陈峰1,李鹤东2,王亚棋1,付海燕1,2,*,郑福平1,3
(1.克莱姆森大学食品营养和包装科学系,美国克莱姆森29634;2.中南民族大学药学院,湖北武汉430074;3.北京工商大学北京食品营养与人类健康高精尖中心,北京100048)
摘要:化学计量学是由数学、统计学、化学及计算机科学交叉形成的具有独特魅力的重要新兴学科。作为其核心理论体系的模式识别和多维校正方法,在海量数据信息挖掘与处理、分析信号分辨与解析中,体现了突出的优势,并能攻克传统分析方法难以处理的复杂难题,已广泛应用于食品分析领域。系统介绍了化学计量学核心理论方法及其在食品分析中的应用及研究进展,详细分析了模式识别和多维校正方法的基本原理及优缺点,指出了目前化学计量学方法在食品分析领域研究中需要解决的问题并对其未来发展方向进行了展望。
关键词:化学计量学;食品分析;模式识别;多维校正
食品分析的核心任务是通过对反映食品特征品质(如食品营养活性成分、外源的农药兽药残留、非法添加的违禁物质、内源的霉菌毒素等指标,以及食品分级分类、掺伪假冒等)的量测数据性质和信息进行甄别和定性定量分析,进而为评判食品质量好坏和食用安全性提供依据[1]。食品种类繁多、成分复杂,各种食品安全与质量问题屡有发生,因此,发展快速、高效、简便的食品分析方法至关重要。目前,一些现代分析技术,如色谱-质谱联用技术[2]、近红外光谱技术[3]、中红外光谱技术[4]、原子光谱技术[5]、电子鼻技术[6]、电子舌技术[7]等,均已成功应用在现代食品分析领域。但归根结底,无论需要处理的食品问题怎么变化,各种现代分析仪器或检测技术获得的是食品中具有不同内涵性质的各种类型的信息数据,而化学计量学针对数据信息挖掘与处理,特别是对复杂体系隐含信息的提取,能提供强大的手段,因此,化学计量学必然会在解决食品分析问题中发挥重要的作用。
化学计量学是20世纪70~80年代兴起的一门交叉学科。它基于数学、统计学、化学及计算机科学的方法和原理,设计优化实验,挖掘与处理、分辨与解析实验量测数据的信息,从而获取复杂分析体系中隐含的有用信息[8]。化学计量学包括实验设计、信号解析、模式识别、多元分辨和多维校正等理论体系,拥有广阔的应用领域,其中,模式识别和多维校正理论及其应用是化学计量学中最为重要并且最具发展潜力的领域之一。
本文介绍了化学计量学处理的分析对象即数据结构类型,重点阐述用于处理相应数据结构类型的化学计量学中经典的模式识别和多维校正方法的基本原理,评述各种方法间的适用性和优缺点,详细介绍了化学计量学方法在食品分析中的应用,简要分析了化学计量学方法在食品分析领域中还需进一步解决的问题并对其未来的发展进行展望。
图1化学计量学方法处理的分析数据结构类型示意Fig.1Schematicdiagramofdatastructureprocessedbychemometricmethod
1.1模式识别
模式识别是利用统计学、信号处理、数学算法等工具,根据量测对象的特征性质进行数据挖掘和信息提取,进而对所研究的物质或现象进行聚类和分类判断的方法[12]。模式识别方法适用于样品数据集为矩阵数据的处理。根据方法基本原理,可分为多类聚类方法、判别分析方法和一类分类的类模型方法。多类聚类方法是将不同类别样品根据不同的计算依据,如样本在空间分布的距离进行相似类聚、相异分离;判别分析方法是根据训练集样品进行学习,将两类或多类样品按照训练的目标函数进行多类样品识别和分类,但当未知的样品属于训练集之外的类别时,判别分析方法将导致错误的判别结果;一类分类的类模型方法则只需训练集中仅包含目标类样品,通过建立目标类的类模型,达到从非目标类样品中的目标类样品识别。图2给出了判别分析方法对两类或多类和类模型对一类分类示意图。图2将化学计量学方法中常用的模式识别方法基本原理和优缺点进行了归纳,为在食品分析应用中选择相应的模式识别方法分析和解决问题提供了理论支持和依据。
图2判别分析方法对两类或多类和类模型对一类分类示意Fig.2Schematicdiagramoftwoormulti-classbydiscriminationanalysismethodandone-classclassificationbyclass-modelingtechniques
1.1.1多类聚类和判别分析方法
1)主成分分析
2)K最近邻分类算法
3)偏最小二乘判别分析
Ym×n=Xm×vRv×n。
(1)
由求得的回归矩阵Rv×n与所需预测的未知样品的量测矩阵再进行回归关联,即可计算得到未知样品的类属矩阵Yp,见式(2)。
Yp=XpRp×k。
(2)
最后,再根据已知类别矩阵的编码位置,解码类属矩阵中最大元素所在的位置,若最大元素出现在第i个位置,则可将该样品甄别为第i类[15]。
4)移动窗口偏最小二乘判别分析法
5)人工神经网络
