可能是ta的气味在“撩”你

对包括人类在内的许多脊椎动物的研究表明,MHC基因座的变异影响社会行为,最显著的是配偶选择,但也影响社会群体的合作行为。也有人认为MHC依赖的嗅觉信号并不是携带个体和遗传变异信息的唯一线索,“嗅觉指纹”更为复杂。

化学通讯的发酵假说

一些科学家认为,它也是体味的一个组成部分。我们会使用丁酸盐等有气味的短链脂肪酸来(无意识地)相互交流。

事实上,这些微生物群是由产生挥发性脂肪酸、酯类、醇类和醛类的发酵厚壁菌门细菌主导的,这一事实促使作者提出了“化学通讯的发酵假说”,即共生细菌的变异驱动了物种、性别和个体特定气味的变化,从而促进了社会交流。

在雄性叉角羚(Antilocapraamericana)的耳下气味中也发现了异戊酸和丁酸酯,用于标记其领地。此外,戊酸的潜意识气味已被证明能够引导社会偏好,例如降低人类受试者的面部受欢迎程度。

因此,丁酸盐和其他微生物发酵挥发性产物等短链脂肪酸似乎有可能不仅存在于专门的气味腺中,而且也存在于其他栖息地,如人类的腋窝,可能有助于化学交流,并传递有关微生物群组成的信息,从而也将遗传信息传递给感兴趣的接受者。

除食源性丁酸,动物体内丁酸主要是由盲肠和结肠的厌氧型细菌发酵产生,而由胃和小肠产生的丁酸含量极低。大肠产丁酸的菌种主要是梭菌属XIVa和IV族,以及真杆菌属和梭杆菌属。盲肠和结肠中丁酸的产生速度和数量主要取决于肠道微生物组成、日常膳食中可利用发酵成分组成等。

其中厚壁菌门的成员以其产生丁酸盐的能力而闻名。

在结肠中特别流行的产丁酸的细菌包括:

粪杆菌、直肠真杆菌E.rectale、Roseburia

双歧杆菌等常见益生菌配方中的微生物与丁酸盐生产者之间的交叉喂养相互作用已被证明是可以产丁酸盐的。

在消化道中发现的已知丁酸盐生产者中,大多数似乎属于毛螺菌科和瘤胃球菌科。

Faecalibacteriumprausnitzii(FP)是瘤胃球菌科的一部分,值得特别一提,因为它是消化道中最丰富的微生物之一,也是主要的丁酸盐生产者之一。FP的特征包括通过丁酸盐产生和其他复杂途径的抗微生物活性和抗炎/免疫调节活性。

关于FP菌,详见:肠道核心菌属——普拉梭菌(FaecalibacteriumPrausnitzii),预防炎症的下一代益生菌

Anerostipes、Roseburia和Coprococcus都是属于毛螺菌科,它们也是人类肠道中的主要丁酸盐生产者。

产生丁酸盐的细菌被认为在生命的第一年内定植于宿主,并且在成年时占总细菌群落的20%以上。

然而各种疾病状态都表明产生丁酸盐的肠道细菌相对缺乏。

有趣的是,现如今益生菌补充剂中常用的细菌菌株很多都不是丁酸盐生产者,因为丁酸盐生产者很多是高度厌氧的,这意味着它们在氧气存在的情况下会很快死亡,所以要补充产丁酸菌就比较具有挑战性。

或许我们可以转换个思路来考虑,既然不能直接补充菌,那是不是可以补充产菌的食物呢?

所以哪些食物可以喂养产丁酸菌?

饮食对人体微生物组有显著影响,通过饮食干预可显著改变细菌数量并增加微生物多样性。

富含纤维的饮食对丁酸盐的产生特别有益,因为它可以滋养产生丁酸盐的细菌。

网上还有很多关于如何增加肠道丁酸盐的建议,比如多吃黄油或服用丁酸盐补充剂。然而,补充丁酸盐不一定对肠道有益,因为如果摄入丁酸盐,它会被胃吸收,也就是说它不会到达肠道为其细胞提供燃料。

记住,丁酸盐是微生物群产生的代谢物。

益生元是直接滋养微生物群的食物,包括蔬菜、水果、豆类和全谷物。它们含有膳食纤维,可被肠道细菌发酵成丁酸盐等有机化合物。通过食物增强微生物群是促进消化系统健康和丁酸盐生成的有效且安全的方法。

肠道细菌以膳食纤维为食,而不是动物蛋白。因此,优化丁酸盐产量的最佳方法是通过高纤维饮食。

高蛋白、高脂肪、低碳水化合物的饮食已被证明会破坏微生物组中丁酸盐的产生。在一项研究中,研究人员分析了短期饮食限制碳水化合物摄入量的肥胖参与者的微生物组,从而限制了他们对植物性膳食纤维的消耗。

在低碳水化合物饮食(每天24克)和中等碳水化合物饮食(每天164克)4周后,短链脂肪酸的浓度低于高碳水化合物饮食(每天399克)。具体来说,当碳水化合物摄入量减少时,丁酸盐浓度会降低。同一项研究还发现,厚壁菌门细菌种类Roseburia和E.Rectale的密度与丁酸盐浓度之间存在联系,两者都随着碳水化合物摄入量的减少而降低。

然而,以上所谓的“膳食纤维”并不能完全解决这个问题,为什么呢?

理解以下几点很重要:

1、即使是来自同一物种的细菌菌株,对不同底物的反应也非常不同,甚至是属于同一类碳水化合物的底物。

2、某些细菌能够消化果聚糖,有些则不能。而那些可以消化的里面又有不一样的情况,其中一些能够消化短链的果聚糖,但不能消化更长链菊糖的果聚糖。

3、以上只是细菌消化不同底物能力的一个例子。由于这种变化的存在,不能一概而论。

而我们最需要的,更应该是寻找特定类型的纤维。

一项研究表明,不同类型碳水化合物的SCFA产量(单位:kJ)如下所示:

BourassaMW,etal.,NeurosciLett.2016

在该研究中,低聚果糖(FOS)的类型是洋葱、芦笋和香蕉等食物,而抗性淀粉(RS)则是全谷物和豆类。

另一项研究表明,补充特定猕猴桃中发现的低聚果糖可在4周内使F.prausnitzii菌增加100%。这是一项重大发现,因为目前有大量研究报告,F.prausnitzii的相对缺乏与几种主要肠道疾病有关——最显著的是炎症性肠病、溃疡性结肠炎和克罗恩病。

抗性淀粉2型和3型,哪种更好?

这项研究表明,从生马铃薯和高直链淀粉玉米淀粉以及全谷物中发现的阿拉伯木聚糖中提取的2型抗性淀粉含量高的日粮中丁酸产量显著增加。

在174名健康年轻人的饮食中添加马铃薯抗性淀粉后,丁酸盐产量增加。玉米、菊苣和玉米中的抗性淀粉也进行了测试,但只有当食用土豆中的抗性淀粉时,粪便中的丁酸总量才会显著增加。

此外,鳄梨增加了能够产生短链脂肪酸的微生物数量,以及产生的总短链脂肪酸。

果聚糖(菊粉)

许多研究表明,菊粉可以增加短链脂肪酸的产量,包括丁酸盐。这可能解释了香蕉在溃疡性结肠炎和克罗恩病患者的饮食中如此有效的原因之一。然而,链长较短的果聚糖通常比链长的果聚糖(如菊粉)更容易喂养产丁酸菌。

补充菊粉虽然能够改变宿主的微生物群,但不会增加粪便丁酸水平。尽管这一结果似乎与谷物相反,但许多研究证明了补充菊粉在增加肠道短链脂肪酸生成方面的功效。

也就说,抗性淀粉和果聚糖(短链低聚果糖和长链菊粉)在肠道中发酵时会产生丁酸盐。

对于抗性淀粉,似乎大多数研究都集中在RS2上。然而,在许多情况下,据报道RS3会产生更高水平的丁酸盐,对人类更健康。

抗性淀粉:

煮熟后冷却:土豆、红薯、米饭、意大利面、燕麦、豆类、豆类、全谷物。

原料:青香蕉、马铃薯、马铃薯淀粉、青香蕉粉。

果聚糖:

洋葱、菊苣、香蕉、朝鲜蓟、芦笋、大蒜、韭菜、西兰花、开心果和各种提取物。

由于人与人之间的常驻微生物存在显著差异,并且它们消化某些底物的能力不同,因此比较明智的选择是食用包含多种抗性淀粉和果聚糖的饮食。例如以马铃薯抗性淀粉、燕麦麸皮纤维或车前草种子或短链低聚半乳糖、长链低聚果糖和谷氨酰胺的混合物的形式短期补充,增加丁酸盐水平。

丁酸是不是越多越好?

