狂犬病新型基因工程疫苗研究进展

柴本杰1,黄菲1,裴捷1,周明1,田大勇1,2,傅振芳1,赵凌1

1.华中农业大学农业微生物学国家重点实验室/华中农业大学动物医学院,武汉430070;2.上海青赛生物科技有限公司,上海201506

摘要狂犬病是由狂犬病病毒感染中枢神经系统引起的一种古老的人兽共患传染病,人和动物感染后一旦出现临床症状,死亡率几乎100%,至今仍无有效的治疗方法。当前,接种疫苗是预防狂犬病最为有效的途径。因此,狂犬病疫苗研发一直是狂犬病研究领域的热点之一,进而不断涌现出新型疫苗。本文对近期狂犬病新型灭活疫苗、弱毒疫苗、核酸疫苗、亚单位疫苗、病毒样颗粒疫苗、口服疫苗等基因工程疫苗研究进展进行系统梳理,以期把握狂犬病疫苗研究现状,为研发更为有效的狂犬病新型疫苗提供新思路。

关键词狂犬病;狂犬病病毒;灭活疫苗;弱毒疫苗;核酸疫苗;亚单位疫苗;病毒样颗粒疫苗;口服疫苗;基因工程

狂犬病(rabies)是由狂犬病病毒(rabiesvirus,RABV)感染引起的一种高度致死性的人兽共患传染病。RABV共编码5个结构蛋白,分别是核蛋白(nucleoprotein,N)、磷蛋白(phosphoprotein,P)、基质蛋白(matrixprotein,M)、糖蛋白(glycoprotein,G)以及RNA依赖的RNA聚合酶大蛋白(RNA-dependentRNApolymeraselargeprotein,L),其中RABV糖蛋白(RABV-G)是病毒粒子表面唯一的蛋白,在RABV感染宿主后结合细胞表面的受体帮助入侵,同时也能够刺激机体产生保护性中和抗体(virus-inducedneutralizingantibody,VNA)。

狂犬病在全球范围内每15min发生1例,其中95%以上病例发生在亚洲、非洲的一些发展中国家和欠发达地区[1]。人通常是通过已感染RABV的动物咬伤、抓伤或舔舐等密切接触方式被感染。狂犬病一旦出现临床症状其死亡率接近100%,暴露后预防处置(包括伤口清洗、疫苗免疫和抗体注射)是预防狂犬病的唯一有效途径[2]。犬是当前狂犬病传播的主要传染源(占比95%以上),对家养动物进行广泛免疫(达到70%以上)是消除人间狂犬病的最有效措施。

世界卫生组织(WHO)提出了2030年消灭人间狂犬病的目标[3],而要实现这一目标就需要开发更为廉价、高效的新型狂犬病疫苗。早在1885年法国科学家路易斯·巴斯德就首次发明了狂犬病疫苗,并成功应用到人狂犬病的防控[4]。时至今日,狂犬病疫苗的发展历经组织灭活苗、禽培苗、细胞苗、基因工程苗等不同的发展阶段。得益于基因工程技术的飞速发展,近年来狂犬病新型基因工程疫苗研究获得长足进步,本文对该方面的研究进展进行系统综述。

此外,以RABV为载体来表达其他病原保护性抗原而开发的重组二联灭活疫苗也是新型灭活疫苗的发展方向之一。如基于RABV-G的蛋白三维结构,设计构建的RABV和莫科拉病毒(mokolavirus,MOKV)嵌合G蛋白重组灭活疫苗候选株免疫后能为机体提供对RABV和狂犬病病毒属的多种病毒在内的免疫保护[9],极大地拓宽了狂犬病疫苗的应用范围。而表达犬瘟热病毒(caninedistempervirus,CDV)H(CDV-H)或F蛋白(CDV-F)的重组狂犬病灭活疫苗在提供RABV免疫保护的同时也能提供CDV免疫保护[10];采用汽化保存的RABV-埃博拉病毒(ebolavirus,EBOV)重组灭活疫苗比冷藏保存的灭活疫苗具有更好的热稳定性,能同时保护机体免受RABV和EBOV的攻击[11];表达SARS-CoV-2S1与RABV-G嵌合体的RABV-COVID-19重组灭活疫苗CORAVAXTM免疫小鼠56d后,仍能诱导机体同时产生针对以上2种病毒的高水平VNA[12]。

