本文借着这个热点事件,从数学史的角度来讲讲,当一个数学家宣布一个数学大问题被自己证明后,有哪些可能的走向。因为这些历史故事都非常精彩,读者们可以通过我们哆嗒数学网提供的线索,搜搜故事的完整版。张益唐教授的这篇论文,大致也就是这几种可能吧。
1、论文是正确的,并且很快通过同行专家审稿验证的流程,被学界承认。
经典案例:张益唐关于弱孪生质数猜想的证明
这是吃瓜群众最愿意看到的走向。其实最难发生,但确实发生过。最近的最经典例子就是张益唐的那篇成名作了。
2、论文是本质上正确的,经过漫长的审稿,几经漏洞修补,但最终确认是正确的。
经典案例:怀尔斯对费马大定理的证明
这是数学界内重大问题的常态。越是重大问题,审稿越是小心。庞大复杂的数学证明,也时常会有各种不易发现逻辑漏洞,好在有办法修补漏洞保证了正确性。
3、论文是正确的,但是业内专家都没看懂,不承认他是正确的,然后作者努力给他们讲懂。
数学论文有没有其他同行专家都没看懂,然后产生误判的情况。菲尔兹奖得主维拉尼的自传中就描述过这样的情况。
维拉尼是波兹曼方程研究的顶级专家,他写了一本自传《一个定理的诞生》。这本书描述了他获得菲尔兹奖的过程。他提到,他获得菲尔兹奖那篇核心成果的论文中有一个关键步骤,由于审稿专家没有看懂而被多次拒稿。他非常无奈,因为这个步骤他已经解释了无数遍了,但还是有人不懂。而维拉尼采取的办法是,继续在各个地方开关于论文的讨论班,耐心解释证明细节。同时,在书写中又做了一些必要的优化。最终,论文被同行们承认。
4、论文是正确的,但超越了时代,业内专家都看不懂。多年后被承认是正确的。
经典案例:伽罗瓦对五次方程无根式解的证明
5、论文业内专家说论文错,作者坚持自己对,但不解释,然后长期扯皮。
经典案例:望月新一ABC猜想的例子
神仙打架这个在数学界也是会发生的,而且是打群架。
6、论文是错误的,很快被发现错误,证明失败。
论文被发现错误,并被具体的指出,这是发生几率最高的事情。
7、论文的错误过于离谱或者论文细节太缺失,业内专家都不削于发表看法。
这种情况经常见于一些没有专业训练所谓“民科”的证明宣布,但实际上也有业界大佬干这种事情。最近的例子就是阿蒂亚宣布对黎曼猜想的证明。
2018年,菲尔兹奖得主宣布证明了黎曼猜想,并在一个讲座中公布了一个5页纸的证明。由于证明细节大量缺失,而且在本来不长的论文还写了很多与数学证明的技术无关的物理思想,所以数学界没有把这个证明宣布当成一次严肃的学术发布。出于对老数学家的尊重,也没有人公开发表看法。即便过去获得过菲尔兹奖,如果论文的东西没有具体的技术性内容,学界同样对它没有兴趣。
8、论文被业内专家承认是对的,得到学界认可。但多年后发现错误,然后重新开放问题。
经典案例:肯普对四色猜想的(错误)证明
有没有可能,包括证明发布者在内的所有的专家都错了。这尽管非常罕见,也是有可能的。
总结一下,一篇数学大问题的论文要获得快速通过需要:
1、论文的核心过程和核心结论本质上是正确的。
2、论文的书写条理清晰、文字易读。
3、面对提问积极解释和回应。
下面的问题都是世界难题。如果你能解决其中任何一个都能在数学界斩获一个大奖。下文中,符号x^y表示x的y次方。
1、哥德巴赫猜想猜想:每个不小于6的偶数,都可表示为两个奇质数之和。
2、考兰兹猜想,也叫3x+1猜想。给定一个正整数初始值n,如果n是偶数,则将其除以2,如果是奇数,就计算3n+1。这样会得到一个新的正整数。照着这样的操作一直进行下去,会得到一个正整数序列。考兰兹猜想说,无论给定怎么样的初始值。这个序列最终会进入4,2,1,4,2,1......这样的循环。
3、勒让德猜想:任意两个相邻完全平方数之间,都存在至少一个质数。即,对任意正整数n,存在质数p,满足n^2
4、孪生质数猜想:存在无限多个质数p,使得p+2也是质数。
5、梅森质数猜想:形如2^n-1的正整数中,有无穷多个质数。这个猜想大约在1639年提出,已经经过380多年了。
6、n^2+1猜想:存在无穷多个自然数n,使得n^2+1是质数。
7、费马数猜想:数列F(n)=2^(2^n)+1,n=0,1,2,3,4,...其中的自然数称为费马数。证明费马数中只有有限多个质数。当n=0,1,2,3,4时,费马数F(n)是质数;1732年欧拉发现F(5)是合数.此后没有再发现其它费马数是质数.。
8、奇完美数猜想:是否存在是奇数的完美数。一个正整数是完美数是指,它的所有真因数(非它自身的因数)之和等于它本身的自然数。比如6的真因数是1,2,3而1+2+3正好等于6。
9、完美长方体猜想:是否存在一个完美长方体。完美长方体是指这个长方体的长、宽、高以及其所有的面对角线和体对角线都是正整数。相当于寻找三个正整数a,b,c,使得a^2+b^2,a^2+c^2,b^2+c^2,a^2+b^2+c^2这四个数的平方根都是整数。
10、黎曼假设:该问题提出于1859年,即讨论黎曼ζ函数的零点分布情况.数论中有一些与之等价的命题.