丁酸并不总是越多越好,低浓度丁酸促进细胞增殖和生长,高浓度丁酸反而抑制细胞增殖和生长,增加肠道的通透性。

胃肠道不同部位对丁酸的耐受阈值也存在一定差异,胃和小肠对丁酸的耐受阈值低,结肠和盲肠耐受阈值高。

添加普通丁酸钠制剂(主要在肠道前端被吸收利用),反而造成肠道炎症、菌群失调。

更有意思的是,轻微炎症或者轻度溃疡部位添加丁酸盐可以促进肠道损伤的修复,在严重溃疡肠道部位添加,不利于溃疡的恢复,甚至加剧整个溃疡。

p.s.进行干预之前需要了解现有肠道丁酸盐的水平状况,可以更好地进行干预治疗前后对比

Tips

如果你正在被一些肠道疾病困扰,需要注意其中几种食物的凝集素含量:土豆、燕麦、豆类、豆类和全谷物。如果你打算吃这些食物,建议先浸泡和加压烹饪,然后从很少量开始。也可以排除生食。

如果你患有自身免疫性疾病,不推荐豆类和大多数全谷物。

此外,许多患有肠道疾病和/或自身免疫性疾病的人难以食用果糖,这可能是果糖不耐受的迹象。症状包括胀气、腹胀等。

肠道菌群健康检测报告——常见问题解析

AroraT,TremaroliV.TherapeuticPotentialofButyrateforTreatmentofType2Diabetes.FrontEndocrinol(Lausanne).2021;12:761834.Published2021Oct19.doi:10.3389/fendo.2021.761834

SiddiquiMT,CresciGAM.TheImmunomodulatoryFunctionsofButyrate.JInflammRes.2021Nov18;14:6025-6041.doi:10.2147/JIR.S300989.PMID:34819742;PMCID:PMC8608412.

BourassaMW,AlimI,BultmanSJ,RatanRR.Butyrate,neuroepigeneticsandthegutmicrobiome:Canahighfiberdietimprovebrainhealth.NeurosciLett.2016;625:56-63.doi:10.1016/j.neulet.2016.02.009

HuLiu,JiWang,TingHe,SageBecker,GuolongZhang,DefaLi,XiMa,Butyrate:ADouble-EdgedSwordforHealth,AdvancesinNutrition,Volume9,Issue1,January2018

BridgemanSC,NorthropW,MeltonPE,EllisonGC,NewsholmeP,MamotteCDS.Butyrategeneratedbygutmicrobiotaanditstherapeuticroleinmetabolicsyndrome.PharmacolRes.2020Oct;160:105174.doi:10.1016/j.phrs.2020.105174.Epub2020Aug27.PMID:32860943.

Rivière,A.,Selak,M.,Lantin,D.,Leroy,F.,&DeVuyst,L.(2016).BifidobacteriaandButyrate-ProducingColonBacteria:ImportanceandStrategiesforTheirStimulationintheHumanGut.Frontiersinmicrobiology,7,979.

LeBlancJG,ChainF,MartínR,Bermúdez-HumaránLG,CourauS,LangellaP.Beneficialeffectsonhostenergymetabolismofshort-chainfattyacidsandvitaminsproducedbycommensalandprobioticbacteria.MicrobCellFact.2017May8;16(1):79.doi:10.1186/s12934-017-0691-z.PMID:28482838;PMCID:PMC5423028.

StillingRM,vandeWouwM,ClarkeG,StantonC,DinanTG,CryanJF.Theneuropharmacologyofbutyrate:Thebreadandbutterofthemicrobiota-gut-brainaxisNeurochemInt.2016Oct;99:110-132.doi:10.1016/j.neuint.2016.06.011.Epub2016Jun23.PMID:27346602.

Szentirmaié,MillicanNS,MassieAR,KapásL.Butyrate,ametaboliteofintestinalbacteria,enhancessleep.SciRep.2019May7;9(1):7035.doi:10.1038/s41598-019-43502-1.PMID:31065013;PMCID:PMC6504874.

Faecalibacteriumprausnitzii(F.prausnitzii),普氏栖粪杆菌,又名:普拉梭菌,是人类肠道菌群中最重要的细菌之一,占健康人粪便样本中检测到的细菌总数的5-15%,是丁酸的重要生产者之一,具有抗炎作用,维持细菌酶的活性,保护消化系统免受肠道病原体的侵害。

已经证实,患有慢性便秘、乳糜泻、肠易激综合征和炎症性肠病(包括克罗恩病和溃疡性结肠炎)的个体中这种微生物的数量减少。此外,在2型糖尿病、结直肠癌和银屑病患者中观察到较低水平的F.prausnitzii。

F.prausnitzii数量的变化可能是人类肠道菌群失调的迹象,科学家们将其视为下一代益生菌的候选者。

Faecalibacteriumprausnitzii,革兰氏阴性,对氧极度敏感,是柔嫩梭菌类群的优势菌,属于梭菌科,厚壁菌门。该物种属于ClostridiumclusterIV分组的Clostridiumleptumgroup柔嫩梭菌类群,是该类群的最优势菌种,占64%左右。一般中文翻译柔嫩梭菌指的就是这个类群,其代表物种就是普氏栖粪杆菌,又名普拉梭菌。

普拉梭菌的扫描电子显微镜图像

PlateformeMIMA2,T.Meylheuc

直到2000年代中期,16SrRNA文库的高通量测序和粪便DNA的宏基因组分析显示F.prausnitzii是人类肠道中最丰富的细菌之一,人们才完全意识到该物种对人类健康的重要性细菌总数的5–15%。

在婴儿早期,Faecalibacteriumprausnitzii的数量非常低,并在原定殖细菌建立后增加。同时,在克罗恩病(CD)和溃疡性结肠炎(UC)等各种炎症性肠病(IBD)以及结直肠癌(CRC)和2型糖尿病中观察到F.prausnitzii水平降低。

F.prausnitzii生长繁殖肠道理化调节

F.prausnitzii生长的最佳pH值范围在5.7和6.7之间,这是在结肠中发现的pH值范围。尽管在5-5.7的pH值范围内菌株之间的耐受性存在差异,但在3.5和4.5的pH值之间没有观察到生长。这表明pH值影响F.prausnitzii沿肠道的分布。

该菌在健康受试者和肠道疾病患者的十二指肠(pH范围5.7-6.4)和回肠末端中也被检测到。据报道,溃疡性结肠炎和克罗恩病患者经常出现酸性大便,因此仍有待证明肠道局部pH值是否会调节F.prausnitzii在肠道疾病(如IBD)患者中的丰度和组成。

F.prausnitzii对胆汁盐生理浓度的轻微增加也高度敏感,这为克罗恩病患者表现出的F.prausnitzii丰度减少提供了一个合理的解释,因为这些患者的胆红素浓度增加,尤其是那些有回肠疾病受累和接受过肠切除术的患者。

此外,据报道,分离株之间的耐受性存在差异,尤其是胆盐浓度为0.1%(wt/vol)时,表明胆汁盐浓度的变化可能决定F.prausnitzii亚型组成的变化。由于克罗恩病患者的胆盐成分也发生改变,需要进一步研究以确定F.prausnitzii是否对某些类型的胆盐成分具有更高的敏感性,并确定不同的胆汁盐谱是否会改变F.prausnitzii亚型组成。