人工神经网络(artificialneuralnetwork,ANN)是通过模拟人脑结构,以对大脑的生理研究成果为基础,并基于数理方法进行简化抽象和模拟的一种智能仿生的自适应运算模型和信息处理系统[17-20]。该算法作为分类聚类运算时可分为有监督学习和无监督学习两种方式。其中,有监督学习的原理是将训练样本输入到网络,并将网络输出和期望的目标值相比较,获得误差值,据此控制连接权重值连接强度的调整,经过多次训练中不断朝误差减小的方向收敛,自适应计算出一个确定的权重值,进而获得满意精度的网络输出值;无监督学习的原理则不给输入网络训练样本,直接根据已建立的聚类进行自组织的权重值调整,学习规律的变化服从连接权值的演变方程。该算法不依赖于精确的数学模型,能拟合强的非线性关系,具有并行性、容错性、非线性、自组织学习和自适应处理能力等特点,但该算法常易陷入过拟合和局部最优,在某种程度上限制了它的实际使用。
6)支持向量机
支持向量机(supportvectormachine,SVM)是Vapnik等[21]于1995年首先提出的基于统计学理论的一种新的非常有潜力和广阔应用前景的分类模式识别方法[22-24]。该方法的本质是解决一个二次规划问题,并最终可转化为凸优化问题,且在运算过程中基于统计学习理论的VC理论和采用结构风险最小化原理,能保证算法收敛的全局最优性,从而使得该方法建模时基本不受到训练样本数的影响,即使在其训练样本建模数量较少时,该算法依然表现出良好的泛化能力。但是,该方法通常都需要计算和存储Hessian矩阵,当数据量较大时,训练速度极大地受到训练集规模的影响,求解过程所需计算资源很大,有时会出现计算阻滞,这样使得SVM建模求解时更适合于处理样本数较小的实验体系。此外,该方法性能直接受到模型中所选择的核函数的影响,而对于选择最佳的核函数构建针对特定问题的SVM模型仍是一个难题。因此,作为一种新兴的技术,SVM目前在实际应用中也有一定的局限性。
1.1.2一类分类的类模型方法
1.2多维校正
多维校正方法是化学计量学最为核心的理论部分,它立足于创新性地构建定量分析的基础理论,发展针对不同结构类型量测数据的相应校正方法,通过构建的多维校正模型从不同结构类型数据的海量信息中最大限度地提取隐含的有用信息进行定量表征,从而解决各种复杂的实际分析体系中的问题和难题[38]。将化学计量学方法中常用的多维校正方法基本原理和优缺点进行归纳,为在食品分析应用中选择相应的多维校正方法分析和解决问题提供理论支持和依据。
1.2.1一阶校正
一阶校正方法用于处理和解析样本集为矩阵结构类型的量测数据,是目前化学计量学理论中最为成熟且应用最广泛的校正方法[38]。一阶校正方法的代表性算法主要有P-矩阵法、K-矩阵法、主成分回归(PCR)和偏最小二乘回归(PLS)等。其中P-矩阵法和K-矩阵法在求解过程中涉及到矩阵求逆,这就要保证量测矩阵与样品性质响应矩阵均为满秩矩阵这一前提,而实际量测数据变量数通常都会多于样品中的组分数,这就存在矩阵亏秩而导致不确定性的解析结果。针对矩阵亏秩,PCR是基于量测矩阵的奇异值分解(SVD),然后采用显著的奇异值重构量测矩阵,从而能获得较为稳健的解析结果。PLS是在PCR基础上进一步发展,该方法基于量测矩阵和响应矩阵同时进行SVD,这种求解方式能克服一些非线性扰动因素影响,从而使得模型精度更高和稳健性更好。但是,一阶校正因其在对矩阵分解时,存在矩阵双线性分解旋转的不确定性,其缺点是如果校正集样品中未对预测集样品中的其他干扰进行校正建模,则会出现依干扰程度的不同产生不同程度的预测偏差和错误。因此,为保证一阶校正给出有物理意义的可靠解,必须要满足校正集样品包含预测集样品的所有响应组分和性质。
1.2.2二阶校正
1.2.3三阶校正及高阶校正
三阶校正及高阶校正用于处理样本集为四维数阵甚至更高维数阵的结构类型的数据,是目前化学计量学多维校正领域中的前沿难点理论。三阶校正方法是通过引入额外一维的维度优势,克服二阶校正方法在解决复杂体系中存在高共线或严重基体效应时会出现较大偏差甚至错误的问题[47]。目前,已报道的方法有基于数阵展开形式的四维平行因子分析(four-wayparallelfactoranalysis,Four-wayPARAFAC)法[48]、基于数阵切片形式的交替惩罚四线性分解(alternatingpenaltyquadrilineardecomposition,APQLD)法[49]、归一化自加权交替四线性分解(regularizedself-weightedalternatingquadrilineardecomposition,RSWAQLD)法[50]及基于数阵不完全展开和切片形式相结合的交替加权残差约束四线性分解(alternatingweightedresidualconstraintquardrilineardecomposition,WRCQLD)算法[51]等。三阶校正方法在充分发挥“二阶优势”的基础上,还具有二阶校正不能比拟的维度优势。
2.1多类聚类和判别分析方法在食品分类和判别分析中应用
表1多类聚类和判别分析方法在食品分类和判别分析中的应用
Tab.1Summaryofstudiesemployingmulti-classmodelingtechniquesinfoodclassificationanddiscriminantanalysis
