[Keywords]SchizonepetaeHerba;integration;chemicalcomponent;anti-inflammatory
doi:10.4268/cjcmm20161117
1材料
薄荷酮、胡薄荷酮对照品(中国食品药品检定研究院,批号分别为111705-201205,111706-201205);1-辛烯-3-酮、d-柠檬烯、β-石竹烯对照品均购自TokyoChemicalIndustrial公司(日本);β-香叶烯、薄荷呋喃、3-辛酮对照品均购自Sigma-Aldrich公司(奥地利),对照品纯度均大于98%;萘(内标,国药集团化学试剂有限公司,分析纯);正戊烷(内标,国药集团化学试剂有限公司,GC级);乙酸乙酯为色谱纯;阿司匹林购自南京白敬宇制药有限责任公司(批号140601);二甲苯(批号20110410,江苏永华精细化学品有限公司);羧甲基纤维素钠(CMC-Na,批号F20101222,国药集团化学试剂有限公司);小鼠白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)、Elisa试剂盒(南京森贝伽生物科技有限公司,批号分别为SBJ-R0024,SBJ-M0044,SBJ-M0010)。
荆芥于2014年10月采自河北安国,经南京中医药大学吴⒛辖淌诩定为唇形科植物荆芥S.tenuifolia的地上部分。
Agilent6890N-5975B气相色谱-质谱联用仪、AgilentChemStation化学工作站软件(美国Agilent公司);B211D电子天平(1/10万,赛多利斯科学仪器有限公司)。
ICR小鼠,SPF级,雄性,体重(20±2)g。由浙江省实验动物中心提供,合格证号SCXK(浙)2013-0016。
2方法
2.1荆芥挥发油含量及其所含成分的定量测定[12]
2.1.1GC-MS条件色谱柱:HP-5MS毛细管柱(30m×0.25mm,0.25μm);进样口温度200℃;载气氦气,载气流速1.0mLmin-1;分流比20∶1;程序升温:初始温度为50℃,以10℃min-1升温至90℃,保持6min,再以8℃min-1升温至150℃,保持2min;进样量1μL;电轰击电离源(EI);电子能量70eV;四级杆度150℃;离子源温度230℃;接口温度280℃;扫描范围m/z40~400。GC-MS图见图1。
2.1.2样品制备一体化加工方法:鲜荆芥除杂后50℃干燥5h,切段(1cm),40℃干燥3h干燥成饮片。传统加工方法:除去杂质,晒干,制得药材。取药材喷淋清水,洗净,润透,于50℃烘1h,切段(1cm),40℃干燥3h得饮片。挥发油的提取:取荆芥饮片适量,照《中国药典》2015年版四部“挥发油提取法”甲法提取挥发油,计算得率。提取的挥发油加入适量无水Na2SO4静置保存。
2.1.3内标溶液的制备取萘和正癸烷适量,置100mL量瓶中,加乙酸乙酯溶解并稀释至刻度,摇匀,即得(每1mL含萘1.73mg,正癸烷0.29mg)。
2.1.4供试品溶液的制备取加入适量无水Na2SO4静置1h后的荆芥挥发油约50mg,精密称定,置10mL量瓶中,加乙酸乙酯溶解稀释至刻度,摇匀,精密量取该溶液和内标溶液各1mL置10mL量瓶中,加乙酸乙酯溶解并稀释至刻度。
2.1.5对照品溶液的制备精密称取对照品3-辛酮12.47mg、β-香叶烯10.91mg、薄荷酮160.35mg、1-辛烯-3-酮13.64mg、D-柠檬烯21.18mg、薄荷呋喃14.07mg、胡薄荷酮270.42mg、β-石竹烯12.95mg,分别置10mL量瓶中,加乙酸乙酯溶解并稀释至刻度,摇匀,即得各待测化合物的对照品溶液。精密量取3-辛酮溶液0.5mL、β-香叶烯0.3mL、薄荷酮2mL、1-辛烯-3-酮0.5mL、D-柠檬烯1mL、薄荷呋喃1mL、胡薄荷酮2mL、β-石竹烯1mL置同一10mL量瓶中,加乙酸乙酯稀释至刻度,摇匀,即得对照品混合溶液。荆芥中8个化合物MS监测数据见表1。
2.1.6线性关系的考察分别精密量取对照品混合溶液0.1,0.2,0.4,0.6,0.8,1.0mL置10mL量瓶中,分别精密加入内标溶液1mL,加乙酸乙酯溶解并稀释至刻度,摇匀。分别吸取上述6份溶液各1μL,进样,按内标法以峰面积计算。以各待测化合物与内标的峰面积比值(y)为纵坐标,各待测化合物质量浓度(x,mgL-1)为横坐标,进行线性回归,得回归方程。各化合物线性关系考察结果见表2。
2.1.7精密度试验精密量取对照品混合溶液1mL置10mL量瓶中,精密加入内标溶液1mL,加乙酸乙酯稀释至刻度,摇匀,即得精密度试验溶液。连续进样6次,计算各待测化合物峰面积与内标峰面积的比值,计算RSD,结果为8种化合物的RSD为1.4%~2.4%,表明本方法精密度良好,具体结果见表3。
2.1.8重复性试验取同一荆芥饮片所得挥发油6份,分别按2.1.4项下方法制备供试品溶液,照上述试验条件进样测定,计算各待测化合物峰面积与内标峰面积的比值,按内标法计算含量,计算RSD,结果为8种化合物的RSD为2.3%~2.9%,表明本方法重复性良好,具体结果见表3。
2.1.9稳定性试验取同一份荆芥挥发油供试品溶液,照上述试验条件分别在0,2,4,6,8,12h进样测定,计算各待测化合物峰面积与内标峰面积的比值,计算RSD,结果为8种化合物的RSD为1.5%~2.3%,表明供试品溶液在12h内稳定,具体结果见表3。
2.1.10加样回收试验取已知待测化合物含量的同一荆芥挥发油约50mg,共6份,精密称定,置10mL量瓶中,分别加入薄荷酮对照品溶液和胡薄荷酮对照品溶液各1mL,加入3-辛酮对照品溶液、β-香叶烯对照品溶液和d-柠檬烯对照品溶液各0.1mL,加入1-辛烯-3-酮对照品溶液和β-石竹烯对照品溶液各0.3mL,加入薄荷呋喃对照品溶液0.5mL,用乙酸乙酯溶解稀释至刻度,摇匀,精密量取该溶液和内标溶液各1mL置10mL量瓶中,加乙酸乙酯溶解并稀释至刻度。照上述试验条件进样测定,以各待测化合物与内标的峰面积比值按内标法计算样品含量,再计算加样回收率,结果见表3。