F.prausnitzii的必需营养素的可用性和有效性可能会影响其在肠道中的分布。

F.prausnitzii分离株可以使用简单碳水化合物生长良好,但菌株之间在发酵更复杂碳水化合物的能力方面存在一些差异,例如那些来自宿主或饮食的碳水化合物,尽管大多数F.prausnitzii菌株都能够发酵菊粉,但研究结果表明,其中只有两种菌株可以在该基质上生长良好。这支持观察到该益生元在营养干预中对该物种的刺激,并表明只有F.prausnitzii种群的一些成员受到菊粉的选择性刺激。

该物种的菌株利用肠腔中发现的其他多糖的能力有限,例如阿拉伯半乳聚糖、木聚糖和可溶性淀粉。大多数分离株可以在苹果果胶上生长,并且能够使用一些果胶衍生物。体外研究表明,在生理条件下,F.prausnitzii可以在某些类型的果胶发酵中发挥关键作用,并且可以与其他肠道细菌成功竞争这种底物。

最近一项基于普拉梭菌A2-165菌株功能代谢图的研究预测其无法合成氨基酸丙氨酸、半胱氨酸、蛋氨酸、丝氨酸和色氨酸。通过对其他F.prausnitzii菌株基因组的进一步分析,已经观察到维生素和辅助因子(例如:生物素、叶酸、烟酸、泛酸、吡哆醇和硫胺素)的营养缺陷型,并且菌株之间似乎存在与核黄素生产有关的一些差异,这可能是由于菌株间差异。

相比之下,该物种已被预测为钴胺素生产者。有证据表明,一些IBD患者易患钴胺素缺乏症,但尚未确定这种情况的原因。由于缺乏一致的临床数据表明IBD患者易患这种缺陷,因此确定它是否与肠道中钴胺素生产者的消耗有关会很有价值。

F.prausnitzii与肠道微生物群其他成员的关系

F.prausnitzii在肠道中与C.coccoides组和Bacteroidetes的几个成员共同发生。有人提出F.prausnitzii可能依赖其他物种(如拟杆菌)进行交叉饲养。在共培养实验中,观察到F.prausnitzii的发酵活动过程中,多形拟杆菌(B.thetaiotaomicron)正在发酵果胶。表明后者产生的乙酸盐促进了F.prausnitzii的生长。此外,B.thetaiotaomicron对果胶的初始发酵可以释放果胶衍生物,然后可以被F.prausnitzii使用。

F.prausnitzii的分类学和系统发育

已经确定Faecalibacterium属与厚壁菌门、梭菌类和瘤胃球菌科中的梭菌群IV的成员有关。目前,F.prausnitzii是唯一成功分离的粪杆菌属物种。

最近对分离株的系统发育表征确定该物种包括两个系统发育群,它们具有97%的16SrRNA基因序列相似性。其中分类群I的减少是肠道炎症的更敏感标志物。迄今为止,大部分可用的基因组和生理数据是使用分类群II菌株收集的。

值得注意的是,最近对健康和患病肠道样本中物种多样性和丰度的研究表明,存在其他F.prausnitzii系统发育型,并且不能排除Faecalibacterium属内其他物种的存在。这些已经通过分析粪便样本中总体细菌群落的分子方法估计,代表大约2%的粪杆菌序列,并使用物种特异性引物。有趣的是,罕见的系统发育型主要是从患有肠道疾病的受试者身上发现的。

产生丁酸,维持肠道稳态

肠道屏障依赖于T连接蛋白来防止肠道内容物泄漏到血液中。丁酸盐通过激活AMP活化蛋白激酶(AMPK)来促进紧密结合的T连接蛋白。

丁酸盐可以通过调节肠腔pH值来调节肠道微生物群,这对产生短链脂肪酸的细菌有益,丁酸盐可以保持上皮缺氧并限制硝酸盐呼吸依赖性细菌的过度生长以维持肠道稳态。

丁酸盐是由某些细菌在乳酸发酵过程中产生的。然而,乳酸也是硫酸盐还原菌的首选能源,硫酸盐还原菌会产生硫化物并抑制结肠细胞对丁酸的氧化。IBD中产生丁酸盐的菌的消耗可能会削弱已经脆弱的肠上皮细胞,导致共生或低致病性细菌的入侵,随后激活免疫活性细胞。

产生丁酸,抗炎抗肿瘤

丁酸盐可以通过抑制NF-κB转录因子激活、上调PPARγ和抑制干扰素γ来减轻肠黏膜炎症。

此外,F.prausnitzii已被证明可以产生许多具有抗炎特性的物质,包括一种15kDa的蛋白质“微生物抗炎分子”(MAM),它能够抑制肠上皮中的NF-κB通路细胞和预防小鼠IBD模型中的结肠炎。而且,丁酸盐可能通过抑制组蛋白脱乙酰酶活性来抑制炎症反应,导致组蛋白过度乙酰化和抑制NF-κB活性。

Faecalibacteriumprausnitzii上清液已被证明可以抑制促炎性IL-8免疫蛋白的产生。

F.prausnitzii还通过激活产生IL-10(一种抗炎蛋白)的T细胞来帮助对抗炎症。

F.prausnitzii的抗炎机制

额外的抗炎特性归因于该菌还通过其诱导耐受性细胞因子谱的能力(促炎细胞因子如IL-12和IFN-γ的分泌非常低,而抗炎细胞因子IL-10的分泌增加)。这些抗炎作用部分与能够阻断NF-κB激活、IL-8产生和调节性T细胞产生上调的分泌代谢物有关。

这些微生物可以产生莽草酸,一种常见于植物中的酸,能够防止脂多糖(LPS)引起的炎症。LPS是一些细菌外膜上的毒素,可以激活免疫系统并引起炎症。F.prausnitzii还可以制造水杨酸,这有助于防止细菌形成生物膜,这是一些引起感染的微生物的常见特征。

体外研究表明,丁酸盐还具有抗肿瘤作用,包括减少肠上皮细胞中肿瘤坏死因子(TNF)的分泌,并诱导肿瘤细胞的分化和凋亡,从而抑制肿瘤生长。

F.prausnitzii及其代谢物对小鼠结肠炎发挥保护作用,改善了肠道菌群失调,增加了细菌多样性和产生短链脂肪酸菌的丰度,降低了血清TNF-α和Proteinbacteria,酸杆菌门和拟杆菌。这些发现将为F.prausnitzii的抗炎抗肿瘤作用提供进一步的证据,其具有治疗IBD的潜力。

下一代益生菌特性

使用厌氧细菌和EOS(氧敏感)细菌是成功分离可能影响肠道稳态的代表性菌株的先决条件。Faecalibacteriumprausnitzii从健康志愿者分离株:F.prausnitzii作为新一代益生菌在使用中向前迈进了一步。

但是下一代共生益生菌必须满足与传统益生菌相同的标准。它们应该:

(i)被隔离和充分表征

(ii)达到安全要求,例如可接受的抗生素抗性或缺乏裂解和粘附能力

(iii)作为益生菌考虑,在被隔离之前对宿主表现出有益的影响

关于F.prausnitzii,虽然对其安全性知之甚少,但该物种作为下一代益生菌具有明显的潜力。到目前为止,所有F.prausnitzii分离株具有一些特征,例如:

(i)缺乏上皮细胞粘附、质粒、抗微生物和溶血活性

(ii)存在DNAse活性。部分的F.prausnitzii菌株产生的D-乳酸微弱,不会对宿主产生代谢有害影响,无法降解黏蛋白。

仅使用参考菌株F.prausnitziiA2-165在体外和体内分析了其有益的抗炎作用和生物膜形成菌株HTF-F。由于益生菌特性通常是菌株特异性的,需要单独研究来评估其他F.prausnitzii分离菌株的抗炎特性。

人体微生物组中F.prausnitzii的丰度受其健康状况和结肠环境的影响。这一点尤其重要,因为在患有消化系统疾病的患者中发现了低于平均水平的F.prausnitzii。

克罗恩病和溃疡性结肠炎

肠道微生物群可能通过两种机制驱动致病性,即“促炎”菌群的扩张或微生物群保护性化合物的限制。

健康肠道和IBD患者中F.prausnitzii

在IBD患者中,肠道环境的改变可能会影响F.prausnitzii的种群组成和负荷。这些差异可以通过监测来鉴别IBD亚型。

◥治疗后F.prausnitzii恢复

在粪便和活检样本中使用的各种证明方法表明,对克罗恩病患者有效的各种抗炎和抗菌治疗,包括大剂量皮质醇、英夫利昔单抗、干扰素-α2b和利福昔明,都能够恢复正常水平的F.prausnitzii。

如何解释Faecalibacteriumprausnitzii在溃疡性结肠炎和克罗恩病患者中减少?