食品类别检测技术化学计量学方法参考文献不同货架期及霉变葵花籽、大豆FT-NIRPLSDA[55]不同原产地的龙井FT-NIR基于ES的LCNC[56]不同物种、产地及等级的绿茶“Turnoff”荧光PLSDA[57]不同种类的茶HPLCPCA、S-LDA[58]不同产地的中国枸杞UPLC-MS、FIMSPLS-DA[59]不同产地的橄榄油HPLC-ESI-ITMSPCA、LDA[60]不同产地的松仁FT-NIRDPLS[61]不同种类的苹果FT-NIRPCA、FDCM[62]不同品牌的烈酒、醋EnoseKFDA[63]不同产地的藏红花UV-VISPCA、LDA[64]不同产地的黄酒SBSE-TD-GC-MSPCA、CA[65]不同年限的黄酒GC/MS、EnosePCA、DA[66]不同制备方法的柚皮精油风味成分GC-MSPCA、CA[67]不同处理方式的柚子汁风味成分GC-MSPCA、CA[68]不同提取方式的柚子皮的香气物质GC-MSPCA、CA[69]
2.2一类分类的类模型方法在食品掺假无目标分析中应用
2.3一阶校正方法在食品定量分析中的应用
表2一类分类的类模型方法在食品掺假无目标分析中的应用
Tab.2Summaryofstudiesonuntargeteddetectionofillegaladulterationsinfoodsbyclassmodelingtechniques
纯净食物掺假物质检测技术化学计量学方法参考文献花生油其他食用油MIR光谱技术PLSCM[70]芝麻油廉价油FTIR光谱技术SIMCA、PLSCM[71]糯米粉小麦粉、滑石粉NIR光谱技术SIMCA、OCPLS[72]全脂奶粉工业明胶、蛋白粉NIR光谱技术OCPLS[36]蜂胶杨树橡胶NIR光谱技术OCPLS[73]西湖藕粉廉价淀粉NIR光谱技术SIMCA、PLSCM[74]酸奶工业明胶、蛋白粉NIR光谱技术OCPLS[75]板蓝根苹果皮NIR光谱技术SNV-OCPLSSNV-PLSDA[76]葛根粉增白剂、滑石粉NIR光谱技术PLSCM[77]道地香菇非道地香菇NIR光谱技术PLSDAOCPLS-DA[78]芝麻油混合食用油GC-MSOC-SVM[79]木薯粉马来酸NIR光谱技术OCPLS[80]
表3一阶校正方法在食品定量分析中的应用
Tab.3Summaryofstudiesemployingfirst-ordercalibrationforfoodquantitativeanalysis
被分析物检测技术化学计量学方法参考文献绿茶中农药残留量荧光光谱PSO-OWLS-SVM[81]中草药中农药残留量FT-NIR光谱PLSR[82]食品中农药防腐剂量SERS光谱PLSR[83]加拿大小麦中蛋白质含量、硬度值NIR高光谱成像PLSR、PCR[84]鱼油微囊补充剂中蛋白质含量ATR-FTIR光谱PLSR[85]粉末和溶液形式的盐酸四环素THz光谱PLSR[86]鱼肌肉组织的化学性质NIR和HSI光谱PLSR[87]鸡肉中的羟脯氨酸含量HSI光谱PLSR[88]红肉中总色素量HSI光谱SPA-PLSR[89]草鱼片中硫代巴比土酸值HSI光谱PLSR[90]甜橙精油中主要香气物质含量感官评审得分PLSR[91]蔓越莓中主要香气物质含量感官评审得分PLSR[92]榴莲酒中主要香气物质含量感官评审得分PLSR[93]
2.4二阶及高阶校正在食品复杂基质未知干扰共存下对目标分析物的应用
表4二阶及高阶校正方法在食品复杂基质中多组分被分析物的同时定量分析
Tab.4Summaryofstudiesonsecond-orderorhigher-ordercalibrationforquantitativeanalysisofanalytesinfoods
被分析物检测技术化学计量学方法参考文献饮料中人工合成色素UV光谱PARAFAC和BLLS/RBL[94]橄榄油和葵花籽油中7种多环芳烃EEM荧光U-PLS/RBL和PARAFAC[95]果汁、水果和蔬菜中5种农药残留HPLC-DADMCR-ALS[96]橄榄油中叶绿素a和b以及脱镁叶绿素a和bUPLC-EEMPARAFAC、U-PLS/RTL和N-PLS/RTL[97]卷心菜中氨基甲酸酯类农药EEM荧光fourwayPARAFAC[98]蜂蜜中12种喹诺酮类物质HPLC-DADATLD[99]蜂蜜中9种多酚类物质HPLC-DADATLD[100]植物油中10种抗氧化剂HPLC-DADAPTLD[101]
化学计量学是分析化学的前沿研究方向之一,并被成功引入食品分析领域,为解决食品分析中的诸多问题和难题提供了强有力的数据解析工具和分析方法。目前,化学计量学在食品分析中的应用日趋广泛,但由于食品种类繁多和成分复杂,仍然有待做更多和更深入的研究工作,以期在实际应用中更好地完成食品分析的任务和目标。鉴于化学计量学方法的各种优势,研究者们应充分借助化学计量学的不同方法,扩大其在食品分析中的应用范围,开拓新的应用领域,促进食品分析方法的发展和实际应用研究;同时,研究者们也应发展更多适应于处理各种现代新仪器分析方法和新检测技术所产生的、海量的、不同结构类型数据的化学计量学新理论,使其在食品分析领域中具有更为广阔的应用前景。
参考文献:
[1]DZANTIEVBB,BYZOVANA,URUSOVAE,etal.Immunochromatographicmethodsinfoodanalysis[J].TrendsinAnalyticalChemistry,2014,55(55):81-93.