图1表达免疫增强因子的狂犬病新型弱毒疫苗示意图Fig.1Schematicdiagramofnewattenuatedrabiesvaccineexpressingimmuneenhancementfactor

通过表达细胞因子或趋化因子来提高疫苗的免疫原性可以有效提高狂犬病疫苗的免疫效力,但是在动物或人体内过表达这些细胞因子是否会存在一定的副作用或有其他安全性隐患还需进一步评估。

狂犬病RNA疫苗则是将RABV-G的编码框构建成能独立翻译RABV-G的mRNA作为免疫原而开发的新型疫苗(图2)。如编码RABV-G的非复制且耐高温狂犬病mRNA疫苗能对小鼠、新生和成年猪产生免疫保护[68-69];人用预防性狂犬病mRNA疫苗(CV7201)是由编码RABV-G的mRNA和鱼精蛋白组合冻干的热稳定型mRNA疫苗,是第一个在健康人群中开展概念验证研究的mRNA疫苗,其临床试验也显示出较好的安全性和免疫原性[70-71]。此外,基于甲病毒(alphavirus)基因组构建并由阳离子纳米乳剂(cationicnanoemulsion,CNE)传递的狂犬病自我复制mRNA(self-amplifyingmRNA)疫苗在小鼠中具有较好的免疫效果和安全性[72];而将编码RABV-G的cDNA进行体外转录后转染BHK-21细胞,包装成能表达RABV-G的重组SFV-RABV-G的mRNA疫苗也能在小鼠体内激发有效的免疫反应[73]。

图2狂犬病新型mRNA疫苗示意图Fig.2SchematicdiagramofnewmRNAvaccineforrabies

直接将人工表达的RABV-G作为免疫原而开发的疫苗称为狂犬病亚单位疫苗。传统RABV-G表达采用原核表达系统或昆虫细胞表达系统[74],而采用黑腹果蝇S2(schneider2)细胞表达的RABV-G也具有较好的免疫效果[73,75]。而采用哺乳动物细胞HEK-293T表达的嵌合有GCN4-pⅡ三聚化功能域的RABV-G胞外域嵌合体蛋白可以三聚体形式存在,因而更接近天然的RABV-G从而具有更好的免疫原性,能为小鼠提供更好的免疫保护[76]。此外,添加犬热休克蛋白Gp96佐剂的狂犬病多肽疫苗免疫试验和攻毒保护试验结果显示能为小鼠和比格犬提供免疫保护[77],表明合成肽也具有发展狂犬病疫苗的应用前景。

图3新型狂犬病病毒样颗粒疫苗VEEV-RABV-G示意图Fig.3Schematicdiagramofthenewrabiesvirus-likeparticlevaccineVEEV-RABV-G

除了病毒载体,利用可食用转基因植物表达保护性抗原从而免疫人群和动物也是提高群体免疫的有效途径[96]。而据此开发的表达RABV-G的转基因玉米口服绵羊后能诱导机体产生针对RABV的保护性免疫应答[97]。此外,在番茄毛状根中表达RABV-G也可被开发为动物用口服疫苗[98]。

参考文献References

[1]沈正君,赵玉良,张军,等.狂犬病流行现状及人用狂犬病疫苗研究进展[J].实用预防医学,2020,27(5):637-641.SHENZJ,ZHAOYL,ZHANGJ,etal.Epidemicsituationofrabiesandresearchprogressonrabiesvaccinesforhumanuse[J].Practicalpreventivemedicine,2020,27(5):637-641(inChinesewithEnglishabstract).

[2]WARRELLMJ.Developmentsinhumanrabiesprophylaxis[J].RevSciTech,2018,37(2):629-647.

[4]HOENIGLJ,JACKSONAC,DICKINSONGM.TheearlyuseofPasteur’srabiesvaccineintheUnitedStates[J].Vaccine,2018,36(30):4578-4581.

[6]PEIJ,HUANGF,WUQ,etal.CodonoptimizationofGproteinenhancesrabiesvirus-inducedhumoralimmunity[J].JGenVirol,2019,100(8):1222-1233.

[7]NAVIDMT,LIY,ZHOUM,etal.Comparisonoftheimmunogenicityoftwoinactivatedrecombinantrabiesvirusesoverexpressingtheglycoprotein[J].ArchVirol,2016,161(10):2863-2870.