11、欧拉常数是有理数还是无理数?其中的定义是1+1/2+1/3+...+1/n-lnn在n→∞时的极限。
12、对于黎曼ζ函数,当k为正奇数时,ζ(k)是否为超越数。你可以用简单的高数知识证明,k为正偶数时,ζ(k)是关于π的有理系数多项式,所以是超越数。
13、埃尔德什倒数和猜想。如果A是一个正整数的无穷子集,A中所有数的倒数和发散,那么A包含任意长度的等差数列。格林和陶哲轩合作证明了A为质数集合的特殊情况,这个成果帮助后者得到菲尔兹奖。
14、n≥5时,拉姆齐数R(n,n)的值是多少。现在已知的是R(1,1)=1,R(2,2)=2,R(3,3)=6,R(4,4)=18,n≥5的任何一个数都没有结果。哪怕知道R(5,5)是43到48这6个数中的其中一个,也无法把它验证出来。
15、华林问题各种值的确定。对于正整数m,n,如果任何一个正整数都能写成n个非负整数m次方之和,而且n还是满足这个条件的最小的,我们就说g(m)=n。比如四平方和定理:每个正整数均可表示为4个(非负)整数的平方和。而7不能表示为3个整数的平方和,相当于说g(2)=4。对于正整数m,n,如果除了有限个情形外任何一个正整数都能写成n个非负整数m次方之和,而且n还是满足这个条件的最小的,我们就说G(m)=n。现在知道的很少的几种情况是g(2)=4,g(3)=9,g(4)=19,g(5)=37,g(6)=73,G(2)=4,G(4)=16,还没有找到确定所有的g(m),G(m)的一般方法。有个具体的猜想是g(m)=2^m+[(3/2)^m]-2,这里方括号表示取整。
本文编译自+Plus网站
原文作者:MarianneFreiberger、RachelThomas
编译作者:Math001
维娅佐夫斯卡(MarynaViazovska)是2022年菲尔兹奖得主之一。菲尔兹奖每四年颁发一次,只颁发给40岁以下的数学家,被誉为数学界的最高荣誉之一。
维娅佐夫斯卡是史上第二位女性菲尔兹奖得主,她获奖的成果和我们日常生活中经常见到的一些事物有关。
从桔子开始
运水果的确不是一件轻松的事情。不仅水果会经常被挤变形,即使不考虑变形,把桔子考虑成最简单的球形,也会有问题。无论你怎么装箱,都会留下缝隙。这就自然的会提出一个几何问题:我们如何排布这些球状水果,能让水果尽量多的装到箱子里?比如怎么样装桔子,可以让桔子占箱子里的空间比率最大?
"假设有个巨大的箱子以及数量巨多的球体,"维娅佐夫斯卡说,"同时简化一下问题,球体是刚性的不能被挤压,另外每个球都是相同大小。我们要尽可能多的在箱子里放置这些球。"
如果盒子很小,那么答案可能和盒子的形状有关。但如果盒子很大,形状的影响可以忽略不计,答案只取决于盒子的体积。“这在直观上很显然,存在一个最大的可以用等大小球体填充的体积比,虽然在数学上需要做一些工作才能证明这一点。”球体堆积问题就是找到这个最高比率,也称为球体堆积常数。
再来一个更简单的例子,让我们降低一个维度:我们不是将球体排布到3维空间中,而是将圆盘排布到2维空间中。“在2维空间中,最佳排布是蜂窝状排布,”维娅佐夫斯卡解释说。通常的蜂窝每个单元都是六边形,六边形整齐地组合在一起,彼此之间没有空间。如果您以相同的模式排布圆盘,您确实会出现间隙,我们能证明这的确是最密集的排布“这样,我们就用这些同样大小的圆盘覆盖了90%多一点的面积。”实际上二维球体堆积常数的精确值为
"三维空间的情形被称为开普勒猜想,已经400多年没有解决了,"维娅佐夫斯卡说,"三维空间里我们不止一个最佳堆积,我们有很多比率相等的最佳堆积。"其中一种你在菜市场也见过,就算把桔子摆成金字塔的形状(见上图,我们用球代替桔子)。这种方式的堆积密度大约是74%。实际上三维球体堆积常数的精确值为
1998年有一位数学家给出了这种堆积是最佳堆积的证明。海尔斯(ThomasHales)用250页的传统形式的数学论文,加上3GB的计算机代码和数据做计算试图证明它。这是富有争议的证明方式,因为没人能在有生之年去验证计算机产生的数据,所以海尔斯工作是否是完成了证明还没有最终确定。也有专家团队说有99%把握确认这套证明是对的,他们使用了计算机形式逻辑参与验证。
高纬度的球体堆积
为了把控更高的维度,我们要从二维转向三维,我们把思绪再次回到中学阶段。如果你也是那种三维立体图形画图困难户,那你就要感谢代数的作用了。三维空间中的点由3个坐标值表示,线和平面等形状用相应的方程表示。如果你无法想象图形之间的关系,这些方程可以帮到你。
在高维空间中,也适用同样的原理。n维空间的点由n个坐标值表示。和2维以及3维空间一样,你可以给出高维空间中距离和体积的概念,然后定义包括高维球之类的各种形状,这些都是用方程来定义。虽然这些图形无法作图了,但是用代数方法可以处理它们。所以,你同样可以定义高维空间中球体堆积以及堆积密度的具体含义。
回到2维和3维的情形,我们来看看如何从2维的情况推广到3维:先用刚才2维上的蜂窝排布的方式把3维的球体在平面上铺一层,从2维角度看,这是最佳堆积。然后在这一层上铺第二层,第二层的球都铺在第一层的凹陷处。然后继续第三层、第四层……这样的确会产生一个最佳堆积,所以人们会想当然的认为,这种推广方式会自然的推广到高维情形。
哎呀,但事与愿违。知道其中一个维度的最佳堆积和对推算下一个维度的最佳堆积并没什么用。下图展示了4维到26维目前人们知道的最佳的堆积的下界。从图上看,呈指数级下降趋势。
寻找上界
我们寻找的数是某种意义的最大值,比如说堆积密度的最大值。但是,往往没那么好的运气说找到就找到,这时候我们就要退而求其次,去找一个上界:一个数,那个还没求出的堆积常数一定不超过这个数。
不同维度的堆积常数上界陆续被人们提出。2003年科恩(HenryCohn)和艾尔基斯(NoamElkies)研究出了一个非常有趣的求上界的办法,可以用于任何维度的计算。但这个办法有实际操作上的难度,所以两个人也只把这些上界算到32维的情况。结果就是下图,包含4到28维的情况,绿色是下界,蓝色是上界。
这里值得注意的是8维和24维,它们上界和下界几乎重合。如果真是重合的,那我们实际上就知道了对应维度的球体堆积常数。科恩和艾尔基斯没能证明它:因为存在某种非常不爽的可能性,球体堆积常数介于上下界之间肉眼无法分辨的微小的缝隙中。科恩在《美国数学会通告》(NoticesoftheAmericanMathematicalSociety)发文说:"对于信仰数学之美的人来说,这应该不可能,但信仰不是证明。"
缝合缝隙
维娅佐夫斯卡在科恩和艾尔基斯的工作基础上,缝合了8维空间上的缝隙。随后,又在科恩、库马尔(AbhinavKumar)、米勒(StephenD.Miller)、拉德申科(DanyloRadchenko)的帮助下,完成24维的工作。如果忽略球体本身这个形状,只考虑球心,那你就得到了点在空间中的配置。除了每个点的坐标,我们用点与点的距离统计来描述这个配置:产生的最小距离有哪些,它们占比多少?