[2]GARCA-REYESJF,MOLINA-DAZA,FERNANDEZ-ALBAAR.Identificationofpesticidetransformationproductsinfoodbyliquidchromatography/time-of-flightmassspectrometryvia“fragmentation-degradation”relationships[J].AnalyticalChemistry,2015,79(1):307-321.
[3]POREPJU,KAMMERERDR,CARLER.On-lineapplicationofnearinfrared(NIR)spectroscopyinfoodproduction[J].TrendsinFoodScience&Technology,2015,46(2):211-230.
[4]KAROUIR,DOWNEYG,BLECKERC.Mid-infraredspectroscopycoupledwithchemometrics:atoolfortheanalysisofintactfoodsystemsandtheexplorationoftheirmolecularstructure-qualityrelationships-areview[J].ChemicalReviews,2010,110(10):6144-6168.
[5]BUTLEROT,CLOUGHR,COOKJM,etal.Currenttrends:aperspectivefrom30yearsofatomicspectrometryupdates[J].JournalofAnalyticalAtomicSpectrometry,2016,31:32-34.
[6]LOUTFIA,CORADESCHIS,MANIGK.Electronicnosesforfoodquality:areview[J].JournalofFoodEngineering,2015,144:103-111.
[7]KANGBS,LEEJE,PARKHJ.Electronictongue-baseddiscriminationofKoreanricewines(makgeolli)includingpredictionofsensoryevaluationandinstrumentalmeasurements[J].FoodChemistry,2014,151:317-323.
[8]LAVINEB,WORKMANJ.Chemometrics[J].Analyti-calChemistry,2010,82(12):4699-4711.
[9]SANCHEZE,KOWALSKIBR.Tensorialcalibration:I.first-ordercalibration[J].JournalofChemometrics,1988,2(4):247-263.
[10]WUHL,NIEJF,YUYJ,etal.Multi-waychemometricmethodologiesandapplications:acentralsummaryofourresearchwork[J].AnalyticaChimicaActa,2009,650(1):131-142.
[11]OLIVIERIAC,ESCANDARGM,GOICOECHEAHC,etal.Fundamentalsandanalyticalapplicationsofmulti-waycalibration[M].Amsterdam:Elsevier,2015:7-8.
[12]BRERETONRG.Multivariatepatternrecognitioninchemometrics[J].Chemometrics&IntelligentLaboratorySystems,2015,149:90-96.
[13]WOLDS,ESBENSENK,GELADIP.Principalcomponentanalysis[J].ChemometricsandIintelligentLaboratorySystems,1987,2(1-3):37-52.
[14]LUOW,HUANS,FUH,etal.Preliminarystudyontheapplicationofnearinfraredspectroscopyandpatternrecognitionmethodstoclassifydifferenttypesofapplesamples[J].FoodChemistry,2011,128(2):555-561.
[15]FUHY,HUANSY,XUL,etal.Movingwindowpartialleast-squaresdiscriminantanalysisforidentificationofdifferentkindsofbezoarsamplesbynearinfraredspectroscopyandcomparisonofdifferentpatternrecognitionmethods[J].JournalofNearInfraredSpectroscopy,2007,15(2):291-297.
[16]FUHY,HUANSY,XUL,etal.ConstructionofanefficaciousmodelfornondestructiveidentificationoftraditionalChinesemedicinesLiuweidihuangpillsfromdifferentmanufacturersusingnearinfraredspectroscopyandmovingwindowpartialleast-squaresdiscriminantanalysis[J].AnalyticalSciences,2009,25(9):1143-1148.
[17]BOGERZ,GUTERMANH.Knowledgeextractionfromartificialneuralnetworkmodels[J].JournalofRenewableandSustainableEnergy,2015,4(5):3030-3035.
[18]DEBSKAB,GUZOWSKA-WIDERB.Applicationofartificialneuralnetworkinfoodclassification[J].AnalyticaChimicaActa,2011,705(1/2):283-291.
[19]CUBEDDUA,RAUHC,DELGADOA.Hybridartificialneuralnetworkforpredictionandcontrolofprocessvariablesinfoodextrusion[J].InnovativeFoodScience&EmergingTechnologies,2013,21:142-150.
[20]KHAJEHM,BARKHORDARA.Modellingofsolid-phaseteawasteextractionfortheremovalofmanganesefromfoodsamplesbyusingartificialneuralnetworkapproach[J].FoodChemistry,2013,141(2):712-717.
[21]VAPNIKVN.Thenatureofstatisticallearningtheory[M].NewYork:Springer-Verlag,1995:267-290.
[22]BARBOSARM,NELSONDR.TheuseofsupportvectormachinetoanalyzefoodsecurityinaregionofBrazil[J].AppliedArtificialIntelligence,2016,30(4):318-330.
[23]BAOY,LIUF,KONGW,etal.MeasurementofsolublesolidcontentsandpHofwhitevinegarsusingVIS/NIRspectroscopyandleastsquaressupportvectormachine[J].FoodandBioprocessTechnology,2014,7(1):54-61.
[24]SOHRABIMR,DARABIG.Theapplicationofconti-nuouswavelettransformandleastsquaressupportvectormachineforthesimultaneousquantitativespectrophotometricdeterminationofmyricetin,kaempferolandquercetinasflavonoidsinpharmaceuticalplants[J].SpectrochimicaActaPartA:Molecular&BiomolecularSpectroscopy,2016,152:443-52.