2.1.11样品测定分别取3个批次的鲜荆芥,每个批次分为2份,分别按2.1.2项下制备2个加工工艺的样品。取每份样品适量,按2.1.4项下制备供试品溶液。照上述实验条件进行测定,以各待测化合物与内标的峰面积比值按内标法计算待测成分含量,再以含油量换算饮片中各待测成分的含量,取平均值,结果见表4。
2.22种工艺产品抗炎作用的比较
2.2.1分组与给药取ICR小鼠90只,随机分为空白组、模型组、阳性组、一体化高、中、低剂量组(1.5,3.0,6.0gkg-1)、传统高、中、低剂量组(1.5,3.0,6.0gkg-1),每组10只。二甲苯致炎前每天上午9:00和下午4:00灌胃给药,连续给药3d。阳性组给予阿司匹林混悬液,一体化高、中、低剂量组分别给予不同浓度的荆芥一体化工艺产品粉末混悬液,传统高、中、低剂量组分别给予不同浓度的荆芥传统工艺产品粉末混悬液,空白组和模型组给予等体积的0.5%CMC-Na溶液,各组小鼠每次灌胃给药体积均为15mLkg-1(体重)。
2.2.2模型制备与耳肿胀度检测末次给药1h后,除空白组外,各组小鼠于左耳正反两面涂抹0.04mL二甲苯致炎,右耳做对照。1h后将小鼠脱颈处死,沿耳廓基线剪下两耳,用直径7mm的打孔器分别在同一部位打下圆耳片,称重,以左右耳片重量之差与右耳的比值为肿胀度。
2.2.3ELISA法检测荆芥对耳肿胀小鼠血清TNF-α,IL-1β和IL-6含量的影响二甲苯致炎1h后眼框取血,血样静置30min后3000rmin-1离心10min,取上清,ELISA法检测血清中TNF-α,IL-1β和IL-6含量。
2.2.4数据处理数据用±s表示,采用SPSS20.0进行统计学分析,以P
3结果
3.1一体化工艺与传统工艺加工产品化学成分的比较
相比传统加工工艺产品,一体化加工工艺产品中挥发油与8个待测成分的含量均有所增加,见表4。
3.2对二甲苯致耳廓肿胀小鼠肿胀度的影响
与模型组比较,阳性药抑制肿胀作用明显,荆芥一体化工艺和传统工艺产品各剂量均能降低小鼠耳廓肿胀度,高、中剂量作用尤其显著(P
3.3对二甲苯致耳廓肿胀小鼠的血清中TNF-α,IL-1β,IL-6含量的影响
与空白组比较,模型组小鼠血清中TNF-α,IL-1β,IL-6的含量显著增加(P
4讨论
现代中医学研究认为,表证症状与炎症这一基本病理过程紧密相连,解表药的抗炎作用是其发挥解表功效的重要药理基础之一,因而研究荆芥抗炎作用及作用机制是研究荆芥的解表作用的重要途径[13]。本实验通过比较小鼠的肿胀度以及血清中TNF-α,IL-1β和IL-6含量,来考察荆芥一体化工艺和传统工艺产品高、中、低3种剂量饮片粉末的抗炎作用。TNF-α作为炎症反应的重要介质,通过增高微血管壁通透性和趋化、增强中性粒细胞与血管内皮细胞的黏附性激活炎性细胞。IL-1β和IL-6介导中性粒细胞等炎性细胞到局部病灶,是炎症性疾病中的重要因素[14]。在本实验中,荆芥一体化工艺产品与传统工艺产品均能降低小鼠血清中TNF-α,IL-1β和IL-6炎症细胞因子的含量,降低小鼠耳廓肿胀度,发挥抗炎作用。
研究表明,挥发油是荆芥的主要药效成分,其药效作用可能是几种成分的加和或协同作用,不同成分组成或主要成分比例有较大差异的荆芥挥发油,药效和急性毒性相差很大[15-16]。前期研究发现,胡薄荷酮、薄荷酮、柠檬烯、3-辛酮、1-辛烯-3-酮、β-香叶烯、β-石竹烯、薄荷呋喃在荆芥挥发油中占有很高的比例,其中胡薄荷酮、薄荷酮和柠檬烯的含量最高,为挥发油的主要药效成分,故本实验选取荆芥挥发油中主要的8种成分作为指标,考察一体化工艺与传统工艺的挥发性成分差异。结果发现,荆芥一体化工艺产品折干后挥发油含油量为1.08%,传统工艺产品折干后挥发油质量分数为0.55%,明显低于一体化工艺产品,所以其胡薄荷酮等8个成分的含量远低于一体化工艺产品。
本课题前期已采用正交实验优化荆芥一体化加工工艺参数(本部分正在申报专利),一体化工艺产品含油量较高是因为只经过一次干燥加工过程,避免了挥发油的流失。挥发油乃热不稳定性成分,重复干燥过程势必会造成其含量的降低。荆芥采收后经产地加工为干燥药材,此时的荆芥叶、穗质地较脆,在包装、运输及饮片加工过程中易脱落造成损失,以致挥发油含量降低。而一体化工艺产品是由荆芥采收后直接切段干燥成饮片,减少荆芥叶、穗在长途运输过程中的脱落损失,保证了饮片质量。此外,传统加工还经过水处理,两个工艺产品的水溶性成分及其他成分是否存在差异还需进一步的研究与探索。
[参考文献]
[1]吴普.神农本草经[M].北京:人民卫生出版社,1963:77.
[2]赵立子,魏建和.中药荆芥最新研究进展[J].中国农学通报,2013,29(4):39
[3]中国药典.一部[S].2015:232.
[4]钱雯,单鸣秋,丁安伟,等.荆芥的研究进展[J].中国药业,2010,19(22):17.
[5]张霞,周,姚梅悦,等.荆芥穗提取物体外抗呼吸道合胞病毒有效部位研究[J].山东中医杂志,2015,43(3):213.
[6]何婷,汤奇,曾南,等.荆芥挥发油及其主要成分抗流感病毒作用与机制研究[J].中国中药杂志,2013,38(11):1772.
[7]何婷,陈恬,曾南,等.荆芥挥发油体外抗甲型流感病毒作用及机制的研究[J].中药药理与临床,2012,28(3):51.
[8]胡炜.解表药的作用机理探讨[J].浙江中医杂志,2013,48(10):771.
[9]邹文俊,雷载权,张廷模.解表用药规律探讨[J].成都中医药大学学报,2001,24(1):7.
[10]权美平.荆芥挥发油药理作用的研究进展[J].现代食品科技,2013,29(6):1459.
[11]陈艺文,于生,丁安伟,等.荆芥不同干燥加工方法药材质量变化研究[J].广州化工,2010,38(5):102.
[12]YuSheng,ChenYiwen,ZhangLi,etal.Quantitativecomparativeanalysisofthebio-activeandtoxicconstituentsofleavesandspikesofSchizonepetaetenuifoliaatdifferentharvestingtimes[J].IntJMolSci,2012,12:6635.