◥pH值

健康的肠道pH值(5.7–6.7)为F.prausnitzii的生长提供了最佳条件,而高酸性环境会抑制Faecalibacteriumprausnitzii的生长。尤其是,溃疡性结肠炎和克罗恩病患者的大便呈酸性,这可能有助于解释为什么他们的微生物群中缺乏F.prausnitzii.

◥胆汁

胆汁及其成分水平略微升高也会影响F.prausnitzii丰度。胆汁是肝脏分泌的一种物质,可在消化过程中分解脂肪。胆汁盐已被证明可以抑制Faecalibacteriumprausnitzii。

研究人员假设这种对胆汁的敏感性可以解释为什么这些微生物在克罗恩病患者中较少。患有这种炎症性疾病的人往往有较高水平的胆红素,胆红素是一种赋予胆汁颜色的色素,特别是如果他们已经切除了部分肠道。

溃疡性结肠炎中,F.prausnitzii有缺陷的肠道定植,这在缓解期短、既往有频繁复发史和结肠炎大范围扩展的患者中更为严重。此外,复发后,F.prausnitzii在维持缓解时逐渐恢复,1年后达到接近参考种群的值。

基于F.prausnitzii菌株特性的治疗探索

科学研究人员提出假设,即F.prausnitzii的高定植可能会阻止溃疡性结肠炎中粘膜炎症过程的重新激活。这一假设应在未来的研究和增加肠道F.prausnitzii的策略中得到证实需要在患有广泛疾病的患者中对人群进行验证。

F.prausnitzii菌株还可以利用N-乙酰氨基葡萄糖,一种在肠粘膜中发现的糖蛋白的成分。有趣的是,用这种化合物进行治疗可能会改善克罗恩病,因为它可以作为炎症、受损肠道软组织的愈合因子。因此,鉴于F.prausnitzii能够发酵这种碳水化合物,探索在接受这种治疗的克罗恩病患者中恢复这种有益肠道细菌的效果将是有意义的。

镇痛特性

慢性腹痛是肠易激综合征或炎症性肠病等肠道疾病患者的常见症状之一。研究人员表明,在炎症性肠病的患者中,肠道中的Faecalibacteriumprausnitzii细菌的丰度降低。

这些研究人员已经证明,由于压力动物模型(产生绞痛起源的内脏超敏反应),F.prausnitzii丰度的减少与内脏超敏反应的出现有关。对于人类,这种超敏反应会导致肠道不适或腹痛。

科学家已经证明,通过给这些动物服用F.prausnitzii,它们恢复了正常的绞痛敏感性。

丁酸盐的抗炎功能包括抗癌特性。这种短链脂肪酸是一种组蛋白脱乙酰酶(HDAC)抑制剂:它抑制癌细胞的活性和生命周期。这促使研究人员调查Faecalibacteriumprausnitzii在结直肠癌中的作用。

结直肠癌患者产丁酸盐的细菌较少,包括Faecalibacteriumprausnitzii。有人提出,由于丁酸盐产量较低,肠道内壁细胞可能更容易受到损伤,这可能会增加患癌症的风险。

扩展阅读:结直肠癌防治新策略——微生物群

乳腺癌

F.prausnitzii通过抑制IL-6/STAT3通路抑制乳腺癌细胞的生长。菌群代谢物与菌群结合(如Faecalibacterium与磷胆碱结合)可能是乳腺癌的一种新的检测方法。

糖尿病

糖尿病是一种代谢性疾病,其中由于胰岛素功能受损,身体失去控制血糖的能力。升高的循环葡萄糖会损害血管并增加患心脏病的风险。

许多针对人类的研究已经确定了肠道微生物组的失衡(生态失调),这会削弱肠道内壁,并使不良分子进入体内,从而破坏其他器官。科学家们认为,生态失调先于并促进了糖尿病的发展。

糖尿病患者的厚壁菌门水平较低,包括Faecalibacteriumprausnitzii和其他可强化肠道内壁的产丁酸盐细菌。

研究表明,脂多糖是在某些革兰氏阴性细菌上发现的促炎分子,当肠道屏障薄弱时,它会进入血液并损害胰腺中的B细胞功能,产生胰岛素的细胞。

过敏反应

Faecalibacteriumprausnitzii通过调节肠道微生物群和短链脂肪酸的产生来缓解屋尘螨引起的过敏性哮喘。

补充F.prausnitzii可阻断嗜酸性粒细胞、中性粒细胞、淋巴细胞和巨噬细胞的流入,减轻病理变化。此外,活的和死的F.prausnitzii给药都降低了白细胞介素IL-4、IL-5、IL-13和免疫球蛋白G1的水平,提高了调节性T细胞(Treg)的比例,改善了微生物生态失调并增强了短链脂肪酸生产。

Faecalibacteriumprausnitzii部分通过肠道微生物群调节和短链脂肪酸产生发挥抗哮喘作用,表明其作为预防过敏性哮喘的益生菌剂的潜力。

肝病

研究人员研究了口服F.prausnitzii治疗对高脂肪喂养小鼠的影响。与高脂肪对照小鼠相比,F.prausnitzii处理的小鼠肝脏脂肪含量、天冬氨酸氨基转移酶和丙氨酸氨基转移酶较低,肝脏中脂肪酸氧化和脂联素信号传导增加。肝脏脂质组学分析显示,几种甘油三酯、磷脂和胆固醇酯的含量减少。内脏脂肪组织中的脂联素表达增加,皮下和内脏脂肪组织对胰岛素更敏感。

且F.prausnitzii治疗增加了肌肉质量,这可能与增强线粒体呼吸、改变肠道微生物群组成和改善肠道完整性有关。总的来说,F.prausnitzii治疗可改善肝脏健康,减少小鼠脂肪组织炎症,需要进一步研究以发现其治疗潜力。

其它

肠道菌群中F.prausnitzii的消耗与微生物失调有关,同时伴随着广泛的代谢和/或免疫介导的慢性疾病,包括银屑病、高血压、心脏和肾脏疾病。

在以下患者中已显示低水平的F.prausnitzii:

综上所述,F.prausnitzii对人体肠道和健康非常重要,以至于它被称为肠道中的“关键物种”。现在问题来了:如何增加肠道中这种细菌的数量?

能否添加到酸奶中补充?

不能。

添加到酸奶中或作为补充剂的典型细菌在暴露于空气(氧气)时能够存活。然而,F.prausnitzii是“氧敏感的”,它们在暴露于空气后几分钟内就会死亡。研究人员将这种有益细菌视为“未来的益生菌”,目前正在进行研究以找出它可以轻松储存并暴露在空气中几个小时而不会死亡的方法。所以目前没有办法服用益生菌F.prausnitzii补充剂。

除此之外还能做什么呢?