[11]KURUPD,FISHERCR,SMITHTG,etal.Inactivatedrabiesvirus-basedebolavaccinepreservedbyvaporizationisheat-stableandimmunogenicagainstebolaandprotectsagainstrabieschallenge[J].JInfectDis,2019,220(9):1521-1528.

[13]ZHUS,LIH,WANGC,etal.Reversegeneticsofrabiesvirus:newstrategiestoattenuatevirusvirulenceforvaccinedevelopment[J].JNeurovirol,2015,21(4):335-345.

[14]WUX,FRANKAR,HENDERSONH,etal.Liveattenuatedrabiesvirusco-infectedwithstreetrabiesvirusprotectsanimalsagainstrabies[J].Vaccine,2011,29(25):4195-4201.

[15]NAKAGAWAK,NAKAGAWAK,OMATSUT,etal.Generationofanovelliverabiesvaccinestrainwithahighlevelofsafetybyintroducingattenuatingmutationsinthenucleoproteinandglycoprotein[J].Vaccine,2017,35(42):5622-5628.

[16]YANGDK,KIMHH,CHOISS,etal.Safetyandimmunogenicityofrecombinantrabiesvirus(ERAGS)inmiceandraccoondogs[J].ClinExpVaccineRes,2016,5(2):159-168.

[17]YANGDK,KIMHH,CHOISS,etal.Arecombinantrabiesvirus(ERAGS)foruseinabaitvaccineforswine[J].ClinExpVaccineRes,2016,5(2):169-174.

[18]YANGDK,KIMHH,LEESH,etal.Ageneticallymodifiedrabiesvaccine(ERAGS)inducesprotectiveimmunityindogsandcattle[J].ClinExpVaccineRes,2017,6(2):128-134.

[19]FABERM,LIJ,KEANRB,etal.Effectivepreexposureandpostexposureprophylaxisofrabieswithahighlyattenuatedrecombinantrabiesvirus[J].ProcNatlAcadSciUSA,2009,106(27):11300-11305.

[20]MCGETTIGANJP,DAVIDF,FIGUEIREDOMD,etal.Safetyandserologicalresponsetoamatrixgene-deletedrabiesvirus-basedvaccinevectorindogs[J].Vaccine,2014,32(15):1716-1719.

[22]WANGZ,LIANGQ,ZHANGY,etal.AnoptimizedHMGB1expressedbyrecombinantrabiesvirusenhancesimmunogenicitythroughactivationofdendriticcellsinmice[J].Oncotarget,2017,8(48):83539-83554.

[23]ZHANGY,ZHOUM,LIY,etal.RecombinantrabiesviruswiththeglycoproteinfusedwithaDC-bindingpeptideisanefficaciousrabiesvaccine[J].Oncotarget,2018,9(1):831-841.

[24]ZHANGY,YANGJ,LIM,etal.ArecombinantrabiesvirusexpressingFms-liketyrosinekinase3ligand(Flt3L)inducesenhancedimmunogenicityinmice[J].VirolSin,2019,34(6):662-672.

[29]LUOJ,ZHANGB,WUY,etal.Expressionofinterleukin-6byarecombinantrabiesvirusenhancesitsimmunogenicityasapotentialvaccine[J].Vaccine,2017,35(6):938-944.

[31]CHENT,ZHANGY,WANGZ,etal.RecombinantrabiesvirusexpressingIL-15enhancesimmunogenicitythroughpromotingtheactivationofdendriticcellsinmice[J].VirolSin,2017,32(4):317-327.

[32]GAIW,ZHENGW,WANGC,etal.Immunizationwithrecombinantrabiesvirusexpressinginterleukin-18exhibitsenhancedimmunogenicityandprotectioninmice[J].Oncotarget,2017,8(53):91505-91515.

[33]ZHANGY,ZHOUM,WANGZ,etal.RecombinantrabiesvirusexpressingIL-21enhancesimmunogenicitythroughactivationofTfollicularhelpercellsandgerminalcentreBcells[J].JGenVirol,2016,97(12):3154-3160.

[34]WEYERJ,RUPPRECHTCE,NELLH.Poxvirus-vectoredvaccinesforrabies:areview[J].Vaccine,2009,27(51):7198-7201.