这是物理学中经常用的办法。"天文学家经常干这种事情,"维娅佐夫斯卡说。"他们观测星空,计算恒星之间的距离。他们忽略空间的几何形状,只记录每两个恒星之间的距离。实际上,这些距离的统计数据一定会满足某种限制。如果你想让一定数量的恒星保持这种距离,又有一定数量的恒星保持那种距离,还有一定数量的恒星保持再一种距离,那么空间中可能不会出现这种恒星排布。"
用类似的思想,科恩和艾尔基斯证明了球体堆积的距离分布也需要满足特定的限制,这让他们得到了球体堆积常数的上界。要完全满足这种限制,你需要找一个性质非常特别的函数,这就是难点。科恩和艾尔基斯只能逼近这个函数,这就是他们只能从逼近层面得到上界的原因。
这就是维娅佐夫斯卡真正实现的东西:用了一个前人从没考虑过的“大胆构造”,它做出了一个满足条件的函数。
维娅佐夫斯卡证明了8维空间中球体堆积常数是:
就是说等体球体最多能填充25%左右的8维空间.
使用的填充方法叫做E8格球体填充。所用的球体半径都是1/√2,球心是全部格点(坐标都是整数的点)以及两个格点连线的中点(还要求格点端点的所有坐标值之和为偶数)。E8格和E8例外李群有关系。在8维空间里,就没办法图形展示了。24维空间用的是利奇格(Leechlattice)堆积,比E8格要复杂,得到24维空间的球体堆积常数是
迷之维度
到底是什么让8维和24维如此特别?"每个人都问我这个问题——我也不知道,这是个迷,"维娅佐夫斯卡说。"在这两种维度中,那些点能被精妙的配置,使得我们能精确的计算出来,但这样性质良好的配置其他维度都没有。你问我原因,我真不知道。"
但是已经够了,就8维和24维的证明已经足以让维娅佐夫斯卡获得数学界的至高荣誉了。未来,无论谁用何种方法解决其他维度的情况,都能为这个人带来极高的荣誉。
梅纳德(JamesMaynard)是2022年菲尔兹奖得主之一。菲尔兹奖每四年颁发一次,只颁发给40岁以下的数学家,被誉为数学界的最高荣誉之一。
梅纳德是数论的顶级专家,这次得奖几乎是众望所归的。
数论、质数
"数论在我心目中的地位是独特的,甚至在我正式学习它之前就已经如此,"梅纳德说。数论,研究整数性质以及研究整数之间相互结合产生新数的学科。数论就是梅纳德的一个学术性的游乐场,这是让梅纳德从孩提时代就流连忘返的地方。
处于数论中心位置的东西就是质数,只能被1和其本身整除的正整数。因为不能再因数分解,质数经常被人们描述成数论的原子。每个其他正整数都能被这样的原子"做"出来,任何正整数都能写成一些质数的乘积。比如24=2×2×2×3,再比如110=2×5×11。
其他的质数,也能用类似的办法写成这样质数乘积的形式。
孪生质数猜想
梅纳德一个最重要的贡献就是关于孪生质数猜想的。几千年前,我们就已经知道质数有无穷多个,但是这些质数排布在数轴上的时候,却没有非常明显的规律。"通常情况下,你顺着数轴的方向看,质数之间的间隔会越来越大,"梅纳德说,"但是孪生质数猜想说,就算从大面上质数的间隔越来越大,也有极少数的质数会互相挨着非常接近。理解质数间隔是理解质数分布最基本的问题。"
除了2,左右质数都是奇数,所以质数之间最近的间隔就是2了(只看大于2的质数)。刚开始,很容易找到一些间隔最小的质数,它们被称为孪生质数:3和5、5和7、11和13都间隔2。但随着数的增大,这种质数在数轴上越来越难找到。数学家们都相信,能找到无穷多的孪生质数,这就是孪生质数猜想。
孪生质数猜想是数论中最著名的猜想之一,它表述简单,但一直没被证明,几百年来一直让数学家着迷。经过数百年的探索,在2013年取得了一个重大突破。张益唐证明了有无穷多对质数,它们的间隔小于7000万。"对数学家来说,这是一个巨大的突破。这是人类第一证明了质数具有一个有限的间隔",梅纳德说,"尽管7000万比2大很多很多,但7000万比无穷大小多了。"
张益唐的突破和筛法有关系。筛法是在证明过程中,筛掉不需要整数的办法。最初等的例子是埃拉托色尼筛法,他能筛掉所有不是质数的数。从2开始,在数轴上去掉所有2右边所有2的倍数。这样2的右边,最小没被去掉的整数就是3,再把3右边所有3的倍数去掉。这样3右边没去掉的整数是5,这样重复操作下去。桑达拉姆筛法也能筛掉不是质数的那些数,但它基于一种算术级数(就是等差数列)来做筛选。
"筛法是数论研究中,将已理解的信息转换为你试图知道的信息的有利工具,"梅纳德说,"如果你知道关于算术级数的一些具体技术手段,那么你就可以用它转换一些关于质数最近间隔的信息。"筛法初看下很简单,但很多时候,要用一些很强的数学结论才能让它发挥作用。张益唐的成果的强大在于,可以通过控制输入的方式来让筛法得到想要的信息。
梅纳德的方法却不同:"不是对筛法去改进输入而是改进筛法本身,这个方法在将一种类型的信息转换为另一种类型的信息方面变得更加有效,这意味着我们只需更弱的输入来获得关于素数间隔的结果。"通过这种新方法,将间隔从7000万大幅减少到只有600。在与更多的数学家进行了一系列合作之后,我们现在已经知道存在无穷对质数,它们之间的间隔只有不超过246。