[25]BRERETONRG.One-classclassifiers[J].JournalofChemometrics,2011,25(5):225-246.
[26]FORINAM,OLIVERIP,LANTERIS,etal.Class-modelingtechniques,classicandnew,foroldandnewproblems[J].Chemometrics&IntelligentLaboratorySystems,2008,93(2):132-148.
[27]FORINAM,OLIVERIP,JGERH,etal.Classmodelingtechniquesinthecontrolofthegeographicaloriginofwines[J].Chemometrics&IntelligentLaboratorySystems,2009,99(2):127-137.
[28]OLIVERIP,EGIDIOVD,WOODCOCKT,etal.Applicationofclass-modellingtechniquestonearinfrareddataforfoodauthenticationpurposes[J].FoodChemistry,2011,125(4):1450-1456.
[29]MARINIF,MAGRAL,BUCCIR,etal.Class-modelingtechniquesintheauthenticationofItalianoilsfromSicilywithaprotecteddenominationoforigin(PDO)[J].Chemometrics&IntelligentLaboratorySystems,2006,80(1):140-149.
[30]WOLDS,SJSTRMM.Commentsonarecentevalua-tionoftheSIMCAmethod[J].JournalofChemometrics,1987,1(4):243-245.
[31]FORINAM,LANTERIS,SARABIAL.DistanceandclassspaceintheUNEQclass-modelingtechnique[J].JournalofChemometrics,1995,9(2):69-89.
[32]FORINAM,ARMANINOC,LEARDIR,etal.Aclass-modellingtechniquebasedonpotentialfunctions[J].JournalofChemometrics,1991(5):435-453.
[33]POLONOVSKIM.Multilayerfeed-forwardartificialneuralnetworksforclassmodeling[J].Chemometrics&IntelligentLaboratorySystems,2007,88(1):118-124.
[34]FORINAM,OLIVERIP,CASALEM,etal.Multivariaterangemodeling,anewtechniqueformultivariateclassmodeling:theuncertaintyoftheestimatesofsensitivityandspecificity[J].AnalyticaChimicaActa,2008,622(1):85-93.
[35]SRIVASTAVAC.Supportvectordatadescription[J].MachineLearning,2004,54(1):45-66.
[36]XUL,YANSM,CAICB,etal.One-classpartialleastsquares(OCPLS)classifier[J].Chemometrics&IntelligentLaboratorySystems,2013,126(11):1-5.
[37]XUL,GOODARZIM,SHIW,etal.AMATLABtoolboxforclassmodelingusingone-classpartialleastsquares(OCPLS)classifiers[J].Chemometrics&IntelligentLaboratorySystems,2014,139:58-63.
[38]ARANCIBIAJA,DAMIANIPC,ESCANDARGM,etal.Areviewonsecondandthird-ordermultivariatecalibrationappliedtochromatographicdata[J].JournalofChromatographyB,2012,910(23):22-30.
[39]LORBERA.Featuresofquantifyingchemicalcompositionfromtwo-dimensionaldataarraybytherankannihilationfactoranalysismethod[J].AnalyticalChemistry,1985,57(12):2395-2397.
[40]SANCHEZE,KOWALSKIBR.Generalizedrankannihilationfactoranalysis[J].AnalyticalChemistry,1985,58(2):496-499.
[41]LIS,GEMPERLINEPJ.Eliminatingcomplexeigenvectorsandeigenvaluesinmultiwayanalysesusingthedirecttrilineardecompositionmethod[J].JournalofChemometrics,1993,7(2):77-88
[42]FABERNM,BROR,HOPKEPK.RecentdevelopmentsinCANDECOMP/PARAFACalgorithms:acriticalreview[J].Chemometrics&IntelligentLaboratorySystems,2003,65(1):119-137.
[43]WUHL,SHIBUKAWAM,OGUMAK.AnalternatingtrilineardecompositionalgorithmwithapplicationtocalibrationofHPLC-DADforsimultaneousdeterminationofoverlappedchlorinatedaromatichydrocarbons[J].JournalofChemometrics,1998,12(1):1-26.
[44]ZHANGS,WUH,YUR.Astudyonthedifferentialstrategyofsomeiterativetrilineardecompositionalgorithms:PARAFAC-ALS,ATLD,SWATLD,andAPTLD[J].JournalofChemometrics,2015,29(3):179-192.
[45]CHENZP,WUHL,YURQ.Ontheself-weightedalternatingtrilineardecompositionalgorithm-thepropertyofbeinginsensitivetoexcessfactorsusedincalculation[J].JournalofChemometrics,2001,15(5):439-453.
[46]XIAAL,WUHL,FANGDM,etal.Alternatingpenaltytrilineardecompositionalgorithmforsecond-ordercalibrationwithapplicationtointerference-freeanalysisofexcitation-emissionmatrixfluorescencedata[J].JournalofChemometrics,2005,19(2):65-76.
[47]SMILDEAK,TAULERR,HENSHAWJM,etal.Multicomponentdeterminationofchlorinatedhydrocarbonsusingareaction-basedchemicalsensor.3.medium-ranksecond-ordercalibrationwithrestrictedTuckermodels[J].AnalyticalChemistry,1994,66(20):3345-3351.