饮食。

高动物肉、高动物脂肪、高糖、高度加工食品和低纤维饮食(典型的西化饮食)会降低F.prausnitzii的数量,而高纤维、低肉的饮食会增加F.prausnitzii的数量。

——高纤维

我们可以做的第一个提高F.prausnitzii的数量的办法,就是增加饮食中的纤维。增加膳食纤维会增加丁酸盐,丁酸盐与结肠健康有关,具有抗炎和抗癌作用。

高纤维是包括:全谷物、蔬菜、水果、坚果、种子和豆类。此外,还要主要吃多样化的植物性饮食,也就是说大量的植物性食物。多样性似乎很重要——不同类型的纤维喂养不同的细菌。

——益生元

菊粉型果聚糖和阿拉伯木聚糖等益生元可增加F.prausnitzii的数量。

一项研究表明,猕猴桃胶囊的摄入增加了功能性便秘患者的Faecalibacteriumprausnitzii丰度。

虽然F.prausnitzii可能是肠道中一种重要的有益细菌,但是它与其他有益细菌的关系,它们是交叉喂养的。研究表明青春双歧杆菌是利用菊粉主要物种并刺激Faecalibacteriumprausnitzii的增加。

Heinken,A.,Khan,M.T.,Paglia,G.,Rodionov,D.A.,Harmsen,H.J.M.,&Thiele,I.(2014).FunctionalMetabolicMapofFaecalibacteriumprausnitzii,aBeneficialHumanGutMicrobe.JournalofBacteriology,196(18),3289–3302.doi:10.1128/jb.01780-14

Rivière,A.,Selak,M.,Lantin,D.,Leroy,F.,&DeVuyst,L.(2016).BifidobacteriaandButyrate-ProducingColonBacteria:ImportanceandStrategiesforTheirStimulationintheHumanGut.FrontiersinMicrobiology,7.doi:10.3389/fmicb.2016.00979

Lopez-Siles,M.,Duncan,S.H.,Garcia-Gil,L.J.,&Martinez-Medina,M.(2017).Faecalibacteriumprausnitzii:frommicrobiologytodiagnosticsandprognostics.TheISMEJournal,11(4),841–852.doi:10.1038/ismej.2016.176

Moreno-Indias,I.,Sánchez-Alcoholado,L.,Pérez-Martínez,P.,Andrés-Lacueva,C.,Cardona,F.,Tinahones,F.,&Queipo-Ortuo,M.I.(2016).Redwinepolyphenolsmodulatefecalmicrobiotaandreducemarkersofthemetabolicsyndromeinobesepatients.Food&Function,7(4),1775–1787.doi:10.1039/c5fo00886g

Richardson,D.P.,Ansell,J.,&Drummond,L.N.(2018).Thenutritionalandhealthattributesofkiwifruit:areview.EuropeanJournalofNutrition.doi:10.1007/s00394-018-1627-z

Blatchford,P.,Stoklosinski,H.,Eady,S.,Wallace,A.,Butts,C.,Gearry,R.,…Ansell,J.(2017).ConsumptionofkiwifruitcapsulesincreasesFaecalibacteriumprausnitziiabundanceinfunctionallyconstipatedindividuals:arandomizedcontrolledhumantrial.JournalofNutritionalScience,6.doi:10.1017/jns.2017.52

Lopez-SilesM,DuncanSH,Garcia-GilLJ,Martinez-MedinaM.Faecalibacteriumprausnitzii:frommicrobiologytodiagnosticsandprognostics.ISMEJ.2017Apr;11(4):841-852.doi:10.1038/ismej.2016.176.Epub2017Jan3.PMID:28045459;PMCID:PMC5364359.

Ramirez-FariasC,SlezakK,FullerZ,DuncanA,HoltropG,LouisP.Effectofinulinonthehumangutmicrobiota:stimulationofBifidobacteriumadolescentisandFaecalibacteriumprausnitzii.BrJNutr.2009Feb;101(4):541-50.doi:10.1017/S0007114508019880.Epub2008Jul1.PMID:18590586.

VarelaE,ManichanhC,GallartM,TorrejónA,BorruelN,CasellasF,GuarnerF,AntolinM.ColonisationbyFaecalibacteriumprausnitziiandmaintenanceofclinicalremissioninpatientswithulcerativecolitis.AlimentPharmacolTher.2013Jul;38(2):151-61.doi:10.1111/apt.12365.Epub2013Jun3.PMID:23725320.

Munukka,E.,Rintala,A.,Toivonen,R.etal.Faecalibacteriumprausnitziitreatmentimproveshepatichealthandreducesadiposetissueinflammationinhigh-fatfedmice.ISMEJ11,1667–1679(2017).doi.org/10.1038/ismej.2017.24

Sutterella——萨特氏菌

Sutterella是一种革兰氏阴性杆细菌,主要从肠道和胃肠道感染中分离出来的。其属的成员已从横膈膜下方的人类感染中分离出来。

Sutterella(萨特氏菌)是变形菌门最丰富的菌之一,是一种厌氧或微需氧的、耐胆汁、解糖、非运动性且不形成孢子和球杆菌形的短杆状革兰氏阴性球杆菌。

Sutterella菌的体型极小,约0.4到2微米,只能在培养基上形成小型菌落。当收集的细菌聚集成一团时,呈现为红色的特征。

肠道Sutterella中主要分为两大类,分别为华德萨特菌(Sutterellawadsworthensis)和粪链球菌(Sutterellastercoricanis)。

其中Sutterellawadsworthensis菌是一种不溶性、硝酸盐阳性、脲酶阴性的有机体,需要甲酸盐、富马酸盐或氢作为生长添加剂,并可在琼脂培养基中培养。

扫描电子显微镜图像(S.wadsworthensis)

MukhopadhyaI,etal.,PLoSOne.2011

Sutterella通常与人类疾病有关,例如自闭症、唐氏综合症和炎症性肠病(IBD),但这些细菌对健康的影响仍不清楚。

母体传播,IgA缺乏

——Sutterella可以将肠道疾病从母亲传给后代

一项发表在《自然》杂志上报告说,该研究发现,母鼠可以通过一种名为Sutterella的肠道细菌,将肠道疾病的易感性传递给她的后代,例如炎症性肠病。

长期以来,科学家们一直推测,母亲可以通过分娩过程,然后通过母乳喂养和接吻将有益细菌传递给她的后代。这些无数的细菌迅速传播并覆盖婴儿的皮肤、口腔和消化道。

到目前为止,大多数医生都认为IgA缺乏症(见于慢性腹泻、克罗恩病和溃疡性结肠炎等疾病)主要是遗传性的,这意味着这种缺乏症是通过基因遗传的。这一新发现是首次鉴定出后代可以遗传的特定特征——是一种称为免疫球蛋白A或IgA的血液蛋白缺乏,它是肠道疾病的根源——由特定的可以从母亲传给后代的细菌基因引起。

研究发现成年小鼠通过粪便将Sutterella细菌传播给彼此,而母鼠在出生后不久将Sutterella细菌直接传播给它们的后代,从而传递了这种低IgA的特征。Sutterella抑制IgA的分泌。但是注意Sutterella可能只是改变人类疾病易感性的众多细菌之一。

炎症

——Sutterella具有抑制降解IgA的能力

Sutterella会过分泌IgA蛋白酶,降解IgA,从而降低肠粘膜中IgA的浓度,损害肠道抗菌免疫反应功能。但有实验指出Sutterella并不会引起大量的炎症反应,但是因为这项研究并没有确切以及多项的实验进行证明,所以并不能得出决定性的结论。

同样的,在一组体外实验中Sutterella能黏附于肠上皮细胞,促进IL-8的分泌,有轻微促炎作用,但不破坏单层上皮细胞完整性。

炎症性肠病(IBD)发生在遗传易感个体中,这是由于未知的环境触发因素所致,可能是迄今为止未知的细菌病原体。

儿科炎症性肠病或乳糜泻患者与健康对照组之间Sutterella丰度未检测到显著差异。

另一项研究中表明,炎症性肠病成人结肠活检中Sutterellawadsworthensis的丰度与对照组没有差异,Sutterellaparvirubra比其他两种Sutterella粘附性更好。