[35]STADINGBR,OSORIOJE,VELASCO-VILLAA,etal.InfectivityofattenuatedpoxvirusvaccinevectorsandimmunogenicityofaraccoonpoxvectoredrabiesvaccineintheBrazilianfree-tailedbat(Tadaridabrasiliensis)[J].Vaccine,2016,34(44):5352-5358.

[37]JASD,COUPIERC,TOULEMONDECE,etal.Three-yeardurationofimmunityincatsvaccinatedwithacanarypox-vectoredrecombinantrabiesvirusvaccine[J].Vaccine,2012,30(49):6991-6996.

[38]BROWNLJ,ROSATTERC,FEHLNER-GARDINERC,etal.Oralvaccinationandprotectionofredfoxes(Vulpesvulpes)againstrabiesusingONRAB,anadenovirus-rabiesrecombinantvaccine[J].Vaccine,2014,32(8):984-989.

[39]BROWNLJ,ROSATTERC,FEHLNER-GARDINERC,etal.Oralvaccinationandprotectionofstripedskunks(Mephitismephitis)againstrabiesusingONRAB[J].Vaccine,2014,32(29):3675-3679.

[40]SOBEYKG,JAMIESONSE,WALPOLEAA,etal.ONRABoralrabiesvaccineisshedfrom,butdoesnotpersistin,captivemammals[J].Vaccine,2019,37(31):4310-4317.

[41]BROWNLJ,ROSATTERC,FEHLNER-GARDINERC,etal.Immuneresponseandprotectioninraccoons(Procyonlotor)followingconsumptionofbaitscontainingONRAB,ahumanadenovirusrabiesglycoproteinrecombinantvaccine[J].JWildlDis,2012,48(4):1010-1020.

[42]PEDERSENK,GILBERTAT,NELSONKM,etal.Raccoon(Procyonlotor)responsetoOntariorabiesvaccinebaits(ONRAB)inSt.LawrenceCounty,NewYork,USA[J].JWildlDis,2019,55(3):645-653.

[47]WANGX,FANGZ,XIONGJ,etal.Achimpanzeeadenoviralvector-basedrabiesvaccineprotectsbeagledogsfromlethalrabiesviruschallenge[J].Virology,2019,536:32-38.

[49]AMANNR,ROHDEJ,WULLEU,etal.AnewrabiesvaccinebasedonarecombinantORFvirus(parapoxvirus)expressingtherabiesvirusglycoprotein[J].JVirol,2013,87(3):1618-1630.

[50]MARTINSM,JOSHILR,RODRIGUESFS,etal.ImmunogenicityofORFV-basedvectorsexpressingtherabiesvirusglycoproteininlivestockspecies[J].Virology,2017,511:229-239.

51]CHENT,ZHOUX,QIY,etal.Felineherpesvirusvectored-rabiesvaccineincats:adualprotection[J].Vaccine,2019,37(16):2224-2231.

[52]WUQ,YUF,XUJ,etal.Rabies-virus-glycoprotein-pseudotypedrecombinantbaculovirusvaccineconferscompleteprotectionagainstlethalrabiesviruschallengeinamousemodel[J].VetMicrobiol,2014,171(1/2):93-101.

[54]GIEL-MOLONEYM,RUMYANTSEVAA,DAVIDF,etal.Anovelapproachtoarabiesvaccinebasedonarecombinantsingle-cycleflavivirusvector[J].Vaccine,2017,35(49):6898-6904.

[55]DEREZENDEAG,FERNANDEZNEG,ASTRAYRM,etal.Anoptimizationstudyforexpressionoftherabiesvirusglycoprotein(RVGP)inmammaliancelllinesusingthesemlikiforestvirus(SFV)[J].JBiotechnol,2019,304:63-69.

[56]ZHAOJ,LIUY,ZHANGS,etal.Experimentaloralimmunizationofferretbadgers(Melogalemoschata)witharecombinantcanineadenovirusvaccineCAV-2-E3Δ-RGPandanattenuatedrabiesvirusSRV9[J].JWildlDis,2014,50(2):374-377.

[57]GEJ,WANGX,TAOL,etal.Newcastlediseasevirus-vectoredrabiesvaccineissafe,highlyimmunogenic,andprovideslong-lastingprotectionindogsandcats[J].JVirol,2011,85(16):8241-8252.