即使取得如此巨大的进展,孪生质数猜想的证明仍然难如登天。工作仍在继续,通常这需要全新的方法去证明。在新方法的研究中,梅纳德证明了一个有趣的结果,给定任何一个10进制正整数,存在无穷多个质数,它的十进制表示不包含给定的正整数(包含是字符串意义的包含,比如1231,312都包含12,但不包含39)。在这个阶段很难知道孪生质数猜想何时会被完全证明,但梅纳德依然乐观的表示:“我们离证明孪生素数猜想还有差一个关键思想,但也许我们只差关键思想。”
要么全都是要么全都不是
数论中有大量长期存在的猜想以及悬而未决的问题。证明孪生质数猜想可能还有一段很长的路要走,但最近梅纳德与他的同事库库洛普洛斯(DimitrisKoukoulopoulos)证明了另一个重要猜想。
1941年提出的达芬-谢弗(Duffin-Schaeffer)猜想,它是一个关于有理数逼近无理数能力的一个猜想。实数是由有理数和无理数组成的。有理数能写成两个整数p和q的商p/q,而无理数是写不成这样形式的那些实数。最著名的就是圆周率π,它等于3.1415926...是一个不能写成整数之商的无理数。我们只能用有理数去逼近它。比如,我们只用保留两位小数的3.14来作为π的近似值,那么对应的分数就算314/100。但用的两个数都有点大,实际上22/7是一个更精确的逼近。
"就是说22/7可以算是更有效捕捉π的算术信息的近似值,"梅纳德说。理解实数的有效逼近(也称为丢番图逼近)以及这些逼近的分布可以为数论学者提供非常重要的信息。达芬-谢弗猜想使得有效逼近在什么情况下存在或者不存在的判断变得简单。
如果你试图让你的近似值具有一定的精确性。而且这个近似值会随着分母q的变化而得到一个p/q。达芬-谢弗猜想说,通过简单的计算可以告诉您,在"几乎"意义下,要么对所有数都有指定类型的有效逼近,要么没有。
"达芬-谢弗猜想说,要么是那种除了极少数的例外都能做有效逼近,要么根本做不到有效逼近。"梅纳德说,"而且猜想告诉你了一个简单步骤来让你知道能做还是不能做。"
这初看下似乎没那什么用,但它为数学家提供了一个强大的工具。“有很多数学命题,数学家希望它任何情况下都是对的,但事实证明有一些令人讨厌的反例,”梅纳德说。“但如果这些反例情况相当罕见,那么结果就是这些反例并不那么重要。”
玄幻
梅纳德的工作被描述为“非常巧妙,经常在当前技术看似无法解决的重要问题上取得令人惊讶的突破。”尽管他硕果累累,获得菲尔兹奖仍然令他惊异。“当坐在办公桌前拨弄数学玩具的时候,我不觉得自己在数学上获得了巨大的荣誉!”
虽然获得菲尔兹奖这个数学界最高的奖项之一是一项巨大的荣誉,但梅纳德依然觉得这个奖项令人敬畏,而且有点玄幻。“可以这样说,我脑海中浮现的数学史上的传奇数学家们都是令人敬畏的。当我还是个孩子的时候,这些数学家都是我仰望的人。”他说。"我也得奖了,这太玄幻了!"
许埈珥是2022年菲尔兹奖的得主之一。菲尔兹奖每四年颁发一次,只颁发给40岁以下的数学家,被誉为数学界的最高荣誉之一。
许埈珥的故事在数学界一定会是一段经典的传奇
这位数学家太非同寻常
能成为顶级数学家的人,在他们小时候一般都被视为“神童”。很早就表露出天赋,在学校里夺得所有的数学竞赛的奖牌,并按照命中注定的伏线走向通往伟大的道路。
许埈珥是完全的另类。小学时成绩就不好,高中时觉得上学无聊,书不念了去写诗。他最终选择了做数学,不是因为这个学科,而是因为一个人。就当他即将从首尔大学的物理及天文专业毕业的时候,他了解到著名数学家广中平佑在他学校开着一门课。“我对数学一无所知,但我看过广中平佑自传。这人非常有趣,所以我就选这门课了”
课程是对广中平佑所作工作的即时反馈,讲述了他最近产生的对数学的思考洞见。"这是我第一次见把数学当职业的真人",许埈珥说,"我第一次把数学当作人类活动而接触这个学科"。这种人类活动带来的愉悦让许埈珥深陷其中,如痴如醉。
肉眼可见的数数
组合数学就不太一样:组合数学是数数的艺术,数的东西总能数得出来。因为那些东西都是有限多个,而且还是离散的。组合数学中最典型的问题是,一种扑克牌的牌型有多少种。“所有的东西都是实实在在的,你甚至可以触摸到它们”,许埈珥说,“组合数学就算我肉眼能看到的那部分数学。”
如果数数被认为是数学的基柱之一——人们小时候做的第一类数学活动,从生物角度看,我们人类在诞生之初就做在做这样的事情——那么还有一个基柱必须是几何。“几何对所有人来说都是相同的,”许埈珥说。“我们是视觉动物,视觉是我们的主要感官。我们通过视觉产生的几何而不是通过声音、味道或气味来了解我们周围的世界。”
虽然您可以在不遇到概念困难的情况下进行大量计数,但几何图形更具欺骗性。一个多节土豆的形状是我们一看到它就会立即得到的东西,但是当我们没有图片来描述它时,我们很快就被难住了。“几何很难形式化,”Huh说。“它包含大量信息,尤其是当您将其与我们的语言和逻辑的复杂性进行比较时。”