S.wadsworthensis最初更频繁地从IBD受试者中分离出来,因此进行了这项综合研究以阐明其在IBD中的作用。利用这些样本,开发了一种新设计的PCR,以研究这种细菌在成人溃疡性结肠炎患者中的流行情况。

腹泻

在一项对健康仔猪进行的实验中,采用16srRNA基因测序和宏基因组等技术测序粪便菌群得到其在属水平中,断奶前腹泻仔猪粪便菌群Prevotella、Sutterella和Anaerovibrio相对丰度都具有显著的增加。

而在属水平上,Sutterella属和Bacteroides属可能与AAD的发生发展关系密切。

粪菌移植FMT治疗效果

研究发现Sutterella可能在FMT治疗反应中起重要作用。在FMT治疗前后收集的患者粪便和结肠样本中,与未获得缓解的患者相比,FMT后未达到缓解患者体内的Fusobacteriumgonidiaformans、Sutterellawadsworthensis和大肠杆菌种类增多,血红素和脂多糖生物合成水平增加。

一系列微生物类群与缓解不足有关,包括梭杆菌属(Fusobacterium)、萨特氏菌(Sutterella)、嗜血杆菌、大肠杆菌、嗜双歧杆菌等。

Sutterella、Eshcerichia和血红素生物合成可能允许为溃疡性结肠炎的FMT治疗精心选择合适的供体和患者,并告知如何修改FMT治疗或更明确的(如窄谱)治疗微生物操作,以提高其治疗效果。

自闭症

研究人员发现,被诊断患有自闭症和胃肠道紊乱的儿童中,超过一半的肠道活检组织中存在Sutterella菌,而通常发育中的胃肠道紊乱儿童的活检组织中没有Sutterella。

胃肠道症状,如便秘、腹泻、腹痛和腹胀,在自闭症儿童中很常见。但目前尚不清楚胃肠道不适是自闭症的核心特征还是挑食或其他疾病症状的结果。

研究人员已从阑尾炎等感染和克罗恩病(一种导致胃肠道炎症的自身免疫性疾病)患者中分离出Sutterella。然而,目前尚不清楚这些细菌是感染的原因还是后果,也不知道它们是否总是存在于健康个体中。

目前尚不清楚儿童的胃肠道症状是否是由Sutterella引起的,但这种细菌可能会取代有益的共生细菌,从而导致症状。

11名孤独症儿童和1名对照儿童也携带与Sutterella交叉反应的抗体,Sutterella是感染和炎症的迹象。根据PCR分析,其中三名儿童对Sutterella不呈阳性,这表明总共有15名儿童可能携带该细菌。

肥胖

其他

●通过对Roux-en-Y胃转流术(RYGB)和SG后二型糖尿病(T2D)的特定肠道微生物群的研究发现,其Sutterella可能对RYGB后T2D患者的糖代谢产生有益的影响。

Sutterella对于人体健康的影响并不仅限于以上病症,大多可归类为胃肠道类紊乱以及神经系统性疾病。

岩藻多糖

岩藻多糖具有降低Sutterella丰度的作用。

岩藻多糖是一种从褐藻中获取的复杂硫酸多糖,被认为是一种蛋白益生元。它可以改变肠道菌群,减缓环磷酰胺诱导的肠道粘膜损伤,减少宿主中的抗原负载和炎症反应。并且,岩藻多糖对减少Sutterella的丰度,以及提高Prevotella的丰度具有显著的效果。

一项健康成年人多酚干预研究显示Sutterella增加。

低聚半乳糖

低聚半乳糖和低聚果糖的组合可以改善抑郁的症状。

补充低聚半乳糖(GOS)以及低聚果糖(FOS)的混合补充物,可以改善啮齿动物的焦虑以及抑郁的行为。

一项研究指出给狗服用益生元后检测出更多的Sutterella。

维生素D

与所有营养素一样,维生素适量会帮助身体健康。但是高剂量的维生素会导致小鼠发生严重的结肠炎,Sutterella的增加,表明高剂量维生素D导致向促炎症微生物群的转变。此外,高剂量维生素D小鼠的血清维生素D水平显著下降,并伴有结肠炎,这可能是由于维生素D代谢产物因摄入过量维生素D引起的肠道炎症所致。

提高维生素D还应该多晒太阳和补充维生素D的丰富的食物,如鱼油等。

此外,Sutterella显示对甲硝唑的耐药性。

TargetingGutMicrobiotaDysbiosis:PotentialInterventionStrategiesforNeurologicalDisorders[J].Engineering,2020,6(4):415-423.

WilliamsBL,HornigM,ParekhT,LipkinWI.ApplicationofnovelPCR-basedmethodsfordetection,quantitation,andphylogeneticcharacterizationofSutterellaspeciesinintestinalbiopsysamplesfromchildrenwithautismandgastrointestinaldisturbances.mBio.2012Jan10;3(1):e00261-11

XueM,JiX,LiangH,etal.Theeffectoffucoidanonintestinalfloraandintestinalbarrierfunctioninratswithbreastcancer[J].Food&Function,2018,9(2).

SutterellaSpecies,IgA-degradingBacteriainUlcerativeColitis,

10.1016/j.tim.2020.02.018,2020-03-23.

HiippalaK,KainulainenV,KalliomkiM,ArkkilaP,SatokariR.MucosalPrevalenceandInteractionswiththeEpitheliumIndicateCommensalismofSutterellaspp.FrontMicrobiol.2016Oct26;7:1706.

WilliamsBL,HornigM,ParekhT,LipkinWI.ApplicationofnovelPCR-basedmethodsfordetection,quantitation,andphylogeneticcharacterizationofSutterellaspeciesinintestinalbiopsysamplesfromchildrenwithautismandgastrointestinaldisturbances.mBio.2012Jan10;3(1):e00261-11.

LvW,LiuC,YeC,etal.Structuralmodulationofgutmicrobiotaduringalleviationofantibiotic-associateddiarrheawithherbalformula[J].InternationalJournalofBiologicalMacromolecules,2017.

AdamsJB,JohansenLJ,PowellLD,QuigD,andRubinRA.2011.Gastrointestinalfloraandgastrointestinalstatusinchildrenwithautism—comparisonstotypicalchildrenandcorrelationwithautismseverity.BMCGastroenterol.11:22.

GreethamHLetal.2004.Sutterellastercoricanissp.nov.,isolatedfromcaninefaeces.Int.J.Syst.Evol.Microbiol.54:1581–1584.

分类分析的研究,依赖于高质量的序列分类参考数据库,然而,目前已有记录公共序列数据库中出现错误,这些错误可能导致下游结果出错。不同的参考数据库对生物数据的分类结果差别很大,但缺乏客观评价单个数据库质量的标准。

有人选择自行构建特定于环境的数据库,但生成这样的数据库在技术上具有挑战性,导致了研究人员难以获取适当参考材料,或者对专有资源和服务有很大的依赖性。

RESCRIPt是一个独立的python3软件包,也是QIIME2插件。用于参考序列分类数据库的可重复构建和管理,主要功能是格式化主流的公共数据库内序列用以自建分类数据库,由于处理步骤是透明化的,所以用户可以为不同的研究应用创建参考材料。

次要功能有评估、比较和交互探索参考数据库的定性和定量特征的功能。RESCRIPt使用QIIME2文件格式,对每个处理步骤都生成专一的文件存储,使用户可以随时追溯任一计算步骤。

RESCRIPt处理和管理参考数据库的工作流程

实线箭头表示建议的流程。虚线的箭头和边框表示自定义工作流程时的可选步骤。

RESCRIPt可以有效和透明的构建任何存在源数据的扩增子的参考数据库,以及来自NCBI的全基因组。

“GetData”:获取源数据,可以直接从SILVA和NCBIGenBank数据库中自动下载序列和分类。

“FormatData”:格式化数据,包括基本的序列操作、逆转录和解析分类。

“FilterData”:过滤数据,根据序列的质量或长度过滤以及根据分类和分类单元所在的序列长度过滤。

“ModifyData”:修改数据,去重复、合并分类或聚类。

“EvaluateData”:评估,对序列的一般质检,以及对分类准确率的评估。

详细的操作命令,见:bokulich-lab/RESCRIPt:REferenceSequenceannotationandCuRatIonPipeline(github.com)