[58]YUGM,ZUSL,ZHOUWW,etal.Chimericrabiesglycoproteinwithatransmembranedomainandcytoplasmictailfromnewcastlediseasevirusfusionproteinincorporatesintothenewcastlediseasevirionatreducedlevels[J].JVetSci,2017,18(S1):351-359.

[59]CHENZ,ZHOUM,GAOX,etal.Anovelrabiesvaccinebasedonarecombinantparainfluenzavirus5expressingrabiesvirusglycoprotein[J].JVirol,2013,87(6):2986-2993.

[60]LIZ,WANGJ,YUAND,etal.Arecombinantcaninedistempervirusexpressingamodifiedrabiesvirusglycoproteininducesimmuneresponsesinmice[J].Virusgenes,2015,50(3):434-441.

[61]GALVEZ-ROMEROG,SALAS-ROJASM,POMPA-MERAEN,etal.AdditionofC3d-P28adjuvanttoarabiesDNAvaccineencodingtheG5linearepitopeenhancesthehumoralimmuneresponseandconfersprotection[J].Vaccine,2018,36(2):292-298.

[62]GARGR,KAURM,SAXENAA,etal.AlumadjuvantedrabiesDNAvaccineconfers80%protectionagainstlethal50LD50rabieschallengevirusstandardstrain[J].MolImmunol,2017,85:166-173.

[63]ULLASPT,DESAIA,MADHUSUDANASN.ImmunogenicityandefficacyofaplasmidDNArabiesvaccineincorporatingMyd88asageneticadjuvant[J].ClinExpVaccineRes,2014,3(2):202-211.

[64]BANSALA,WUX,OLSONV,etal.CharacterizationofrabiespDNAnanoparticulatevaccineinpoloxamer407gel[J].IntJPharm,2018,545(1/2):318-328.

[66]ULLASPT,MADHUSUDANASN,DESAIA,etal.EnhancementofimmunogenicityandefficacyofaplasmidDNArabiesvaccinebynanoformulationwithafourth-generationamine-terminatedpoly(etherimine)dendrimer[J].IntJNanomedicine,2014,9:627-634.

[67]SHAHMA,KHANSU,ALIZ,etal.ApplicationsofnanoparticlesforDNAbasedrabiesvaccine[J].JNanosciNanotechnol,2014,14(1):881-891.

[70]ALBERERM,GNAD-VOGTU,HONGHS,etal.SafetyandimmunogenicityofamRNArabiesvaccineinhealthyadults:anopen-label,non-randomised,prospective,first-in-humanphase1clinicaltrial[J].TheLancet,2017,390(10101):1511-1520.

[72]LOUG,ANDERLUZZIG,TANDRUPSS,etal.Deliveryofself-amplifyingmRNAvaccinesbycationiclipidnanoparticles:Theimpactofcationiclipidselection[J].Journalofcontrolrelease,2020,325:370-379.

[73]ASTRAYRM,VENTINIDC,BOLDORINIVL,etal.RabiesvirusglycoproteinandimmuneresponsepatternusingrecombinantproteinorrecombinantRNAviralvectors[J].Vaccine,2014,32(24):2829-2832.

[74]张莹辉,姚文生,康凯,等.狂犬病病毒糖蛋白重组表达及其基因工程疫苗研究进展[J].中国人兽共患病学报,2020,36(1):65-69.ZHANGYH,YAOWS,KANGK,etal.Researchprogressofrecombinantexpressionofrabiesvirusglycoproteinanditsgeneticengineeringvaccine[J].Chinesejournalofzoonoses,2020,36(1):65-69(inChinesewithEnglishabstract).

[75]DECARLIMC,DOSSANTOSDP,ASTRAYRM,etal.DROSOPHILAS2cellcultureinaWAVEBioreactor:potentialforscalinguptheproductionoftherecombinantrabiesvirusglycoprotein[J].ApplMicrobiolBiotechnol,2018,102(11):4773-4783.

[76]KORAKAP,BOSCHBJ,COXM,etal.Arecombinantrabiesvaccineexpressingthetrimericformoftheglycoproteinconfersenhancedimmunogenicityandprotectioninoutbredmice[J].Vaccine,2014,32(36):4644-4650.