[48]RUBIOL,SARABIALA,ORTIZMC.Standardadditionmethodbasedonfour-wayPARAFACdecompositiontosolvethematrixinterferencesinthedeterminationofcarbamatepesticidesinlettuceusingexcitation-emissionfluorescencedata[J].Talanta,2015,138:86-99.
[49]XIAAL,WUHL,LISF,etal.Alternatingpenaltyquadrilineardecompositionalgorithmforananalysisoffour-waydataarrays[J].JournalofChemometrics,2007,21(3/4):133-144.
[50]KANGC,WUHL,YUYJ,etal.Analternativequadrilineardecompositionalgorithmforfour-waycalibrationwithapplicationtoanalysisoffour-wayfluorescenceexcitation-emission-pHdataarray[J].AnalyticaChimicaActa,2013,758(1):45-57.
[51]FUHY,WUHL,YUYJ,etal.Anewthird-ordercalibrationmethodwithapplicationforanalysisoffour-waydataarrays[J].JournalofChemometrics,2011,25(8):408-429.
[52]QINGXD,WUHL,ZHANGXH,etal.Anovelfourth-ordercalibrationmethodbasedonalternatingquinquelineardecompositionalgorithmforprocessinghighperformanceliquidchromatography-diodearraydetection-kinetic-pHdataofnaptalamhydrolysis[J].AnalyticaChimicaActa,2015,861:12-24.
[53]CHAOK,WUHL,SONGJJ,etal.Aflexibletrilineardecompositionalgorithmforthree-waycalibrationbasedonthetrilinearcomponentmodelandatheoreticalextensionofthealgorithmtothemultilinearcomponentmodel[J].AnalyticaChimicaActa,2015,878:63-77.
[54]MAGGIORM,PEAAMDL,OLIVIERIAC.Unfoldedpartialleast-squareswithresidualquadrilineari-zation:anewmultivariatealgorithmforprocessingfive-waydataachievingthesecond-orderadvantage.Applicationtofourth-orderexcitation-emission-kinetic-pHfluorescenceanalyticaldata[J].Chemometrics&IntelligentLaboratorySystems,2011,109(2):178-185.
[56]FUHY,YINQB,XUL,etal.Challengesoflarge-class-numberclassification(LCNC):anovelensemblestrategy(ES)anditsapplicationtodiscriminatingthegeographicaloriginsof25greenteas[J].Chemometrics&IntelligentLaboratorySystems,2016,157:43-49.
[58]WUQJ,DONGQH,SUNWJ,etal.DiscriminationofChineseteaswithdifferentfermentationdegreesbystepwiselineardiscriminantanalysis(S-LDA)ofthechemicalcompounds[J].JournalofAgricultural&FoodChemistry,2014,62(38):9336-9344.
[59]LUW,JIANGQ,SHIH,etal.Partialleast-squares-discriminantanalysisdifferentiatingChinesewolfberriesbyUPLC-MSandflowinjectionmassspectrometric(FIMS)fingerprints[J].JournalofAgricultural&FoodChemistry,2014,62(37):9073-9080.
[60]BAJOUBA,AJALEA,FERNNDEZ-GUTIéRREZA,etal.EvaluatingthepotentialofphenolicprofilesasdiscriminantfeaturesamongextravirginoliveoilsfromMoroccancontrolleddesignationsoforigin[J].FoodResearchInternational,2016,84:41-51.
[61]LOEWEV,NAVARRO-CERRILLORM,GARCA-OLMOJ,etal.DiscriminantanalysisofMediterraneanpinenuts(PinuspineaL.)fromChileanplantationsbynearinfraredspectroscopy(NIRS)[J].FoodControl,2017,73:634-643.
[63]YINY,HAOY,BAIY,etal.AGaussian-basedkernelFisherdiscriminantanalysisforelectronicnosedataandapplicationsinspiritandvinegarclassification[J].JournalofFoodMeasurement&Characterization,2017,11(1):24-32.
[64]D’ARCHIVIOAA,MAGGIMA.Geographicalidentificationofsaffron(CrocussativusL.)bylineardiscriminantanalysisappliedtotheUV-visiblespectraofaqueousextracts[J].FoodChemistry,2017,219:408-413.
[65]XIAOZ,DAIX,ZHUJ,etal.ClassificationofChinesericewineaccordingtogeographicoriginandwineagebasedonchemometricmethodsandSBSE-TD-GC-MSanalysisofvolatilecompounds[J].FoodScience&TechnologyResearch,2015,21(3):371-380.
[66]YUH,DAIX,YAOG,etal.Applicationofgaschromatography-basedelectronicnoseforclassificationofChinesericewinebywineage[J].FoodAnalyticalMethods,2014(7):1489-1497.
[67]SUNH,NIH,YANGY,etal.Investigationofsunlight-induceddeteriorationofaromaofpummelo(Citrusmaxima)essentialoil[J].JournalofAgriculturalandFoodChemistry,2014,62(49):11818-11830.
[68]NIH,HONGP,JIHF,etal.Comparativeanalysesofaromasoffresh,naringinase-treatedandresin-absorbedjuicesofpummelobyGC-MSandsensoryevaluation[J].FlavourandFragranceJournal,2015,30(3):245-253.
[69]SUNH,NIH,YANGY,etal.Sensoryevaluationandgaschromatography-massspectrometry(GC-MS)analysisofthevolatileextractsofpummelo(Citrusmaxima)peel[J].FlavourandFragranceJournal,2014,29(5):305-312.