RESCRIPt比较评估目前常用的四种16SrRNA基因数据库,分别为SILVA、Greengenes、GTDB和NCBI-RefSeq

从结果上看,在这些数据库中,SILVA数据库展示了最多的唯一序列和物种数,但是SILVA缺乏种水平的分类管理,其在种水平的分类准确率为0.73,远远低于其他16SrRNA基因数据库。相比之下,SILVA在属水平上的分类准确率要高得多。

NCBI-RefSeq的参考序列质量最高,分类准确率为0.94。

GTDB表现出略低的分类准确率0.92。

Greengenes13_8含有大量独特的序列和与SILVA相似的序列信息熵,但在属(54%)和种(90%)水平上有许多没被注释的序列。这表明该数据库中的大量序列在遗传上相似(≥98%),但在分类上是不同的,产生了不明确的标签。

各数据库的序列信息

图A.序列长度分布(去除异常值后);

图B.每个数据库中唯一序列的数量;

图C.每个数据库中全长序列和不同kmer长度的熵。

各数据库的分类信息和模拟分类的准确率比较

图A.唯一分类标签的数量。图B.分类熵。

图C.在每一层级上未分类物种的比例。图D.分类准确率。

横轴表示分类水平域门纲目科属种。

各数据库的分类覆盖率比较

每张子图表示该数据库与其他数据库在每个分类水平上共享的分类群比例。图例指出了要相互比较的数据库。

RESCRIPt比较评估不同过滤步骤对16SrRNA基因SILVA数据库的影响

RESCRIPt使用get-silva-data命令获取SILVA序列和分类文件。“get-silva-data”命令允许选择下载哪个版本的数据库,是否下载LSU、SSU序列或SSUNR99序列,以及使用哪个分类水平和分类解析的选项等其它选项。

对16SrRNA基因SILVA数据库中每个连续序列使用不同RESCRIPt的质量过滤步骤后的序列信息比较

图A.序列长度分布。图B.唯一序列的数量。

图C.全长序列和不同kmer长度的熵。

图例中Base指完整的NR99SILVA数据库;Culled指在序列中去掉8个或更多的均聚物(homopolymers)和/或5个具有歧义的碱基(ambiguousbases);

LengFiltByTax指基于分类学对数据进行序列长度过滤,即去除长度小于900bp和小于1200bp的古菌和细菌序列;

DereplicateUniq指使用“uniq”模式对分类和序列去重,即任何具有不同分类的相同序列将不会被合并;

结果表示Culled和LengFiltByTax步骤对序列的影响是有益的,而NoAmbigLabels方法会过多丢失序列信息。

各过滤步骤下序列分类信息和模拟分类准确率的比较

图C.无需交叉验证的最佳分类准确率(当真实标签已知,但分类准确率可能被数据库中其他类似的命中混淆时,模拟可能的最佳分类准确率)。

图D.使用交叉验证的分类准确率(在不知道正确标签的情况下模拟真实的分类任务)。

横轴表示分类水平域门纲目科属种。除了NoAmbigLabels的分类注释外,质量过滤对分类准确率的影响微乎其微。

RESCRIPt评估在多个OTU%相似性阈值下聚类的Greengenes数据库(13_8版本)的多个数据库质量特征

结果表示相似性阈值的降低导致了信息丢失,在属和种水平上,唯一分类标签的数量迅速减少。相反,相似性阈值的增加使得分类准确率上升。

这表明,即使选择了认为合适的相似度阈值也可能对数据库的信息内容和分类准确率产生负面影响。但作者还是建议不要在任何标记基因序列数据库中使用相似度<99%的OTU聚类。

图C.在每一层级里分类单元的数目。

图D.无需交叉验证的最佳分类准确率(当真实标签已知,但分类准确率可能被数据库中其他类似的命中混淆时,模拟可能的最佳分类准确率)。

图E.使用交叉验证的分类准确率(在不知道正确标签的情况下模拟真实的分类任务)。

横轴表示分类水平域门纲目科属种。图例指示不同的OTU%相似性阈值。

RESCRIPt评估不同处理步骤下的UNITITS真菌序列数据库

结果表示OTU聚类方法里,97%比99%比动态聚类,对结果的影响最小。含所有真核生物的数据库所包含的序列是仅含真菌序列数据库的两倍多,但其分类准确率是最低的。

而只含目水平或更低级别分类水平的真菌序列数据库在分类准确率上提升最大。

对UNITITS数据库的三种类型UNIT_97,UNIT_99,UNIT_dynamic数据库分别进行划分

Euks表示含所有真核生物序列,Fungi表示只含真菌序列,FungiOrder表示只含目水平或更低级别分类水平的真菌序列。

图E.使用交叉验证的分类准确率(在不知道正确标签的情况下模拟真实的分类任务)。横轴表示分类水平域门纲目科属种。

RESCRIPt评估用于后生动物分类鉴定的COL基因数据库

首先比较评估了不同序列处理步骤下的BOLDCOL基因数据库(BOLD全称BarcodeofLifeDataSystems)。

结果表示聚类序列大大减少了未修剪和引物修剪的BOLDCOI数据集中唯一序列的数量,经引物修剪也会降低唯一序列的数量。且在种水平上表现最明显。聚类和引物修剪也降低了分类准确性。数据表明OTU聚类不利于COI基因分类。

图例中Full表示未修剪的全长序列,ANML表示经引物修剪后的序列,后边接的数字表示相似性聚类阈值。Arthropod指节肢动物,chordate指脊索动物。图A.唯一分类标签的数量。图B.不同kmer长度的分类熵。横轴表示不同数据库。

其次评估比较了从BOLD或NCBIGenBank获得的去重复和引物修剪的COL基因数据库。

数据表明,整体看NCBI的唯一序列较少,但局部看,NCBI在属水平和种水平上有更多唯一序列。从分类准确率看,NCBI相对于BOLD,从科到种水平都有提高。

数据集分别为boldANML(BOLDCOL基因数据库)、ncbiAll(ncbiNB与ncbiOB的集合)、ncbiNB(不含BOLDCOL基因序列的NCBIGenBankCOL基因数据库)、ncbiOB(含BOLDCOL基因序列的NCBIGenBankCOL基因数据库)。图A.唯一分类标签的数量。图B.不同kmer长度的分类熵。横轴表示不同数据库。

RESCRIPt旨在为研究人员提供可重现的核苷酸序列和分类学数据库生成、整理和评估的工具。它不是一个数据源,也不是分类学、系统学或数据质量方面的权威,并且RESCRIPt生成的评估结果也不是质量或准确性的可靠指标。

与任何生物信息学方法一样,RESCRIPt输出的质量取决于其输入的质量和用户作出的处理决策。一般来说,用户应该使用多个指标来指导他们对RESCRIPt结果的解释,但在对数据库质量作出结论之前,还需要了解输入数据的组成。

RESCRIPt目前的版本已经兼容宏基因组数据库。未来将计划提供更多的基因组和宏基因组功能。例如用于(元)基因组距离估算的ANI和MASH方法,以及用于(元)基因组数据库分类精度估算的方法。会增加从学界里常用的公共在线数据库中获取序列和分类的方法。