[13]陆茵,张大方.中药药理学[M].北京:人民卫生出版社,2012:55.
2我国化工生产工艺解析
2全国同类高校的化学工程与工艺专业认识实习的现状
3我校化学工程与工艺专业认识实习的改革与探索
3.1强化校企产学研合作实习基地
3.2打造专业的认识实习的师资队伍
3.3开展三大化工园区的专家大讲堂
围绕重庆的化工产业发展,为更好地让学生了解重庆化工产业链布局,邀请三大化工园区的管委会领导和实习工厂总工程师及车间技术高工来校讲学,使学生更好地了解实际工业生产,减少现场实习的盲目性。为了让学生更好地理解“天然气化工”的产业发展和高附加值精细化学品和高分子化学品产业,邀请长寿化工园区管委会主任来我校讲学,让学生理解石油化工、天然气化工、氯碱化工、生物质化工、精细化工和新材料产业的布局及相互关系,深入理解“产业项目一体化、环境保护一体化、公用工程一体化、物流配送一体化、管理服务一体化”等可持续发展观和循环经济理论,构建学生工程思维。为让学生理解“磷化工”产业在我市经济发展中的作用和地位,邀请了中化重庆涪陵化工有限公司的总工程师给学生介绍磷化工产业的概况、发展历程、市场动态,并详细讲解各车间的工业原理、工艺流程、生产设备及本专业领域最先进的新技术、新工艺、新材料、新设备、研究热点以及市场前景。这些大讲堂激发了学生的求知欲,增强对其所学专业的使命感和责任感,从而增加了他们学习专业知识的动力。
3.4引入现代CAE技术
在学生看、问、听的实习过程中,学生无法了解各种反应器、换热器、精馏塔和泵等设备的内部结构的,这对学生学习后续的专业课程,如化工原理、化学反应工程、分离工程和化工工艺学,是非常不利的。基于这方面的考虑,我们做了两方面的准备。一是准备了专门的实习课件,课件中包含了大量的实物照片(原料,反应工艺和产品分离和输送)、实景录像(具体流体输送、搅拌、精馏、吸收和干燥等单元操作)等,课件真实、形象、生动地展示出离心泵、搅拌反应器、精馏塔和换热器等设备的内部结构,并让学生对尚未学到的化工单元操作原理、典型设备结构和操作有所了解。二是我们建立了计算机仿真实习系统,将认识实习工厂的具体产品的生产工艺(如合成氨制气、净化、合成工艺),所涉及的单元操作(吸收、干燥和精馏等),典型设备(离心泵、反应器、精馏塔和换热器等)作为主要内容,对生产工艺进行模拟,让学生在计算机上模拟工业过程,对制气、净化、合成等工艺的管件、阀件和控制仪表进行操作,对工艺参数进行控制和调节,进行开、停车及事故处理等各种仿真操作。这些计算机辅助教学技术可激发学生的学习兴趣,增强学生思考问题、解决问题的能力,培养学生的创新能力。
3.5强化认识实习教学管理与指导
1工程教育专业认证背景
我国的工程教育专业认证由中国工程教育专业认证协会组织实施,始于1993年土建类专业评估,2006年正式在多个专业领域实施,迄今己走过9年的发展历程,其目的是:构建工程教育的质量监控体系,推进工程教育改革,进一步提高工程教育质量;建立与工程师制度相衔接的工程教育专业认证体系,促进工程教育与工业界的联系,增强工程教育人才培养对产业发展的适应性;促进中国工程教育的国际互认,提升我国工程技术人才的国际竞争力。
2结合毕业生十项毕业要求中的主要三项,提出课堂教学改革具体措施
结合专业认证标准,我校化学工程与工艺专业培养方案中明确规定了本专业学生毕业时应达到十项毕业要求。《分离工程》课程作为专业基础课程,在化工热力学和化工传递过程知识的基础上,采用理论与实践密切结合的方式,详细阐述各类分离过程(精馏、吸收、解吸、萃取、膜分离、吸附、浸取、结晶和干燥等)的物理化学原理、设计计算方法、工业应用、主要设备、数学模型和计算机应用软件,并展示分离过程学科的发展历史和主要进展。本文针对《分离工程》课程贡献于毕业生十项毕业要求中的主要三项,分别展开讨论。
2.1掌握扎实的化学工程基础知识和本专业的基本理论知识,具有系统的工程实践学习经历,了解本专业的前沿发展现状和趋势
2.2具备设计和实施工程试验的能力,并能够对试验结果进行分析;具有综合运用所学化工专业理论和技术手段分析
2.3掌握基本的创新方法,具有追求创新的态度和意识;具有综合运用理论和技术手段设计系统和过程的能力
3结束语
分离工程课程在教学过程中,我们以化学工程与工艺本科专业认证为导向,在对“工程教育专业认证标准”进行认真分析的基础上,以工程实际为切入口,把分离技术的理论与方法融入应用实例,将分离工程基础理论与化工工程实践有机结合,进一步突出了分离工程的课程特点及实用性,而且根据现代化工的发展方向及时调整、更新课程内容,加强化工新型分离技术分析,让学生更坚实地掌握分离工程的基本理论,进一步提高教学效果。
[参考文献]
[1]刘家祺.分离过程[M].北京:化学工业出版社,2006.
[2]J.D.Seader.SeparationProcessPrinciples[M].北京:化学工业出版社,2002.