[70]XUL,CAIC,DENGD.Multivariatequalitycontrolsolvedbyone-classpartialleastsquaresregression:identificationofadulteratedpeanutoilsbymid-infraredspectroscopy[J].JournalofChemometrics,2011,25(10):568-574.
[71]DENGDH,XUL,YEZH,etal.FTIRspectroscopyandchemometricclassmodelingtechniquesforauthenticationofChinesesesameoil[J].JournaloftheAmericanOilChemists’Society,2012,89(6):1003-1009.
[72]XUL,YANSM,CAICB,etal.UntargeteddetectionofillegaladulterationsinChineseglutinousriceflour(GRF)byNIRspectroscopyandchemometrics:specificityofdetectionimprovedbyreducingunnecessaryvariations[J].FoodAnalyticalMethods,2013(6):1568-1575.
[73]XUL,YANSM,CAICB,etal.Untargeteddetectionandquantitativeanalysisofpoplarbalata(PB)inChinesepropolisbyFT-NIRspectroscopyandchemometrics[J].FoodChemistry,2013,141(4):4132-4137.
[74]XUL,SHIPT,YEZH,etal.RapidanalysisofadulterationsinChineselotusrootpowder(LRP)bynear-infrared(NIR)spectroscopycoupledwithchemometricclassmodelingtechniques[J].FoodChemistry,2013,141(3):2434-2439.
[76]XUL,FUXS,FUHY,etal.RapiddetectionofexogenousadulterantsandspeciesdiscriminationforaChinesefunctionaltea(banlangen)byFourier-transformnear-infrared(FT-NIR)spectroscopyandchemometrics[J].JournalofFoodQuality,2015,38(6):450-457.
[77]XUL,SHIW,CAICB,etal.Rapidandnondestructivedetectionofmultipleadulterantsinkudzustarchbynearinfrared(NIR)spectroscopyandchemometrics[J].LWT-FoodScienceandTechnology,2015,61(2):590-595.
[78]XUL,FUHY,YANGTM,etal.Enhancedspecificityfordetectionoffraudsbyfusionofmulti-classandone-classpartialleastsquaresdiscriminantanalysis:geographicaloriginsofChineseshiitakemushroom[J].FoodAnalyticalMethods,2016,9(2):451-458.
[79]ZHANGL,LIP,NAW,etal.Multivariateadulterationdetectionforsesameoil[J].Chemometrics&IntelligentLaboratorySystems,2017,161:147-150.
[80]FUHY,LIHD,XUL,etal.Detectionofunexpectedfrauds:screeningandquantificationofmaleicacid(MA)incassavastarch(CS)byFouriertransformnear-infrared(FT-NIR)spectroscopy[J].FoodChemistry,2017,227:322-328.
[81]FANY,LIUL,SUND,etal.“Turn-off”fluorescentdataarraysensorbasedondoublequantumdotscoupledwithchemometricsforhighlysensitiveandselectivedetectionofmulticomponentpesticides[J].AnalyticaChimicaActa,2016,916:84-91.
[83]HOUM,HUANGY,MAL,etal.QuantitativeanalysisofsingleandmixfoodantisepticsbasingonSERSspectrawithPLSRmethod[J].NanoscaleResearchLetters,2016,11(1):1-8.
[84]MAHESHS,JAYASDS,PALIWALJ,etal.Compari-sonofpartialleastsquaresregression(PLSR)andprincipalcomponentsregression(PCR)methodsforproteinandhardnesspredictionsusingthenear-infrared(NIR)hyperspectralimagesofbulksamplesofCanadianwheat[J].FoodandBioprocessTechnology,2015,8(1):31-40.
[85]VONGSVIVUTJ,HERAUDP,ZHANGW,etal.RapiddeterminationofproteincontentsinmicroencapsulatedfishoilsupplementsbyATR-FTIRspectroscopyandpartialleastsquareregression(PLSR)analysis[J].FoodandBioprocessTechnology,2014,7(1):265-277.
[86]QINJ,XIEL,YINGY.DeterminationoftetracyclinehydrochloridebyterahertzspectroscopywithPLSRmodel[J].FoodChemistry,2015,170:415-422.
[88]XIONGZ,SUNDW,XIEA,etal.Potentialofhyperspectralimagingforrapidpredictionofhydroxyprolinecontentinchickenmeat[J].FoodChemistry,2015,175:417-422.
[89]XIONGZ,SUNDW,XIEA,etal.Quantitativedeterminationoftotalpigmentsinredmeatsusinghyperspectralimagingandmultivariateanalysis[J].FoodChemistry,2015,178:339-345.
[90]CHENGJH,SUNDW,PUHB,etal.Suitabilityofhyperspectralimagingforrapidevaluationofthiobarbituricacid(TBA)valueingrasscarp(Ctenopharyngodonidella)fillet[J].FoodChemistry,2015,171(4):258-265.
[91]XIAOZ,MAS,NIUY,etal.Characterizationofodour-activecompoundsofsweetorangeessentialoilsofdifferentregionsbygaschromatography-massspectrometry,gaschromatography-olfactometryandtheircorrelationwithsensoryattributes[J].FlavourandFragranceJournal,2016,31(1):41-50.
[92]ZHUJC,CHENF,WANGLY,etal.Characterizationofthekeyaromavolatilecompoundsincranberry(VacciniummacrocarponAit.)usinggaschromatography-olfactometry(GC-O)andodoractivityvalue(OAV)[J].JournalofAgriculturalandFoodChemistry,2016,64(24):4990-4999.