虽然你可以在不基于任何高深数学概念的情况下进行数数,但几何上的计数会有很多误导。比如我们很容易看清一个长有很多疙瘩的土豆,但当我们没有一个合适的图形描述它的时候,我们就会犯难。"几何很难被形式化",许埈珥说,"尤其和我们的语言和逻辑对比的时候,你会发现几何包含的信息实在太多了。"
然而,当你使用方程的时候,奇迹发生了。比如方程y=x精确定义了一条平面上的直线。对直线上每个点匹配一个坐标(x,y),然后这些把满足方程的所有坐标标记出来即可。
同样的方法,你可以回忆你中学学过的方程y=x2,这是一条抛物线。
类似的,不同的方程能描绘出不同的形状。这就和那种不规则的土豆不同,我们就可以用代数工具来研究几何了。数学中这是一个专门领域,叫做代数几何。
“在代数几何中,为了精确表述一个几何空间,你要做的就是写下一个方程,甚至这个方程都不是很复杂,比如多项式方程。”许埈珥说,“你可以把它写在你的小本本上,然后看看——这是你可以看得见摸得着的东西。这是我职业生涯初期中唯一能动手做的东西。这就是为什么代数几何也吸引了我。
唯一的最小值
许埈珥获得菲尔兹奖的数学成果是非常艰深的理论,涉及代数簇和霍奇理论。但当让许埈珥说出一个他自己引以为傲的成果时,他说的是一种用一些简单信息暗含深刻结果的一些数学方法。这个方法建立了连续和离散的桥梁,就算不从数学考虑也很有意思。
为了描述这个方法,我们还是从之前的抛物线y=x2开始。
这个抛物线有个重要性质,就是在蓝色的点处取得唯一的最小值。
抛物线只有一个最小值的原因是,它不会向上凸出。这与下面显示的曲线y=x^4+2x2-x/2形成对比,该曲线在底部有一个向上的凸起,会产生两个局部的最小值(极小值)。
换种说法,我们说抛物线的上方区域是(下)凸的,但第二条曲线不是。标准说法是,一个区域是凸的是指,其内部任何两个点连接的线段仍然在其内部。那么抛物线就是凸函数。而第二个函数是非凸函数。
当一个函数涉及多个变量的时候,也有凸的概念。如果是两个变量,就对应只有一个山谷的概念,而不是复杂的山脉。如果是更高的维度,图像无法画了,但依然可以定义凸的概念。
求最优解
但是,如果这个函数是凸函数,那么问题就容易得多,因为凸函数的极小值是唯一的(所以这个极小值就是最小值)。你甚至可以用一种“凭感觉”的手段来寻找这个最小值:就算你不看图像,你也能感受到走那边是往下走的,向那个方向走一小段,然后继续“凭感觉”探路。对于更多变量的函数无法画图像的时候,这个手段依然奏效。
但对于非凸函数,这种“凭感觉”的方法就会误导你:你得到的可能是众多极小值中的一个,你无法确定它是某个局部的低点,还是全局的最小值。
建立联系
对于优化问题,数学中的凸分析是个无价之宝。但问题是,凸分析针对的函数是连续函数。如果不是身处连续的曲线上,而是在一个和别的岛屿分离的小岛上,那你周围就没有信息让你“凭感觉”探路了。
"但是,我们身处世界是越来越数字化的,也就是离散化的",许埈珥说,“我们会经常对某些离散情形做最优化,为此你需要一种不同的技术手段。”尽管搞优化的学者们已经开发了一个框架来处理离散问题,但这两个领域直到最近还没有明确地联系起来。"尽管连续情形和离散情形两者问题类似,但还没找到直接的连续,"许埈珥说。
许埈珥在他和同事们所做的就是通过巧妙的观点转变找到这样的联系。上面的方程y=x2描述了一条连续的曲线,但它本身是由有限数量的离散信息定义的——这就是我们很容易将它写在小本本上的原因。我们只需要知道变量x和y的幂的次数,这些它们系数是多少,以及等号的位置。因此,这个方程可以视为离散对象。
基于这个观点许埈珥和布兰登(PetterBr?ndén)研究出了一种适用于洛伦兹多项式的深层理论。对于洛伦兹多项式,两种凸性的角度——一种从连续角度一种从离散角度——通过多项式的两种不同视图自然地联系在一起:一方面作为连续对象,另一方面作为离散对象。
“找到这种形式联系非常令人满意。”许埈珥说,“对我们来说,更让人欣喜的是,一旦有了这样的联系,你可以用一种非常自然和简单的方法去解决那些被认为技术性很强且非常难的问题。”
数学是人性的镜子
如果数学领域的界限的产生如此偶然,那么数学中一些最深奥的问题跨越这些界限也就不足为奇了。从这个意义上说,我们开发的数学是我们人性的一面镜子。“它展示着,我们是谁,我们如何思考。”
度米尼尔-柯平(HugoDuminil-Copin)是2022年菲尔兹奖得主之一。菲尔兹奖每四年颁发一次,只颁发给40岁以下的数学家,被誉为数学界的最高荣誉之一。
相变和普适性
度米尼尔-柯平因为在统计物理中对相变的数学理论的工作而受到数学界的认可。在日常生活中,我们经常看见相变发生:比如低于零度的时候水会结冰。相变是一个复杂的系统,就拿水分子来说,在一些特定的临界温度附近,分子行为会发生非常剧烈变化。