(二)树立正确的工程化教育理念
从工程项目的实际情况作为出发点,根据社会经济发展的需求,利用一定的工程技术手段,培育学生形成良好的环境思维工程意识,提高学生的综合素质,增强学生的实践技术水平。在落实“卓越工程师教育培养计划”的时候,将技术能力水平的提高作为主要内容,实现人才培养形式的全方面调整。在学生学习的过程中,首先应该将牢固地掌握基础知识作为最基本的任务,然后逐步提高实践动手能力,提高工程设计水平与工程创新能力。另外,还要着重调整课程结构,进行教学内容的优化,引导学生掌握基本的研究性学习策略。加强对学生的创新意识与能力的提高,提高学生的综合素质。为学生安排进企业学习的机会,让他们学会用正确的态度认识企业文化建设,掌握基本的企业生产技术。鼓励学生多参加实践生产活动,指导并监督学生做好毕业设计工作,激励学生多参与企业的技术设计创新活动。
(三)改革实践教学环节
(四)人才培养的目标
(五)调整人才培养的模式
根据社会经济的发展,以及企业的发展状况及时地调整人才的培养模式。学校应该参考工业界的标准要求来制定具体的培养目标和培养标准,以便培养出的化学化工专业工程人才能够满足社会经济发展的需求。同时,在对“卓越工程师教育培养计划”的落实情况进行评定的时候,也应该参考国际通用准则与标准。根据实际需求调整课程结构,改变教学手段与方式,将卓越计划培养标准作为参照条件,严格按照工程标准要求,不断提高学生的实践能力,设计能力以及创新能力,促进课程教学内容的不断优化。提高工程人才的综合素质,在学生们中间提倡基于问题、基于项目、基于案例的学习方法,提高学生们的自主学习的能力,引导学生认真做好毕业设计工作。
1.1课程体系应适应催化工业大环境的变化就传统《工业催化》课程体系而言,其培养目标是通过课程学习,使学生掌握催化作用的基本规律,了解催化过程的化学本质和熟悉《工业催化》技术的基本要求和特性,培养标准是为培养化学工程与工艺类专业工程师提供坚实的理论基础服务。随着现代化学工业的发展,催化理论持续更新,许多新型催化工艺及技术不断涌现,学习这些新催化工艺及技术的背景及原理,对于化学工程与工艺专业的本科生能否成为具有坚实的开发、研究和使用催化剂能力的高层次工程技术人才,能否胜任将来有可能从事的催化领域研究工作都有着重要的理论指导意义。相对稳定的培养目标和培养标准不能限制课程体系进行必要的变动,以适应外部环境和需求的变化。因此在“卓越工程师计划”的实施过程中,《工业催化》课程体系要随着卓越工程师的培养目标和培养标准的调整而做相应的变化,从而体现《工业催化》课程满足培养目标的根本价值。
1.2校企合作建设课程体系。“卓越计划”要求高校与企业共同制定和实施卓越工程师培养方案,包括共同建设课程体系和教学内容。《工业催化》课程可以充分发挥合作企业所具有的工程教育资源优势,包括先进设备与技术、实验环境、研究开发条件等,与本校催化人才培养优势实行优势互补,共同设计与构建卓越工程师培养的课程体系和教学内容,使得《工业催化》的课程体系和教学内容具有鲜明的特色。校企合作建设的课程体系将更有助于培养学生综合解决实际问题的能力,摒除传统课程体系不能联系工程、生产实际的局限,鼓励教师与各行业生产管理第一线的工程技术人员联合指导学生。通过校企联合指导课程,现场案例教学,增强课题的实际应用价值,为学生提供良好的工程环境。学生在完成课程学习过程中,可以随时请教企业中有经验丰富的技术人员和老师傅,学到许多课堂上学不到的、学校教师也无法传授的一些实践经验。
2教学方法:贯彻研究型教学方法,理论联系实践
3教学内容:拓展知识视野,完善知识结构
一、充分做好准备工作
2.针对学生的英语水平和对课程的熟悉程度制作多媒体课件的内容。双语多媒体课件,版面内容应以英文为主,这样可以让学生在听课的同时掌握大量英文专业词汇。在此之前,首先要做好调研,看学生能否适应这种教学模式。按照学生英语基础水平的条件在学生中实施双语教学。在此课程开设前,化学工程与工艺、应用化学专业都应开设专业的英语课程,而且在大一、大二阶段进行过两年的英语强化教学,这无疑都给双语教学课程的开设奠定了基础,但因为有个别同学英语水平不够好,而考虑到绝大部分学生的接受能力,在制作双语多媒体课件时,要以中英文对照的形式列出每一知识点的术语,并让学生们提前预习,这样会取得更好的教学效果。另外,还可以采用与板书相结合的方式,将生疏的一些术语罗列在黑板上,以便学生们对照。
二、多媒体课件的形式和结构
1.课件设计应符合本课程的特点――工程性强。《洁净煤技术》课程内容工程性很强,需要有大量的图形、计算,学生在课下自学或复习时,往往比较吃力,有很多地方自己不容易搞明白。通过采用多媒体课件的特殊动画功能,让工艺中的物料、能量线等都动起来,并定义多层次动态图像,使图像与推导过程、机理模型等有机结合起来,按照推导的顺序依次展现,来将《洁净煤技术》课程中的工程概念演绎得层次分明、直观易接受、生动、说服力强。而且很多比较复杂的工艺等能根据需要反复播放,加深在课程体系的重要性。例如,在讲解到煤气化工艺时,可以先将工艺设备设置一个图层,让学生首先了解到该工艺中需要用到的装置,然后再将物料线附加到该图中,构成了工艺流程图,能量线的加入又有助于学生更深层次地了解该工艺的能量平衡和工艺的原理,最后将工艺的核心设备――气化炉的结构链接出来,这样循序渐进的将整个工艺及设计的思想、设备的结构等知识点渗透到学生思维中,将复杂的、庞大的知识点分解,并强化吸收。
2.整体风格应简洁――层次分明,重点突出。风格简洁的课件,不但能增强教学效果,而且还能够激发学生的学习兴趣,所以课件的制作从背景、图形曲线的色彩、文字的字体等都要力求简约,这样做出的课件画面层次感强,符合学生的视觉心理和逻辑思维,这样就使学生更容易接收课堂教学内容,可以实现更好的学习效果。
3.合理使用超链接设计。正确、合理使用超链接功能,可以启发学生的联想思维,可以实现教学信息的灵活获取,可以使教学内容重现,更适合于不同层次水平的学生的学习需要,能做到因材施教。因此,在多媒体课件的设计中,既要注重教师的教学过程,也要重视学生的认知结构。多媒体课件要改变简单的演示型模式,从而使多媒体课件真正成为学生探索和发现学习的认知工具。超链接的应用大致有两种情况,一种是“总述―分支”,例如,在讲解到烟气脱硫这一章节时,前面要将整个脱硫方法进行分类,在每一种方法中都要介绍这种方法脱硫的机理,这时,就可以采用超链接的方法先总述,再逐一介绍分支,然后再回到根目录的方法,当然超链接的使用还可以应用到另外一种情况下,就是利用超链接去引导学生思考,将前后知识点进行串联,例如,在讲解到煤直接液化产物的特点时,要结合液化的基本原理和工艺过程来理解,这时,我们就要将课件再链接回到前面这两个知识点所在的位置来进行解释了。
4.课件的设计也要注重师生互动。在制作课件时,一定要留有让学生思考的空间,例如,我要提出某一个问题时,切忌将答案直接与问题一起出现在幻灯片中,可以利用动画设计,让问题与答案具有一定的时差性,这是进行师生互动的前提,这样安排,可以使整个课堂气氛极其活跃,还可以激发学生自主思考的积极性。
三、《洁净煤技术》多媒体课件的设计实践性结论
