最近几个月来,人工智能(AI)成为人们最喜爱的流行语。随着AI发展稳步加速,硅谷初创企业和财富五百强公司纷纷投身这场产业革命。然而,兴奋、进步和危险信号正在齐头并进,展现出一个振奋人心但又难以断言祸福的壮阔未来。在此期间,一些急于搭上风口的企业希望通过炒作粉饰金身,用夸大的方式强调自己孱弱、甚至根本就不存在的AI技术能力。
与非AI初创公司相比,这类不太光明的营销策略能够帮助他们拿下更加可观的种子、A轮和B轮融资。根据GlobalData整理的数据,单在过去一年,AI初创公司就筹集到超500亿美元风险投资。鉴于ChatGPT等技术成果掀起的热潮,预计今年之内这一数字还会持续增长。
随着大量资金涌入初创公司,AI炒作的现象只会愈演愈烈。美国联邦贸易委员会已经充分意识到这种风险,并警告供应商务必在宣传AI功能时保持透明和诚信。
在如此复杂的现实环境当中,我们似乎越来越难以区分合法AI解决方案和纯营销噱头。
纽约大学CIODonaldWelch表示,如果CIO和企业没能及时识破宣传伎俩,他们可能面临项目失败或延迟、财务损失、法律案件、声誉风险甚至是职业生涯的彻底终结。“我见过高管因此被解雇,某种程度上这也确实是他们「罪有应得」。”
幸运的是,仍有多种策略有助于避免这个错误。
直接审查供应商的AI产品既漫长又耗时,但从另一个角度切入,在LinkedIn上搜索员工资料倒是能帮我们快速建立对供应商的整体认知。
Ammanath表示,“一定要认真检查供应商员工的AI经验和教育水平。开发AI解决方案的企业应当具备这样的人才,这代表着他们拥有在AI、机器学习和算法开发等领域拥有丰富经验的数据科学家和数据工程师。”
如果供应商方面拥有类似的项目或应用开发经验,那肯定是个好兆头,表明其有望提供也宣传相符的高质量产品。
美国初创公司MacPaw的首席技术与创新官、乌克兰裔美国人ViraTkachenko表示,“认真调查供应商的历史走向。如果他们真的是AI专家,那很可能会在该领域或其他AI产品上拥有相应的研究论文记录。”
Ammanath指出,“AI系统必然由大量数据来驱动,因此企业肯定应该拥有良好的数据策略,能够解释他们收集了多少数据、这些数据来自哪里。”
虽然宣传语可以写得无比诱人,但客户一方仍须以温和的态度坚定求证。Ammanath认为,“提出正确的问题并要求对方提供能支持宣传结论的证据,对于破解营销言论、确定产品是否真由AI支持可以说至关重要。”
在评估所谓的AI驱动型产品或服务时,CIO们可以询问该模型是如何训练的、使用了哪些算法,以及AI系统要如何适应新的数据。
Tkachenko表示,“大家应当询问供应商使用的是什么库或者AI模型。他们展示的一切,可能仅仅建立在简单的OpenAIAPI调用之上。”
管理和技术咨询公司BearingPoint合伙人兼全球技术负责人MatthiasRoeser对此也表示赞同。他补充称,CIO们应当彻底理解产品或服务的组成部分和框架,包括评估其中的“道德、偏见、可行性、知识产权和可持续性”。
通过询问,CIO们能够更多了解该产品的真正功能和局限性,从而决定到底值不值得掏出真金白银。
初创公司身处创新前沿,其中不少确实依靠自己的努力突破了AI的可能性边界,但也有不少只是在盲目夸大自身能力、想要捞笔快钱。
但Pranskevicius认为,随着关于AI的法规变得愈发严格,AI炒作将在不久的未来得到控制。
客户买下名不副实的AI解决方案的情况并不少见,而且很可能并不是CIO做错了什么。Welch表示,这可能是“企业领导不力症的后果。业务部门面对疯狂的营销而失去理智,IT团队再三阻拦无果,最终只能被迫收拾残局。”
为了防止出现这样的情况,组织内必须培养出一种协作文化。在这种文化中,技术专业人员的意见应当受到重视,允许他们详尽列出自己的观点和证据。
与此同时,CIO和技术团队也应在公司内部建立声誉,确保自己的意见能够被纳入决策流程。为了实现这个目标,他们应努力展示自己的专业知识、专业精神和软技能。
在比较产品和服务时,必须以开放的心态对其进行评估,全面审视它们的本质属性。
Tkachenko认为,“如果产品或服务对你来说,唯一的优势就只有AI,那应当在采购之前认真思考一番。比如说,最好研究它的价值主张和功能特性,在保证了解其AI之外的好处后再做决定。”
Welch也表示赞同,“我会因为一款产品是用C、C++或者Java编写的而购买吗?当然不是,我想了解的是供应商能不能维护好这批代码、能不能在残酷的市场竞争中长久生存下去。”
彻底的评估,能够帮助组织确定自己计划购买的产品或服务是否符合目标,能不能提供预期中的结果。
Kovtun强调,“技术越复杂,非专业人士理解起来就越困难,甚至根本无法验证该技术到底该不该用、有没有意义。因此在决定将AI技术引入业务之前,最好先聘请在AI领域拥有丰富经验和知识的专家。否则,你的努力也许无法带来符合期望的收益。”
底特律市CIOArtThompson认为,“我觉得目前的AI教育水平还不够。”
此外,了解AI最新趋势也能帮助CIO们预测监管变化和行业标准,提前一步遵守法规并保持竞争优势。
Ammanath指出,“这些行动的宗旨,在于保护消费者权利乃至全人类免受技术的潜在伤害。我们需要预测技术的潜在负面影响,确保降低风险。”
企业往往乐于讨论新技术本身、强调潜在的收益,但却经常淡化由此带来的负面影响。
这种将技术视为社会和文化变革背后主要驱动力的观念,很可能会忽略掉对道德和政治影响的有益讨论,反而支持更多以营销为导向的论点。正如DiSalov所说,这造成了“一种舆论迷雾,让技术方案乃至其生产者拥有更大的回旋空间和逃避责任的机会。”
为了解决这个问题,他认为必须让公众意识到AI不是什么、做不到什么。