RESCRIPt作为一个Python3软件包和QIIME2插件,可以用conda安装也可以docker运行,或者在已有的qimme2环境中安装。

THE END
1.python二级考试3, 4, 5, 5, 5, 6, 9]# 定义列表numbers=[3,1,4,1,5,9,2,6,5,3,5]# 使用sorted()函数进行排序sorted_numbers=sorted(numbers)# 使用sorted()函数进行逆序排序sorted_numbers_reverse=sorted(numbers,reverse=True)print(sorted_numbers)# 输出: [1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 9]...https://www.jianshu.com/p/35963a00cf94
2.第6章5列表元素个数的加权和(1)第一层每个元素算一个元素,第二层每个元素算2个元素,第三层每个元素算3个元素,第四层每个元素算4个元素,...,以此类推! 输入格式: 在一行中输入一个列表。 输出格式: 在一行中输出加权元素个数值。 输入样例: 在这里给出一组输入。例如: [1,2,[3,4,[5,6],7],8] 输出样例: 在...https://pintia.cn/problem-sets/1111652100718116864/exam/problems/type/7?problemSetProblemId=1163035698160459784&page=0
3.Excel函数教程图6 粘贴函数列表 三、函数的种类 excel函数一共有11类,分别是数据库函数、日期与时间函数、工程函数、财务函数、信息函数、逻辑函数、查询和引用函数、数学和三角函数、统计函数、文本函数以及用户自定义函数。 1.数据库函数--当需要分析数据清单中的数值是否符合特定条件时,可以使用数据库工作表函数。例如,在一个包...http://www.360doc.com/content/11/0305/21/1444297_98449311.shtml
4.运动矢量细化和其他编解码工具之间的相互作用的制作方法1.相关申请的交叉引用 2.根据适用的专利法和/或依据巴黎公约的规则,本技术旨在及时要求于 2019年6月5日提交的第pct/cn2019/090201号国际专利申请、2019年7 月4日提交的第pct/cn2019/094767号国际专利申请和2019年7月16日提交的第pct/cn2019/096180号国际专利申请的优先权和利益。出于根据法律的所有目的,前述...http://mip.xjishu.com/zhuanli/62/202080041806.html
5.中华影像医学·分子影像学卷最新章节王培军著第二阶段,20世纪80年代初到90年代初,已经成熟的MRI技术开始被广泛应用到临床诊断和生物医学的基础研究中,但此时MRI成像主要还局限于断面成像(T 1 和T 2 加权成像技术),所以它更多被用于观测生理和病理条件下生物体在解剖结构以及形态学上的变化。第三阶段,20世纪90年代,随着快速成像技术(如EPI)、弥散加权成像、...https://m.zhangyue.com/readbook/12862404/28.html?showDownload=1
6.高中数学知识点总结(最全版)重点函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数1知识点 第一章集合与函数概念 〖1.1〗集合 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集. ...https://www.360doc.cn/document/76407869_1018929759.html
1.list集合操作对图书馆的题目// 5. 根据图书名称查询是否在列表中 val bookTitleToFind = "西游记" val bookExists = books.exists(_.name == bookTitleToFind) // 使用_.name println(s"要找的书'$bookTitleToFind' 是否在列表中? $bookExists") // 6. 从列表中删除第4本图书 ...https://blog.csdn.net/rylshe1314/article/details/143856268
2.python基础篇(四)——Python数据类型之列表(中)从上面的代码可以看出:由于两条print语句都缩进了,因此它们都将针对列表中的每位魔术师执行一次。第二条print语句中的换行符"\n"在每次执行结束后都插入一个空行,从而整洁地将针对各位魔术师的消息编组,运行结果如下: 在for循环中,想包含多少行代码都可以。实际上,我们会发现使用for循环对每个元素执...https://www.365seal.com/y/xPnQgOWOVK.html
3.pythonpth的作用mob64ca13f937ae的技术博客返回一个新的 set 包含 s 中有但是 t 中没有的元素 s.symmetric_difference(t) s ^ t 返回一个新的 set 包含 s 和 t 中不重复的元素 s.copy() 返回set “s”的一个浅复制 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. ...https://blog.51cto.com/u_16213587/12578025
4.Python教程笔记(2)zip() 与 * 运算符相结合可以用来拆解一个列表 >>>x=[ 1,2,3]>>>y=[4,5,6]>>>list(zip(x,y))[(1,4),( 2,5),(3,6)]>>>x2,y2=zip(*zip(x,y))>>>x==list(x2)andy==list(y2)True 5.7 深入条件控制 not 的优先级最高, or 的优先级最低 ...https://www.miaokee.com/2787402.html
5.浙大版《Python程序设计》题目集6.字符串对象和元组对象是不可变对象,列表对象为可变对象。T 7.列表lst=[12, -5, -22, -10, -26, 35, 0, 49, 3, -21],lst[::]的结果是[12, -5, -22, -10, -26, 35, 0, 49, 3, -21]。T b[:] ##单独一个冒号,代表从头取到尾,步长默认为1 ...https://www.iotword.com/19667.html
6.北师大版八年级数学上册教案(通用18篇)5、课堂小结: (1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS) 在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。 (2)三种方法的综合运用 让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。 6、布置作业: ...https://www.unjs.com/fanwenwang/jiaoan/20230814181800_7472953.html
7.初二上册数学知识点总结5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。 6.平移时:上加下减在末尾,左加右减在中间。 直角三角形 1.勾股定理及其逆定理 定理:直角三角形的两条直角边的等于的平方。 逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是...https://www.oh100.com/chuer/5567605.html
8.初二数学上册知识点总结(集锦8篇)5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。 6.平移时:上加下减在末尾,左加右减在中间。 直角三角形 1.勾股定理及其逆定理 定理:直角三角形的两条直角边的等于的平方。 逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是...https://www.ruiwen.com/zhishidianzongjie/6771164.html
9.从原理到落地,七大维度读懂协同过滤推荐算法,它们对应的向量(即图2中矩阵的列向量,分别是第i列和第j列)如下,其中n是用户数。 那么 的相似度计算,我们可以细化如下: 公式1:计算 相似度 我们仔细看一下上述公式,公式的分子就是下图矩阵中对应的i列和j列中同一行中的两个元素(红色矩形中的一对元素)相乘,并且将所有行上第i列和第j列的元素相乘得到的...https://cloud.tencent.com/developer/article/1487831
10.全面了解风控策略体系消费金融风控联盟本文由正阳执笔,思茂校正,同时感谢正阳学院近300位策略师的协同,全文总计5.0w字(公众号文字数极限,所以...1.策略先行之道 本章内容偏心法和方法论,更适合管理层或者架构者。为求准确,本章大部分概念的解释来自...头部效应是指在一个领域中,第一名往往会获得更多的关注,拥有更多的资源,所在领域的赛道,要么高价值...https://www.shangyexinzhi.com/article/6849659.html
11.智能车竞赛技术报告智能车视觉中国矿业大学▲图 5智能视觉模块安装效果图 1.6整车效果图 ▲图 6整车效果图 第二章 硬件系统设计 2.1主控板 ▲图 7主控板 主控板对称布置,每个电源网络均设置LED显示各个供电芯片是否正常工作,减少故障排查时间,其中包括主 3.3V,5V,总钻风摄像头 3.3V和舵机可调稳压。根据各个传感器的车身分布位置合理安排接口位置,为减轻质量...https://www.eefocus.com/article/503552.html
12.自动驾驶汽车嘲测评参数生成方法及代表性指标汽车技术自动驾驶汽车开发的一个重要层面是评估自动驾驶汽车在安全性、舒适性、效率性方面的质量和性能[1]-[3]。由于真实开放道路测试昂贵且耗时[4][5],因此提出了一种基于场景的测评方法[2][6]-[11]。基于场景的测评方法在众多场景中对自动驾驶汽车被测系统的响应进行测试,并评估该响应在真实世界的场景中引起变化。场...https://www.auto-testing.net/news/show-117044.html
13.计算机网络(第5版)习题答案(56章)谢希仁编著潇洒的qi士跃的计算机网络(第5版) 习题答案(5-6章) 谢希仁 编著 第1章-第4章答案 第五章传输层 5—01试说明运输层在协议栈中的地位和作用,运输层的通信和网络层的通信有什么 重要区别?为什么运输层是必不可少的? 答:运输层处于面向通信部分的最高层,同时也是用户功能中的最低层,向它上面的应 ...https://blog.sina.com.cn/s/blog_511364b10100pl9w.html