双语课件的建设和教学实践,一定要理解对本科专业双语教学的内涵,了解本课程的知识体系、科技前沿,并用一些实用性的方法,取得良好的教学效果。通过对《洁净煤技术》双语教学课件的建设及操作过程,我的体会主要有以下几点:第一,双语教学的多媒体课件制作的内容及形式结构,必须针对本课程的特点、难易程度和授课对象的接收能力进行设计,力求重点突出、简洁直观,比如使用表格、图形图层等方式,充分将课程以最易接受的方式传达给学生,激发学生们的学习兴趣。第二,双语教学的课件形式的安排应该与结构体系和界面功能设计相融合,例如采用简单清晰的背景再配以动画、超链接等工具的使用,充分体现课件内容体系与多功能、多情景教学方法的相互协调、有机融合;第三,多媒体教学要与传统教学的模式相结合,扬长避短、相互补充,使多媒体双语教学达到良好的教学效果。
一、精心设计教学方案、优化教学内容
分离工程主要从分离过程的共性出发,讨论化工分离过程的基本概论、本质及其变化规律。从教学内容而言,分离工程是一个学术内容十分丰富的领域,既包括传统分离过程基本理论原理方法的学习,同时各种新型分离技术的不断涌现,要求跟上时代和技术发展的步伐,教学内容必须与时俱进,及时更新与补充教学内容,扩展课程教学环节。
1.合理组织教学课堂。要使课堂教学更具有现实性和新意,充分调动学生的求知欲望,优化教学内容至关重要。在教学过程中,避免课程的割裂与重复,对课程内容进行组织、设计、重塑与整合。教师按学科发展,从基础、原理、特性到应用及发展的顺序进行讲授内容的安排和多媒体课件的制作;按照问题、案例和原理相结合的方式组织教学内容;结合化工企业项目的实际和教师工程实践、科学研究以及学生实习,介绍常见分离技术。
2.积极整合教学内容。教师注意课程与专业基础课如物理化学、化工热力学、化工原理等的衔接和关联;在教学实践中对本课程与“化工热力学”、“化工原理”、“物理化学”等专业基础课程中有关内容进行有机衔接与融合,让学生很自然地完成基础理论到专业知识的过渡与应用;增加新型化工分离技术,如超离子液体技术、膜分离技术、双水相技术等;把企业典型工程案例引入课程教学中,使课堂教学更具有现实性和新意。基本分离方法与化工原理的融合在化工生产中涉及的分离对象几乎都是多组分体系,而目前一般高等院校化工原理教学中因学时有限,大多侧重于双组分的分离问题。这就要求在进行分离过程的教学时要做好与化工原理教学的融合问题。如对化工原理教材中已涉及到的基本原理,教师对双组分精馏、吸附和结晶等不做专门介绍,重点讲解多组分体系的工程计算问题,将有关的基础及计算机应用在耦合与集成过程设计中体现出来;减少与化工原理内容的重复,培养学生利用化工单元操作的基本原理解决实际复杂体系分离问题的能力。
3.有效延伸课程环节。化工分离工程本身具有较强的工程背景的同时还兼有较强的理论性。在“以教师为中心、以课堂为中心、以教材为中心”的传统教学模式中,化工分离工程的教学使学生认为化工分离工程是“一大堆的方程、繁多的数据和大量的计算和循环迭代[3]。为了促进学生对课程的学习,将课堂教学延伸至课外,如实习过程中、课程设计中及其他的化工实践如创新实验、化工竞赛等过程中,布置作业、小组讨论及综合设计等,加深学生对已学的化工分离技术原理的理解,学会进行分离方法的选择优化,以及新型分离技术的拓展。
4.强调选择优秀教材。要在有限的教学时限中,达到良好的教学效果,如何选择教材和教学内容对提高本课程的教学效果就显得十分重要[4]。刘家琪主编的面向21世纪的教材《分离过程》,该教材在内容和体系上体现了创新精神,注重拓宽基础,强调能力培养,并在教学内容上作了重新安排;按教学规律的发展,从基础、原理、特性到应用及发展的顺序分章节;主要章节(如多组分精馏和特殊精馏)中逐一介绍各种精馏方法的特性和应用;选择典型的分离方法展开讲授化学工程的研究方法及其进展。这样安的排结合了两种教材编排方式的优点,思路简洁清楚,学生易于接受,教学效果良好[5]。
二、采取研究性教学模式,改革教学方法
在讲授理论知识的同时,教师要引导学生从社会生活中选择并确定研究专题,主动地投入到课程学习中去,应用所学知识解决实际问题;并在学习讨论中获取知识、发展技能、培养能力,强调学习者的主动探究和亲身体验[6]。这样,改变过去由老师单一讲解的方式,可让学生有问题随时提出、分析和讨论。本人在教学过程中以研究性教学[7]为指导思想,采取多样化的教学方式,初显成效。
2.虚拟式仿真,提升学生解决问题能力。以成熟的流程模拟软件为主线引导学生学习实践。在教学中,引入成熟的化工流程模拟软件的应用部分内容,有助于学生越过烦琐复杂的技术细节,用分离工程的思维方法解决实际问题。让学生学会利用成熟的软件解决工业生产中的实际问题,从而提高学生解决实际问题的能力。如学生在对某药企乙腈废水的后处理工艺经过讨论优化,然后通过流程模拟软件如Aspenplus等进行模拟优化,实现现代计算机模拟与实践教学的结合。
三、理论与实践教学有机结合
卓越工程师培养与传统人才培养模式的显著区别之一就是强调实践。所谓“授之以鱼,不如授之以渔”,实践不仅能使学生增长经验,把学到的知识与工程实践和社会需求对接,而且能够触动学生心灵,使其产生开拓创新的激情与灵感。经过实践历练的学生可以把僵化的书本知识内化成为活的创新能力。在教学中,将教材与实际工业生产相结合,丰富了课堂教学内容,加深了学生对所学的化工分离工程知识的理解,提高了学习的积极性,激发了他们的求知欲和探索精神,有利于培养学生创新思维方法和能力[8]。
1.强调课堂教学理论联系实际。学生学习该课程之前经历了认识实习和生产实习,对化工企业中分离过程的工艺过程及应用已有一些了解,但缺乏利用理论知识分析问题的能力,在课程教学中注重举例,对实习中接触到的分离过程结合分离原理进行详细分析。如在多组分精馏的课堂教学中,结合实习车间橡胶生产溶剂回收工段的理论与工艺进行讲解,既直观,又切合实际;让学生在理解分离方法、分离原理的同时,还学会从经济、能源及生产实际的角度考虑分离工艺的优化。
2.有效延伸课程实践环节。把工程现场转化为实习、实训基地,在知识传授与实践历练的交融中进行。一方面,利用所建立的产学研联合培养平台,让学生通过参与课外实践项目,或参与到教师的科研项目中去,通过工程实践来加深对分离方法原理的理解和认识。另一方面,在认识实习和生产实习中,教师通过布置分析讨论题、撰写小讨论文等方式,让学生学会分析讨论选择生产实际中的分离技术,对实习中接触到的分离过程结合分离原理进行详细分析,对课堂教学有很大帮助。反过来,课堂教学也加深了学生对实际过程的认识,并能举一反三。
3.聘请企业专家参与教学。“卓越工程师教育培养计划”的师资队伍是关键,通过“走出去、引进来”的模式,加强课程教学教师工程教学能力的提升。除了聘请优秀的企业专家参与教学任务外,任课教师还需通过承担或参与企目项目的改造或研发、指导生产实习和毕业实习、指导各类化工创新竞赛等实践教学活动增强自身的工程能力,把工业实际生产的案例同教材中的理论知识联系起来,避免了空洞说教,使课堂教学更具有现实性和生动性。
四、注重教学过程管理,改革考核评价体系
考试是教学过程中的不可缺少的重要环节,涉及到对学生学习效果的综合评判。在课程教学考核评价过程中,主要引导学生从注重“学习成绩”向注重“学习成效”转变,从“注重考试结果”向注重“学习过程”转变。课程考核形式采用期末考试、平时学习与专题讨论结合起来的评判方式,改变过去一份期末考试卷一锤定音方式。成绩由平时成绩(包括平时讨论情况和作业情况)、实践成绩(实习中作业完成情况、小论文写作与讲解)、考试等部分构成。
参考文献:
[1]张安富,刘兴凤.实施“卓越工程师教育培养计划”的思考[J].高等工程教育研究,2010,(4).