[77]NIUY,LIUY,YANGL,etal.Immunogenicityofmulti-epitope-basedvaccinecandidatesadministeredwiththeadjuvantGp96againstrabies[J].VirolSin,2016,31(2):168-175.

[78]FONTANAD,KRATJER,ETCHEVERRIGARAYM,etal.Immunogenicvirus-likeparticlescontinuouslyexpressedinmammaliancellsasaveterinaryrabiesvaccinecandidate[J].Vaccine,2015,33(35):4238-4246.

[79]FONTANAD,ETCHEVERRIGARAYM,KRATJER,etal.Developmentofrabiesvirus-likeparticlesforvaccineapplications:production,characterization,andprotectionstudies[J].MethodsMolBiol,2016,1403:155-166.

[80]KANGH,QIY,WANGH,etal.Chimericrabiesvirus-likeparticlescontainingmembrane-anchoredGM-CSFenhancestheimmuneresponseagainstrabiesvirus[J].Viruses,2015,7(3):1134-1152.

[85]PEDERSENK,GILBERTAT,WILHELMES,etal.Effectofhigh-densityoralrabiesvaccinebaitingonrabiesvirusneutralizingantibodyresponseinraccoons(Procyonlotor)[J].JWildlDis,2019,55(2):399-409.

[86]ROESSAA,REAN,LEDERMANE,etal.Nationalsurveillanceforhumanandpetcontactwithoralrabiesvaccinebaits,2001-2009[J].JAmVetMedAssoc,2012,240(2):163-168.

[87]俞永新,石磊泰.中国狂犬病口服疫苗的研究进展及其应用的紧迫性[J].中国人兽共患病学报,2019,35(11):973-980.YUYX,SHILT.ResearchprogressandurgencyofapplicationoforalrabiesvaccinesfordogsinChina[J].Chinesejournalofzoonoses,2019,35(11):973-980(inChinesewithEnglishabstract).

[88]FEKADUM,NESBYSL,SHADDOCKJH,etal.Immunogenicity,efficacyandsafetyofanoralrabiesvaccine(SAG-2)indogs[J].Vaccine,1996,14(6):465-468.

[89]CLIQUETF,GURBUXANIJP,PRADHANHK,etal.ThesafetyandefficacyoftheoralrabiesvaccineSAG2inIndianstraydogs[J].Vaccine,2007,25(17):3409-3418.

[90]FREULINGCM,EGGERBAUERE,FINKES,etal.EfficacyoftheoralrabiesvirusvaccinestrainSPBNGASGASinfoxesandraccoondogs[J].Vaccine,2019,37(33):4750-4757.

[93]SHUAIL,FENGN,WANGX,etal.GeneticallymodifiedrabiesvirusERAstrainissafeandinduceslong-lastingprotectiveimmuneresponseindogsafteroralvaccination[J].Antiviralresearch,2015,121:9-15.

[94]ZHOUM,WANGL,ZHOUS,etal.RecombinantrabiesvirusexpressingdogGM-CSFisanefficaciousoralrabiesvaccinefordogs[J].Oncotarget,2015,6(36):38504-38516.

[95]ZHANGS,LIUY,FOOKSAR,etal.Oralvaccinationofdogs(Canisfamiliaris)withbaitscontainingtherecombinantrabies-canineadenovirustype-2vaccineconferslong-lastingimmunityagainstrabies[J].Vaccine,2008,26(3):345-350.

[96]RYBICKIEP.Plant-madevaccinesandreagentsfortheonehealthinitiative[J].HumVaccinImmunother,2017,13(12):2912-2917.

[97]LOZA-RUBIOE,ROJAS-ANAYAE,LOPEZJ,etal.Inductionofaprotectiveimmuneresponsetorabiesvirusinsheepafteroralimmunizationwithtransgenicmaize,expressingtherabiesvirusglycoprotein[J].Vaccine,2012,30(37):5551-5556.

[98]SINGHA,SRIVASTAVAS,CHOUKSEYA,etal.ExpressionofrabiesglycoproteinandricintoxinBchain(RGP-RTB)fusionproteinintomatohairyroots:asteptowardsoralvaccinationforrabies[J].MolBiotechnol,2015,57(4):359-370.