“作为数学家,我们做的事情是通过对这些物理现象建立数学模型,去理解相变是怎么发生的”,度米尼尔-柯平说到。比如规则晶格模型通过对分子排布的描述来理解这些现象。实际上液态水分子的位置并没有那么规整,在现实中,他们不会像晶格描述的那样排布在空间中。但为了对这种系统进行研究,通常会简化的认为分子按这种非常规整的方式排布。
虽然这个假设不完全符合事实,但度米尼尔-柯平说用这种方式研究的系统却可以解释现实中发生的现象。"这就和一个深刻的理论有关系了,叫做普适性(universality)。我试图用数学的方式去理解它"
普适性就像一种梦幻的场景:一些情况下,数学模型中的琐碎细节并不影响全局行为。原因是如果一个系统涉及多个不同的随机过程,那么底层机制的一些细节就和全局无关了,比如水分子的运动。在水结冰的过程中,无论你把水分子的排布看成怎么样晶格排列,你研究的相变的性质都是相同的。
"这让数学家和物理学家都安心,因为很多系统都具有相同的行为表现。那么你只需要选择最简单的情况来研究,就是那种规整的规则晶格。"从数学上来说,您可以从这种更为简单的问题描述中得到更多信息。数学模型不一定就是物理现实,但由于普遍性,你的结果都是相同的,和初始假设用精确的物理描述结果是一样的。
漂亮的问题
统计物理中有很多问题受到度米尼尔-柯平青睐:很多是看似简单但需要新数学方法来攻克的问题。一个例子是他在做博士后时做的第一个猜想。
“想象一下,你现在在一个蜂窝面前,”度米尼尔-柯平说,蜂箱的形成了平面上的六边形平铺,蜂箱壁的挡板和挡板转角标记成为六边形(蜂窝格子)的点和边。你选择一个点作为起点,然后在六边形的边界上行走,但有一点,你不能回到任何之前走过的地方,边和点都不行。这个规则叫做自规避行走。
现在的问题是,有多少种自规避行走的走法?就如他所说,规则非常简单,小孩子都能玩。如果让你走一步,那么有三种走法,如果让你走两步,就有6种走法,如果让你走三步,就有12种走法。如果走的步数越多,情况就会越来越复杂。而且为了不走重复路线,你去数这些走法的数量就越来越困难。“你很快就会发现到你无法准确计算出走法的数量,这是一个很难把控的数。”下图是走5、6、7步时候的走法示意。
1980年统计物理学家尼恩胡斯(BernardNienhuis)给出了一个惊人的猜想,他说这个数不仅能把控,而且有一个对数量级的精确限制。他猜想,如果走n步,那么自规避行走数量的增长速度是(√(2+√2))^n(先根号2,再加上2,然后整体再开根号,再n次方)。
这个问题不止数学家关心。上世纪40年代,保罗·弗洛里(PaulFlory,1974诺贝尔化学奖得主)和奥尔(W.J.C.Orr)引入了自规避行走来研究长链分子(聚合物),以及去理解聚合物的行为。“这与物理关系密切,例如如果试图理解DNA分子的行为。这些聚合物会自规避行走,原因是显然:它们是分子组成的一个长序列,不会在同一个地方重合。”
全文如下:
我们谴责疯狂、非正义以及威胁人类生存不可逆转的战争。虽然我们的损失和数百万乌克兰人民的损失和他们正在遭受的苦难无法相提并论,但我们也痛心的看到我们多年以来的全部梦想和全部努力毁于一旦。我们努力的目标和现在正在发生的可怕事件以及相应的责任渐行渐远。不过,环顾我们已经破碎的梦想,我们依然感到我们背负了一笔巨额的债务,在我们这代人的有生之年都无法偿还。
德米特里·贝利亚耶夫(牛津大学教授)
安德烈·奥昆科夫(莫斯科大学教授,2006年菲尔兹奖得主)
茱莉亚·佩夫佐娃(华盛顿大学教授)
斯坦尼斯拉夫·斯米尔诺夫(圣彼得堡大学教授,2010年菲尔兹奖得主)
——编者注:各个教授的身份为小编补充
2022年国际数学界最大盛会必然是定于7月在俄罗斯举行的国际数学家大会(ICM),世界上最优秀的数学家届时汇聚一堂,参加这个四年一度的数学交流活动。另外,大会最重要的一个议程莫过于颁发菲尔兹奖的新得主,这个奖项被誉为数学界最高奖项之一。
然而,俄罗斯和乌克兰两国局势的剧变,让这个大会的举办充满了变数。
美国数学学会(AMS)领导团队对当前的乌克兰局势及其对计划于俄罗斯圣彼得堡的2022年国际数学家大会(ICM)的影响感到担忧。国际交流活动对数学的健康发展至关重要。国际数学家大会也是支持和庆祝这些发展的不可替代的契机,但当前局势并不支持。美国数学会没有计划参加在圣彼得堡举行的会议。我们也敦促国际数学联盟不要在2022年7月在俄罗斯举办国际数学家大会。
AMS-NSF-Simons-ICM旅行资助项目(为参加国际数学家大会的师生提供交通补助的项目——哆嗒数学网编者注)已暂停。已经通过申请的人士将收到来自美国数学学会的进一步通知。
美国数学学会是一个由全球30000名个人和570家研究机构组成的专业协会,致力于推进数学研究和学术交流,并通过提供学术出版、学术会议、宣传活动、求职服务等方式联系全球数学界。
主办方的ICM2022官网,目前没有受到俄乌局势影响。
愿世界和平!