[2]徐毅鹏,20世纪末麻省理工学院工程教育转型探微[J].杭州电子科技大学学报(社会科学版),2011,(6).
[3]马新起,周彩荣,刘丽华,等.分离工程课程教学改革与创新的思考[J].中外医疗,2007,(1).
[4]万春杰,张珩,宋航,姚日生,王凯.基于卓越计划的制药工程专业工程实践能力的实践教学改革[J].化工高等教育,2013,(2).
[5]吕华,刘玉民,席国喜.化工分离工程教学改革与探讨[J].广州化工,2010,(3).
[6]龙跃君.高校研究性教学的价值反思与内涵解读[J].中国大学教学,2006,(6).
[7]赵辉,陈宏刚,丁传芹.论研究性教学在化工分离工程教学中的应用[J].中国石油大学学报(社会科学版),2009,(7).
1《化学反应工程》教学在化工专业中的作用
2不同类型高校选用教材的特点和差异
3我校化工专业的特点和教学侧重点
4拟采用或已经实施的教学方法
参考文献
[1]金涌,程易,颜彬行.化学反应工程的前世、今生和未来[J].化工学报,2013,64(1):34-43.
[2]王安杰,周裕之,赵蓓.化学反应工程[M].北京:化学工业出版社,2005:1.
[3]陈甘棠.化学反应工程[M].北京:化学工业出版社,2011:1-3.
龚克指出,[5]大学教育区别于基础教育的标志之一,应是从以教为主转变为以学为主。改进以“管灌”为主的培养模式,激发学生的主动求知欲是真正提高教育质量的关键。在化学反应工程课程的双语教学中,我们也在逐渐转变观念,采用多种多样的课堂教学方法,改变完全以教师为中心的讲授式教学为多种教学方法并用,以提高学生学习的主动性为目的,着力提高课堂教学效果。下面拟对主要采用的几种教学方法进行介绍。
二、理论教学与实践教学充分融合
近年来由于校院两级投入的加大,我们的实验和实践教学条件取得了较大的发展。化学反应工程课程组教师,充分抓住各实践教学环节的机会,将本课程中的理论融入实践教学之中。
我校专为化工专业建成了一个仿真计算实验室,安装了常减压、催化裂化、加氢精制等典型的炼油装置仿真软件。在配合实习教学的同时,它们可以进一步深化学生对化工反应器的认识。仿真实验室还安装了化工设计模拟软件,为化工设计实践提供了良好条件。承担化学反应工程课程的教师,也参与化工设计实践的指导,从中进一步强化有关反应器设计理论的应用,使抽象的理论体现于具体的工程设计中,让学生体会到学有所用。很多学生在化工设计总结中感慨地表示:以前学了那么多理论,不知道有什么用,通过化工设计,又将以前的理论知识回顾了一遍,设计出一套实际的装置,收获很大,很有成就感!目前,我国推进的“卓越工程师培养计划”注重提升学生的工程实践能力和创新能力,[5]本课程理论教学与实践教学充分融合的教学方案无疑正好吻合了“卓越工程师培养计划”的总体思路,也是我们进一步努力的方向。
三、教学与科研相结合
科研在高等教育中具有十分重要的地位,要培养创新型人才,建设一支合格的教师队伍,必须把科学研究作为提高教师素质的关键环节。教学工作是教师的天职,而科研对教师学术水平的提高有着积极的促进作用。国内外经验证明,没有高质量的科学研究,就不可能建立一支高水平的师资队伍。没有高水平的师资队伍,同样也不可能有高水平的教学质量和科学研究。科研是提高教师综合素质和教学能力的第一促进力。
有深厚的科研背景,可以保证教师授课中知识传授的准确性与知识重点的掌握,同时教学中教师会自然而然地把科研中获取的生动案例结合进来,实现将科研成果向教学内容的转化。将科研成果融入课堂教学,一方面能有力促使学生掌握较宽的化学反应工程基础知识,学习化学反应工程的研究方法与思路,了解化学反应工程最新进展及发展方向,另一方面也激励学生提高创新思维的能力,加强工程观点、提高分析工程问题和解决工程问题的能力。以下即是科研成果向教学转化的两个实例:
实例1,利用两段提升管催化裂化技术的科研成果,课上给学生讲授两段提升管反应器的设计思路,从反应动力学特性、反应器流动特性等多角度进行案例剖析讲解,使学生在理解理论知识的同时,接触到工业实际反应器设计案例,抓住学生的兴趣点,大大提高教学效果。
实例2,我们利用科研中对反应器流动行为示踪研究的经验,生动形象地将非常抽象、难懂的非理想流动现象和概念介绍给学生,并利用图片、动画给学生演示非理想流动示踪研究的过程,使学生产生浓厚的学习兴趣。
一课程教学与教材建设相结合
结合地方高校学生特点开展教材建设。为适应培养应用型人才的需要,教学团队与国内其他地方高校合作,编写了《化学反应工程》教材,教材侧重于工程应用,并将最新科研成果编入化学反应工程新进展,强化教材的实用性。该教材由化学工业出版社于2009年1月出版,作为新世纪化工类应用型工科人才培养的系列教材之一,被教育部高等学校化学工程与工艺教学指导委员会列为推荐教材,目前已被兰州大学、河北科技大学、长春工业大学、广西大学等国内近十余所高校采用。教材建设对教学质量的提高起到了保证和推动作用。
二课程教学与专业外语相结合
三课程教学与计算机应用相结合
四课程教学与文献检索相结合
文献检索是科技工作者的基本能力,尤其在当今信息爆炸的时代更是如此。在教学过程中,我们发现学生虽然掌握了文献检索的基本知识和方法,但熟练程度不够,对本专业具有代表性的文献种类及常用检索工具了解不够全面。鉴于此,我们在专业课教学中坚持与文献检索相结合,具体的做法是:在介绍参考文献时,将本学科有代表性的学者、著作、刊物、常用检索工具等全部介绍给学生,以便于学生进行文献检索。为了提高学生的学习积极性,开展有针对性的检索训练,我们拟定几个本课程的专题,把学生分成几个小组进行文献检索,再把检索到的文献进行分类整理,加工提炼,撰写专题综述。实践证明,通过此项训练确实提高了学生的文献检索能力。
五课程教学与科技写作相结合