[93]ZHUJC,CHENF,WANGLY,etal.Comparisonofaroma-activecompoundsandsensorycharacteristicsofdurian(DuriozibethinusL.)winesusingstrainsofSaccharomycescerevisiaewithodoractivityvaluesandpartialleast-squaresregression[J].JournalofAgriculturalandFoodChemistry,2015,63(7):1939-1947.
[94]EL-SHEIKHAH,AL-DEGSYS.Spectrophotometricdeterminationoffooddyesinsoftdrinksbysecondordermultivariatecalibrationoftheabsorbancespectra-pHdatamatrices[J].Dyes&Pigments,2013,97(2):330-339.
[95]ALARCNF,BEZME,BRAVOM,etal.Feasibilityofthedeterminationofpolycyclicaromatichydrocarbonsinedibleoilsviaunfoldedpartialleast-squares/residualbilinearizationandparallelfactoranalysisoffluorescenceexcitationemissionmatrices[J].Talanta,2013,103(21):361-370.
[96]BOERISV,ARANCIBIAJA,OLIVIERIAC.Determinationoffivepesticidesinjuice,fruitandvegetablesamplesbymeansofliquidchromatographycombinedwithmultivariatecurveresolution[J].AnalyticaChimicaActa,2014,814(9):23-30.
[97]LOZANOVA,PEAAMDL,DURN-MERSI,etal.Four-waymultivariatecalibrationusingultra-fasthigh-performanceliquidchromatographywithfluorescenceexcitation-emissiondetection:applicationtothedirectanalysisofchlorophyllsa,andb,andpheophytinsa,andb,inoliveoils[J].Chemometrics&IntelligentLaboratorySystems,2013,125(1):121-131.
[98]RUBIOL,SARABIALA,ORTIZMC.Standardadditionmethodbasedonfour-wayPARAFACdecompositiontosolvethematrixinterferencesinthedeterminationofcarbamatepesticidesinlettuceusingexcitation-emissionfluorescencedata[J].Talanta,2015,138:86-99.
[99]YUYJ,WUHL,SHAOSZ,etal.Usingsecond-ordercalibrationmethodbasedontrilineardecompositionalgorithmscoupledwithhighperformanceliquidchromatographywithdiodearraydetectorfordeterminationofquinolonesinhoneysamples[J].Talanta,2011,85(3):1549-1559.
[100]ZHANGXH,WUHL,WANGJY,etal.FastHPLC-DADquantificationofninepolyphenolsinhoneybyusingsecond-ordercalibrationmethodbasedontrilineardecompositionalgorithm[J].FoodChemistry,2013,138(1):62-69.
[101]WANGJY,WUHL,CHENY,etal.Fastanalysisofsyntheticantioxidantsinediblevegetableoilusingtrilinearcomponentmodelingofliquidchromatography-diodearraydetectiondata[J].JournalofChromatographyA,2012,1264:63-71.
(责任编辑:叶红波)
CHENFeng1,LIHedong2,WANGYaqi1,FUHaiyan1,2,*,ZHENGFuping1,3
(1.DepartmentofFood,NutritionandPackagingSciences,ClemsonUniversity,Clemson,SC29634,USA;2.SchoolofPharmaceuticalSciences,South-CentralUniversityforNationalities,Wuhan430074,China;3.BeijingAdvancedInnovationCenterforFoodNutritionandHumanHealth,BeijingTechnologyandBusinessUniversity,Beijing100048,China)
Abstract:Chemometricsisanovelanduniqueinterdisciplinarytechniquethatintegratesmathematics,statistics,chemistryandcomputerscience.Patternrecognitionandmultivariatecalibrationmethod,asthecoreaspectsofthetechnique,haveexhibitedoverwhelmingadvantagesinmassivedataminingandprocessing,aswellasresolutionandanalysisofanalyticsignals.Inaddition,itisabletosolvecomplexproblemswhicharedifficulttobesolvedbyconventionalanalyticmethods,resultinginthemethodtobewidelyusedinmanyresearchfields,includingfoodanalysis.Thispaperreviewsthefundamentalprinciplesofchemometricsinregardsofitsadvantagesanddisadvantages,applications,andrecentprogresses.Furthermore,thereviewhaspointedoutproblemswhichneedtobesolvedincurrentresearches,andhighlightedtheprospectiveaspectsofthetechnique.
Keywords:chemometrics;foodanalysis;patternrecognition;multivariatecalibration
收稿日期:2017-02-02
基金项目:国家自然科学基金资助项目(21576297);国家重点研发计划项目(2016YFD0400500)。
作者简介:陈峰,男,教授,博士生导师,主要从事食品风味营养与质量安全控制方面的研究;
doi:10.3969/j.issn.2095-6002.2017.03.001
引用格式:陈峰,李鹤东,王亚棋,等.化学计量学方法在食品分析中的应用[J].食品科学技术学报,2017,35(3):1-15.
CHENFeng,LIHedong,WANGYaqi,etal.Applicationsofchemometricsinfoodanalysis[J].JournalofFoodScienceandTechnology,2017,35(3):1-15.
中图分类号:TS201.2
文献标志码:A
*付海燕,女,副教授,主要从事化学计量学及其在复杂体系中创新性应用方面的研究,通信作者。