2021年12月,2022年国际数学家大会(ICM)组委会在其官方网站宣布,启动了该届大会志愿者的招募程序。招聘需求和流程都能在ICM官网找到。
2022年国际数学家大会定于2022年7月6日至14日在俄罗斯的圣彼得堡举办。新一届的菲尔兹奖届时也会在大会上公布。菲尔兹奖有着“数学届的诺贝尔奖”的称谓,被认为是数学领域的最高奖项之一(部分人认为“之一”两字可以去掉)。
志愿者被要求必须年满18周岁,并有熟练使用俄语和英语与人交流的能力。如果你能熟练使用其他语言,诸如中文、西班牙语、法语、德语等,这些语言能力能成为你的加分项。同时组委会也希望,申请人热爱数学,遵守志愿者计划规程,并有出色团队合作能力。
组委会宣传成为ICM志愿者是一个独一无二的自我提升机会和个人经历,他们总结的成为的志愿者好处。
成为志愿者的好处:
能参加一个四年一度的世界上最重要的数学盛会
加入国际数学届
交到新朋友
英语的具体实践以及了解其他语言
这是一个可以得到就读大学认可的社会实践活动
提高专业技能、沟通技巧以及其他能力的提升
收到大会的礼品和专属纪念品
享受一次数学盛宴,难忘的经历
参加签名会
参加大会志愿者的散伙饭派对
志愿者大礼包括以下内容:
国际数学家大会专属志愿者服装
专业培训
免费住宿
免费餐食
免费交通
参与证书
健康保险
申请截至日期:2022年3月1日
功能区和班次安排:2022年4月
培训:2022年6月
证件和制服发放:2022年6月
作者:Math001
《数论导引》是英国顶级数学家Hardy的名著,英文原名叫做AnIntroductiontotheTheoryofNumbers直译一般应该是《数论导引》。但是,为了销售上的考虑,图灵出版社翻译这本书的时候,将书名定成了《哈代数论》,当当有售,现在巨贵。如此名著中既然这样写了,我们就要认真考证一下,到底怎么回事。
第一反应是不是翻译成中文后,阴差阳错出现了搬运错误。上面中文版的截图是该书的第6版,于是我也找到英文版的第6版来对比。结果,不出我所料,英文版和中文版的内容果然对不上。出乎我意料的是,中英对照的差异——比我原想的大的多。
首先,英文版中列出了两行实数,分别列出了哪些是已经被证明了是无理数的数,哪些还没有被证明是无理数的数。两行数,每行4个数,共8个。而中文版中对应的两行数变成每行3个数,共6个。然而,数的个数还不是最大的差异。在已经被证明了是无理数的那一行中,中文版里列入了eπ,而英文版里并没有eπ,而是另外两个数。而还没有证明是无理数的那一行,英文版里本来有e+π,但是中文版里把这个数去掉了。
——遗憾的是,e+π以及eπ这两个数的是否是无理数,到目前为止,依旧是未解之谜,人类中没人知道。这些问题涉及数学里的一个研究分支,叫做超越数论。
超越数论里有个非常重要的猜想,叫做沙努尔猜想。如果这个猜想成立,那么很多数的无理性以及超越性都能得到证明,包括e+π和eπ。
在介绍这个猜想之前,首先要介绍一下在有理数数域上线性相(无)关和代数相(无)关的概念。
沙努尔猜想说:如果n个复数x1,x2,...,xn在有理数域上线性无关,那么这2n个复数中x1,x2,...,xn,e^x1,e^x2,...,e^xn至少能找到n个复数有理数域上代数无关。(其中e^x表示e的x次方)
知道了沙努尔猜想,我们就可以在假设这个猜想成立的情况,证明e+π和eπ都时无理数(实际上能证明都是超越数)。
1和πi显然在理数域上线性无关,所以1、πi、e、-1这4个数中,能找到2个代数无关。(注意e^πi=-1)
如若不然存在非零二元有理系数多项式f(x,y)满足f(e,π)=0。那么令g(x,y)=f(x,iy)·f(x,-iy),这是一个非零有理系数多项式。而g(e,πi)=0,与πi和e代数无关矛盾。
那么e+π不可能是有理数。如若不然,e+π=q是有理数,则令f(x,y)=x+y-q,f(e,π)=0,矛盾。同样的方式,也可证明eπ不可能是有理数。
好了,我想科普的内容就是这个沙努尔而猜想。如果读者你能有幸解决他,得几个数学界的大奖是没问题的。甚至如果你没满40岁的话,冲击一下数学界的最高奖菲尔兹奖也是有机会的。
如果,你能证明eπ、e+π是无理数的话,拿个数学的博士学位应该没问题吧。
作者:KevinHartnett,《量子》杂志记者
翻译,TonyLee,哆嗒数学网翻译组成员。
随机性似乎使得数学命题的证明更困难。但实际上,经常会让事情更容易。
在数学家可用的所有工具当中,随机性似乎没什么用处。数学具有逻辑性和严谨性,它主要的目标是在浩瀚的对象“海洋”中寻找秩序和结构。正是因为数学世界不是随机的,整个数学宏伟目标才有可能实现。
事实证明,随机性在很多方面对数学有帮助。
抽象概念可以引导一些在科学和数学中有潜力的想法。下面与我们一起来看看吧。
如果一个问题不太可能直接解决,那么人们可能用间接的方式尝试间接解决。例如,如果您在考虑某一类型的对象的存在性,你可以这样思考:随机选择其中一个对象,则选中一个具备所需性质的对象的可能性要大于0。这种“概率方法”是数学家保罗·埃尔德什(PaulErds)开创的。
随机性也可以用来寻找非随机的固定路径。最近关于网格上棋盘式图案的证明就是这种情况。研究人员对一种叫做渗流模型的过程感兴趣。在这个过程中,您想知道如果仅在一种颜色的点上移动,那么观察点在什么条件下可以从网格的一侧移动到另一侧。
当你根据确定性的规则——沿着规则网格的严格确定的线——绘制这样的路径时,路径中后续的每一步都被之前的每一步所约束。对于一个复杂的网格,此要求是一个负担。这类似于俄罗斯方块拼图中的前几块比较容易放置,您可以把它们放在任何您想放的地方,但之后方块的放置就难很多,因为它们必须符合您已经放置的所有方块。
然而,当您的路径随机进行时,您不必担心您过去走过的每一步。从某种意义上说,每一步都像第一步一样自由:只要掷硬币决定下一步去哪里。
数学家试图利用这个事实。用一种叫做被称为KPZ公式的推导关系,将随机网格的结果转换为确定性的结果,反之亦然。“在这样的理论下,这意味着你可以随意在确定环境下计算或者在随机环境下计算”,布兰迪斯大学数学家、论文合著者奥利维耶·伯纳迪如是说道。这一新的工作与以前(更难证明的)关于在规则网格上渗流的结果是一致的,这也使KPZ公式得到了验证。
如果一个数学问题比较简单,那数学家可能不需要使用随机性。但对数学家而言,大多数重要的数学问题都很难直接回答了。“这可能是显而易见的,但我还是重申一下,在大多数情况下,对于数学或理论物理方面的问题,如果不借助一些工具,直接回答是不可能的”。纽约大学数学家保罗·布尔加德(PaulBourgade)如是说道。“我们只是没有解决问题的工具”。在某些情况下,随机性使事情变得更松散,足以问题的解决成为可能。
作者:EricaKlarreich,《量子》杂志记者
翻译,Erica,哆嗒数学网翻译组成员。
在他28岁的时候,彼得·舒尔茨(PeterScholze)正在揭开数论与几何之间深刻联系的神秘面纱。
在2010年,一个令人震惊的传闻在数论界传开并传到了韦恩斯坦(JaredWeinstein)的耳中。传言,德国波恩大学的某个研究生发表了一篇论文,仅用了37页就重写了“Harris-Taylor”,这个高深莫测的定理本来用了228页的一本小书的篇幅来证明的。然而,这个22岁的研究生发现了一种法涉及到数论和几何之间的广泛联系方法,回避了证明中最复杂部分。
“一个这么年轻的人做出了如此革命性的成果,这实在是太惊艳了,”波士顿大学34岁的数论学家韦恩斯坦如是说。“这实在是让人敬佩。”
波恩大学的数学家们早已意识到他超凡的数学思维,他们也在仅仅两年后就任命舒尔茨为正式的教授。在他发表了这篇关于Harris-Taylor的论文后,整个数论和几何领域的专家们也开始注意到了舒尔茨.