科技写作是从写作学科体系中派生出来的新学科,承担着科学技术信息和成果的总结、交流、传播和贮存任务。科技写作是科技工作者必备的基本素质。为了提高学生的科技写作水平,我们要在专业课教学中坚持与科技写作相结合。具体做法是:将课程的重点内容分成几个专题,让学生首先进行文献检索,在此基础上按照科技论文规范撰写专题报告。整个过程中,教师给予帮助、指导。指导学生如何进行文献检索;对检索到的文献资料如何进行整理分类、加工提炼;如何把握论文的整体架构;如何展开正文部分;如何撰写论文的中、英文摘要;如何选择论文的关键词等。为使各个专题组之间进行相互学习和交流,举办专题报告会。这样,同学们不仅巩固了在课堂所学的知识,而且文献检索、科技写作、课件制作、上台演讲等多方面的能力都得到了提高,教学效果很好。
六课程教学与技术经济学相结合
作为《化学反应工程》学科,其主要任务是对反应器进行正确选型、有效放大、最佳控制。所制定的技术方案必须满足“技术上先进,经济上合理,生产上安全可靠”,由此可见,本学科与技术经济学联系紧密。因此,在这门课程的教学过程中,坚持与技术经济学相结合。在教学过程中,引导学生树立工程观点,工程问题涉及诸多因素,因此工程问题是一个系统工程。在进行反应技术开发、反应器的放大设计、反应过程的控制时都要利用技术经济学的知识,使效益最大化。同一化工生产过程往往有多个不同的技术方案,在教学中,注意启发学生对不同方案进行技术经济比较,选择最优方案。同时,通过多方案比较习题,对学生进行反复训练,使学生能够自觉地利用技术经济学的知识,分析和解决反应器设计中的各种问题。
七课程教学与课程设计相结合
纵观近年的毕业环节,学生基本上是以做毕业论文为主。而对化工专业的学生来说,毕业以后的主要去向是化工企业,从事工作以后,无论是新工艺的技术开发,还是老工艺的技术改造,都离不开化工设计。虽然化工原理有课程设计,但其主要是针对单元操作的物理过程,不是一个完整的化工设计。化工专业的学生缺少了化工设计这一基本训练,对今后从事化工设计工作显然是不利的。对历届毕业生的跟踪调查结果也说明了这一点。为了扭转这个局面,在《化学反应工程》教学中安排了课程设计。具体做法是选取“某一化工生产过程的工艺设计”作为课程设计的题目,要求学生完成查阅资料、制订方案、工艺计算、设备设计、绘图和设计说明书编写的化工设计全过程。经过课程设计,学生五个方面的能力都得到了提高:(1)搜集和整理技术资料的能力;(2)工程计算能力;(3)技术方案比较和选择的能力;(4)工程制图能力;(5)科技写作能力。
八课程教学与实践教学相结合
为了配合课堂教学,搞好实践教学,构建了以实践教学工程观摩中心为主体的校内实践教学平台,和以企业实践教学基地和社会实践基地的校外实践教学平台,做到“校内与校外相结合”,以满足贯穿于学生整个培养过程的实践教学的要求。实践教学工程观摩中心有化工设备展及配件区、工业催化剂展区、塔填料展区、典型工艺流程动态模型展区、化工管道安装实训展区。学生通过在实践教学工程观摩中心的参观学习,对化工工艺过程及设备有了比较直观的了解和认识,有利于其工程概念的建立,也有利于课堂教学。校外实践教学平台的建立,主要是选择一些具有典型反应设备的化工企业作为实习基地,如石家庄金石化肥集团、石家庄制药集团、石家庄化纤化工有限公司、山西三维集团公司、山东金岭集团公司、河北冀荣氨基酸公司等,他们所具有的典型反应设备有:固定床反应器、气液反应器、均相反应器、流化床反应器、反应精馏装置等。在校外实习基地,根据不同情况,学生可以采取参观、短期实习、顶岗实习等多种实习方式。
九课程教学与实验教学相结合
实验设置的指导思想是:重视实验教学环节,改变了实验教学依附于理论教学的传统观念,而是理论教学的有机补充和提高;注重对学生实践能力、创新能力、探索精神的培养。实验教学的实施方案为:课程组利用学校和学院设立的实验教学研究项目基金,开展实验教学研究,推动实验教学改革;筛选出了“基本技能―现代技术、综合应用―创新能力”综合培养的有特色的实验;建立了多层次、开放式的实验室。实验类型分为演示性实验、综合性实验、设计性实验、开放创新性实验。演示性实验、综合性实验着重培养学生的认知能力和动手能力,巩固学生所学的理论知识,使学生达到工程实践能力培养的基本要求。设计性实验、开放创新性实验着重培养学生的科学精神和协作精神。学生可自主选择课题或选择指导教师提供的课题,开展科技创新活动。
十课程教学与科学研究相结合
本着“寓教于研、以研促教、研教融贯、教研相长”的教学理念,注重教学与科研相结合,将科技成果与技术转化为教学优势资源,分别从理念、成果、方法和手段等多途径与教学结合,渗透于教材编写、理论与实验教学、实习与毕业环节,实现了科研向教学的多方位转化。同时,言之有物的教学内容又促进了学生科研水平的提高。我们的具体做法是:
第一,科研成果进教材。团队鼓励教师撰写教材、讲义,并将最新研究成果融入教材之中。在编写《化学反应工程》教材过程中将微反应器方面取得的科研成果引入第四章《非理想反应器设计》中,将在超重力反应技术方面取得的科研成果写入第十章《反应工程新进展》中,将在催化反应新工艺开发过程中的科研成果引入第六章《气固相反应器设计》中。
第二,科研成果进课堂。团队将专业领域内的前沿科技和教师本人最新研究成果如离子液体中的化学反应、微反应器的开发、流化床反应器的实际应用等引入课堂,在第三章《理想反应器设计》的授课中,以“返混”和“平推流”为主线,讲授了团队开展的工业反应器改造的实例,开拓了学生的知识视野、激发了学生的学科兴趣。
第三,科研成果进实验室。教学团队着力于实验室建设及实验教学装置的开发研究,将多年积累的科研成果与技术融入其中,开发了多项科研成果转化而来的综合型、创新型实验项目,针对反应工程课程的重点和难点,开发了多釜串联特性实验、反应精馏实验、气固相催化反应综合实验以及超重力反应器性能测定实验等多个综合性和设计性实验装置,加深了学生对课程的理解,锻炼了学生的动手能力。
1前言