CHAIBenjie1,HUANGFei1,PEIJie1,ZHOUMing1,TIANDayong1,2,FUZhenfang1,ZHAOLing1

1.StateKeyLaboratoryofAgriculturalMicrobiology/CollegeofVeterinaryMedicine,HuazhongAgriculturalUniversity,Wuhan430070,China;2.ShanghaiKing-CellBiotechnologyCo.,Ltd.,Shanghai201506,China

AbstractRabiesisanancientzoonosiscausedbyrabiesvirus,whichinfectsthecentralnervoussystem,causingalmost100%mortalityoncetheclinicalsymptomsappear.Thereisnoeffectivetreatmentavailablesofar.Currently,vaccinationisstillthemosteffectivewaytopreventrabies,sodevelopingrabiesvaccinesisoneofthehotspotsinthefieldofrabiesresearch.Withtherapiddevelopmentofbiotechnology,novelrabiesvaccinesfordifferentuseshavebeencontinuouslyemerged.Inthisreport,theresearchprogressoflatestgeneticengineeringrabiesvaccinesincludinginactivatedvaccine,attenuatedvaccine,nucleicacidvaccine,subunitvaccine,virus-likeparticlevaccine,oralvaccineetc.isreviewedtograspthecurrenttrendofrabiesvaccineandlaythefoundationfordevelopingnextgenerationofrabiesvaccines.

Keywordsrabies;rabiesvirus;inactivatedvaccine;attenuatedvaccine;nucleicacidvaccine;subunitvaccine;virus-likeparticlevaccine;oralvaccine;geneticengineering

柴本杰,黄菲,裴捷,等.狂犬病新型基因工程疫苗研究进展[J].华中农业大学学报,2021,40(3):75-84.

DOI:10.13300/j.cnki.hnlkxb.2021.03.009

收稿日期:2020-10-27

基金项目:国家自然科学基金青年科学家基金项目(31702248)