近些年来,伴随着国民经济GDP的飞速增长,我国国内对石油的使用量和依赖性也大大增加。然而对一些传统的油田来说,由于常年来的持续开发,地下石油的储油量逐年减少,持续开采的可能性在降低。一方面我们需要加大寻找新油田的力度,另一方面,改善和革新传统的采油工艺,提升石油开采率和最大限度的挖掘传统油田的潜力在现阶段显得更为重要。塔河油田和孤东油田在开采技术上的创新就很好的证明了这一点:这两大油田改变了原有的自喷井模式,及时更新机械采油设备,实现了机械采油的信息化,自此,两大油田的产量和效率大大提升。由于机械采油需要在开采的过程中需要对不同的环境和地质条件具体分析从而才能得出使用何种工艺进行开采,因此我们结合近几年来的实际工作经历,提出当前在我国国内各大油田采用的几种机械采油工艺。
2石油开采中常见的工艺技术
2.1抽油泵效的分析
从技术层面上分析,电泵井泵效的最合理状态为80%~120%这一区间,如我国当前油田中泵效在80%以上的总共有51口油井,它们的平均泵效均已达到了102%.,如果泵效低于30%则被认为过于偏低。泵效偏低的缘由多种多样,可能是油井的供液不足,还可能因为抽油泵的工作参数选择不当造成,或是原油粘度较差所致。但根据实际工作经验来看,泵排量的选择不正确是普遍的原因,平均沉没度高达1357m以上,并且平均泵效也应达到102.0%,地层能量才能充足,供液能力才会强。当前我国有10口油泵泵效低于30%,它们的泵效偏低也多是有以上提到的原因造成的,因此在工作时要特别注意[1]。另外在操作中还应选取大泵径快速抽汲和快冲次,这样才会增加诱喷能力。
2.2适应性角度的工艺分析
管式泵构造简单且能适应多种供液能力的油井,因此在实际工作中被普遍采用。同时,含汽油的油井抽吸效果差、稠油、出砂等缺陷也接踵而来,这就需要我们在日常的采油过程中使用到一些配套技术来配合[2]。如在一些低粘度稠油井,如塔河油田等,管式泵就显得较为适合,此时液力反馈效果和适应性能力都较好,而在一些中、深油井中,由于地面粘度差,需要解决下入深度和气蚀现象的问题,则需采用有着小排量的变频抽稠电潜泵采油。管式泵能够最大限度的发挥电潜泵扬程,因此能适应更为复杂的环境。同时还可承担电机的频繁开关所产生的副作用,防止发生气蚀现象。电缆和电机所产生的热量可以用来加热原油,这也在一定程度上大大增加了稠油的开采能力。2.3关于沉没度的分析
在对油田抽油机井进行沉没度设计时必须首先进行沉没度分析。从当前统计的数据来看,我国国内沉没度大于600m的油井有95口之多,它们的平均沉没度在1400m左右[3]。我们在进行沉没度设计时要适量排除气体对泵效的影响,还要通过增加沉没度来增加生产压差,从而改善泵效,同时应注意到碳酸盐岩油藏超深井的产能有时是无法预测的,前期设计较大的沉没度可以为后期相应减少修井费用。但也不能盲目增加,要在一定范围内进行科学设计。
3油田机械采油的工艺技术
以下介绍几种工作中常见的油田机械采油的工艺技术
3.1防砂式稠油泵采油工艺
防砂式稠油泵采油工艺的结构由泵筒、环空沉砂结构和抽稠结构组成。泵筒由双通接头和扶正固定住,在开采勘探时更加注重开采的广度。它的工作原理较为简单,在进行上行程时,下柱塞的进油阀门会关闭,油井压力增大,液体会由排油阀上升至上油管,在进行下行程时,下柱塞机械式进油阀会被相应打开,液体进入泵储油腔室,这样进油过程就完成了。这种工艺的优点显而易见,防砂式稠油泵泵筒的拆装十分方便,另外可以解决光杆下行的困难,也有效防止了砂卡和砂堵的现象。此类工艺有利于施工人员掌握勘探知识,更加深刻的理解石油开发的全过程,从而便于做出科学合理的决策。
3.2螺杆泵采油工艺
在油田的实际工作中,由于螺杆泵采油工艺较为特殊的应用原理,在油井中的使用相对较少,所以我们有必要对此类工艺在实际应用中出现的问题加以分析,从而找到正确的解决方法。螺杆泵由两大部分组成,井下螺杆泵和地面驱动系统,包括电控箱、机架、大四通、导向头、定子、油管等等。工作原理是,通过皮带的转动,转子与定子组成了密闭的空腔,由一端转往另一端,从而提取了液体。需要注意的是,它的油井温度不能够超过150℃,同时又要求沉没度在200mm之上[4]。此类工艺具有节能性能好,结构简单,维修方便,质量轻,体积小等等优点,但是也会经常遇到橡胶内垫老化等问题,这就需要我们经常检修,提高生产时效。
3.3对当前工艺的理论认识和反思
我们在采油过程中必须采取理论联系实际的做法,具体问题具体分析,实时跟踪机采井的生产变化,依照相应的数据绘制出具有动态特征的参数模式,定期对机械采油工艺进行动态分析,依据相应的情况给出技术操作和技术支持,因地制宜,具体执行。同时,如面对频发的油气比高、出砂、蜡高粘、偏磨、腐蚀等问题,配套相应的工艺进行分析对比,对实际情况进行摸底排查,不断进行对现场的参与性分析,从而提出最合适的办法来解决。
4结语
降低采油成本,提高采油效率,提高采油的信息化程度,为国民经济的发展提供充足的石油保障,这是我国采油工人和广大工程师的奋斗目标。以上分析了我国国内机械采油的设备和工艺,包括沉没度分析和管式泵工艺适应性分析,介绍了诸如防砂式稠油泵采油工艺、螺杆泵采油工艺等,并根据工作中的实际情况提出了若干种采油的工艺技术,我国的机械采油有着广阔的发展空间,当然不止于以上几种技术,此外还有如有水力喷射技术、杆泵采油技术等等。它们之间存在共通之处,技术标准,技术依据和某些参数大致相似,在用到的时候也需要具体情况具体分析。另外,各大油田采用机械的数量多,能耗大,要坚持贯彻国家的节能减排的号召,通过科学引进,在吸收的前提下进行技术创新,力争节能减排工作取得显著的成果,建设低碳环保型经济,成为绿色油田。
[1]刘冠华.浅谈油田机械采油工艺分析[J].技术应用,2010(4)
[2]陈武.探讨油田的机械采油工艺技术[J].中小企业管理,2012
[3]郭金海;白仲岗;刘金恒.浅谈油田机械采油工艺技术[J].中国新技术新产品,2011(22):168