THE END
1.犬腺病毒2型症状有哪些?求医问药二、药理作用 1.植物血凝素为广谱抗病毒药,可刺激T淋巴细胞增殖分化产生大量效应T细胞和细胞毒T细胞,...https://qywy.120ask.com/question/507748.html
2.犬腺病毒II型感染犬腺病毒II型感染可引起犬的传染性喉气管炎及肺炎。临床表现为持续性高热、咳嗽,浆液性或黏液性鼻炎、扁桃体炎、喉气管炎及肺的症状。下面氧宠博士为你详细讲解犬腺病毒II型感染。https://www.isdpp.com/xq-1783.html
3.复制缺陷型禽腺病毒载体其设计和用途的制作方法由于复制能力病毒并且由于宿主对辅助病毒中的腺病毒基因的免疫反应,污染的复制能力辅助病毒给基因疗法、疫苗和移植应用带来了严重的问题。在这种辅助病毒依赖型载体系统中减少辅助污染的一种方法是在包装识别信号(ψ)中引入条件基因缺陷使其dna不太可能被包装至病毒粒子中。http://mip.xjishu.com/zhuanli/27/202180038790.html
4.什么是狗的腺病毒Ⅱ型感染?如何诊晰和防治?1)接种疫苗 可用狗腺病毒Ⅱ型疫苗接种,以2~4周间隔连续接种2次,以后每年接种1次。 2)药物防治 作用于中枢的镇吹药对本病有效,如硫酸可待因,1~2毫克/千克体重口服,4~8小时1次。重酒石酸二氢可待因酮、右旋甲氧甲基吗喃、硫酸吗啡也有效。当干咳变为排痰的咳嗽时,要用祛痰剂,但必须停用镇咳药,否则下呼吸道...http://www.dogmr.com/chongwuyiliao/chongwuyiliao-13307.html
5.犬瘟热腺病毒病细小病毒病副流感四联活疫苗仅在兽医指导下使用 兽用犬瘟热、腺病毒病、细小病毒病、副流感四联活疫苗—犬钩端螺旋体病(犬型、黄疸出血型)二价灭活疫苗(灭活疫苗部分) 喜贝多 1ml/瓶《进口兽药注册证书》证号:批 号:有效期至:【用法与用量】 用灭活疫苗部分溶解活疫苗部分,皮下注射。每次1头份(1ml)。【贮藏与有效期】 2~8℃保存,...https://max.book118.com/html/2021/0606/8143140114003106.shtm
6.犬瘟热细小病毒病腺病毒病(Ⅰ型)三联活疫苗的研制【摘要】 犬瘟热(Canine distemper, CD)、犬细小病毒(Canine parvovirus, CPV)病及犬腺病毒(Canine adenovirus, CAV)病是当前对我国养犬业危害严重的3种病毒性传染病。常引起大批犬、貂和狐等动物发病,经济损失惨重。犬瘟热病毒(Canine distemper virus, CDV)可以感染包括大熊猫、小熊猫以及狮、虎、豹等食肉目所有...http://cnki.nbsti.net/KCMS/detail/detail.aspx?filename=1016303860.nh&dbcode=CDFD&dbname=CDFD2017
7.犬腺病毒1型(传染性肝炎)灭活病毒液犬腺病毒1型(传染性肝炎)灭活病毒液,用于犬腺病毒1型疫苗攻毒保护试验。仅用于科学研究,不用于临床诊断。https://www.bio-equip.com/show1equip.asp?equipid=4755357
1.犬腺病毒2型CAV使用范围:用于科研实验,不得用于临床 犬腺病毒2型C-2检测ELISA试剂盒 英文名称:C-2 Elisa Kit 检测范围:0- 货号:FT-PS2907G 样本处理及要求 1. 血清:将收集于血清分离管的全血标本在室温放置2小时或4℃过夜,然后100https://china.guidechem.com/trade/pdetail28005889.html
2.犬腺病毒二型犬窝咳什么是犬窝咳[作用及用途]抗病毒,抗炎,镇咳。用于犬腺病毒2型(犬窝咳)或其他疾病(敏感菌)等引起的急慢性呼吸道炎性剧咳。 [用法用量]口服。按体重:1公斤以内1次1粒,1日2次。1到5公斤以内1次2到3粒,1日2次。5到10公斤1次3到4粒,1日2次。10到20公斤1次4到6粒,1日2次。饭后30分钟服用,连服3到5天为一个疗...http://m.boqii.com/article/102081.html
3.犬传染性肝炎范文9篇(全文)犬传染性肝炎是由犬传染性肝炎腺病毒引起的犬科动物的一种急性, 高度接触性败血性的传染病。1 流行病学本病的主要传染源是患病犬和带毒犬, 病犬的分泌物及排泄物都含有大量的病毒, 易感犬通过直接或间接接触而感染, 本病的发生不分品种和年龄, 不满一年的幼犬易感性更高, 死https://www.99xueshu.com/w/ikeyrc7zhwl5.html
4.犬传染性肝炎的症状及诊断长沙宠物医院宠物医疗犬传染性肝炎是由犬腺病毒I型所引起的犬科动物的一种急性败血性传染病。临床上主要表现肝炎和角膜混浊(即蓝眼病)症状。该病的传播途径主要是直接接触性传染,康复犬的尿中排毒可达180-270天左右。消毒可用2%火碱液环境消毒。 一、病原及流行病学 犬传染性肝炎病毒(ICHV)为犬腺病毒I型病毒,属腺病毒科、哺乳动物腺...http://m.csbeibeikang.com/h-nd-68.html
5.狗狗腺病毒二号的治疗,狗腺病毒的治愈率犬腺病毒:是哺乳动物腺病毒中致病性最强的一种病毒,有两个血清型。I型可引起犬传染性肝炎,II型可引起犬传染性气管炎和肠炎。临床症状有反复发烧、畏寒、流鼻涕等。急性型见于流行初期,患犬尚未出现临床症状即突然死亡。 图片来自有宠APP用户:jasminelinxiao(1549732) ...https://chagougou.com/46526.html
6.河南省部分地区犬腺病毒2型和犬细小病毒的流行病学研究本文通过河南部分地区犬腺病毒和犬细小病毒等相关基因序列的生物学信息分析,对于今后河南部分地区犬腺病毒和犬细小病毒进一步研究及其疾病的防控具有一定的参考借鉴意义。试验一:犬腺病毒Ⅱ型流行病学调查及其五邻体基因生物学信息分析为进一步了解河南省部分地区犬腺病毒2型的流行情况。对2018-2020年河南部分地区(郑州市...https://wap.cnki.net/touch/web/Dissertation/Article/1022690406.nh.html