一类被他称之为“状似完备空间(perfectoidspace)”的“分形”结构,作为舒尔茨的关键革新虽然问世才几年,但是它已经在算术几何,一个数论和几何的交叉领域,产生了深远的影响。Weinstein认为,舒尔茨的工作具有一种预判的功能,“他甚至能在工作还没开始之前,就能看清它的后续步骤是什么”。
许多数学工作者对于舒尔茨的反应是“一种威望、恐怖和激动的结合体”,和舒尔茨共同撰写了多篇论文的密歇根大学的数学家巴特(BhargavBhatt)这样评价。
这种反应的产生并不是因为他的个性,恰恰相反他的同事们一致描述他是平易近人的。舒尔茨在波恩大学的同事赫尔曼(EugenHellmann)说:“他从来不会让你觉得他是如何高高在上的。”
实际上,这是因为他那令人难以置信的深入研究数学现象本质的能力。不同于多数数学家,他通常不是从一个想解决的特定问题入手,而是从他自己想要明白的一些难以理解的概念开始。但那之后,他所创造的那些结构“在成千上万个其他方向上都有从未被预见到的应用,只是因为它们正是应该去考虑的正确对象”,与舒尔茨合作过的普林斯顿大学数论学家卡拉亚尼(AnaCaraiani)这样说。
学习算术
在他14岁的时候,舒尔茨开始自学大学数学,当时他就读于海因里希·赫兹中学,这是柏林的一所专精于数学和科学的精英高中。舒尔茨说,在这所高中,“只要你对数学感兴趣,你就不会无法融入其中”。
在16岁时舒尔茨了解到在十年前怀尔斯(AndrewWiles)证明了最著名的17世纪数学难题,也就是费马大定理。这个定理说明,如果n大于2,那么方程x^n+y^n=z^n不存在全部非零的正整数解。舒尔茨如饥似渴地想要学习它的证明,但他迅速发现尽管问题描述起来很简单,解决它需要用到一些最前沿的数学。他说:“我当时什么都不懂,但它实在是令我着迷。”
因此舒尔茨退而寻求他需要学习什么才能理解费马大定理的证明。“直到现在,这仍然很大程度上是我学习的方式,”他说,“实际上我从未真正学习过线性代数之类的基础知识,我只是在学习其他东西的时候将它搞懂了。”
当舒尔茨钻研这个证明时,他被证明涉及的数学对象所吸引:被称为模形式和椭圆曲线的结构,这些结构神奇地统一了数论、代数、几何和分析这些不同的领域。他表示阅读涉及的这些对象的理论比问题本身更加有趣。
舒尔茨的数学品味逐渐成型。如今,他仍然被那些求解简单方程整数解的问题所吸引。这些具体的整数解让更加深奥的数学结构在他面前都变得具体。“说到底,我对算术感兴趣。”他说如果发现当他抽象的构造能带来关于整数的一些小发现时,他会感到无法言语的开心。
在高中之后,舒尔茨在波恩大学继续追求着他对数论和几何的这种兴趣。他的同学赫尔曼回忆到,舒尔茨在他的数学课上从来不记笔记。舒尔茨可以迅速理解课程的材料,“不仅仅是表层的理解,而且是某种意义上很深度的真正理解,这样他也不会遗忘。”
舒尔茨开始了在算术几何领域的科研生涯,这个领域使用几何工具来研究多项式方程的整数解,例如xy2+3y=5这种方程的整数解。对于这种类型的一些方程,研究它们在被称为p进数(p-adicnumber)的数域中的解有着丰硕成果。p进数和实数一样是通过填补整数和有理数之间的间隙构造的(通常称其为完备化),但是关于“这些间隙之中什么样的数是彼此接近”的的概念和通常理解不同:在p进数当中,两个数的差是小的并不能说明它们是接近的,实际上只有它们之间的差可以被p整除足够多次,它们才被认为是接近的。
这是一个奇怪的判断依据,但它是有用的。以3进数为例,它提供了一种自然的方式去研究形如x2=3y2的方程,因为在其中有着3这样一个关键的因子。
舒尔茨说,p进数“和我们的通常感觉差别很大”。但是这些年来它们对他来说变得很自然。“如今我认为实数比p进数要难以捉摸得多。我和p进数相处得太久了,以至于现在实数对于我来说显得非常陌生。”
数学家们在1970年代注意到,如果通过构造一个以p进数为底且每一层环绕下面一层p次的无穷的数系的塔来扩张p进数,许多关于p进数的问题会变得更加容易。在这个无穷的塔的“顶部”的数域是一个“分形”的对象,这也是舒尔茨之后发展的状似完备空间理论的最简单的例子。
舒尔茨给他自己布置了这样一个任务:理清为什么这种无穷环绕的构造能使如此多的有关p进数和多项式的问题变得简单。“我尝试理解这种现象的内核,”他说,“但是并没有能解释它的一般性理论。”
他最终意识到,给很多种数学结构构造出状似完备空间是可行的。他证明了这些状似完备空间能够将关于多项式的问题从p进数的世界转移到一个不同的数学世界,在其中算术变得更加简单(例如,在做加法时不需要进位)。“状似完备空间最怪异的性质是它们可以在两个数域间魔术般地移动。”韦恩斯坦说。
舒尔茨“准确找到了正确且最简洁的方法来整合前人的全部工作,对这些工作他给出了一个优雅的刻画。随后,就因为他发现的是真真切切的正确框架,他又做出远超已知结论的成果。”赫尔曼说。
俯瞰丛林
尽管状似完备空间的理论极其复杂,但舒尔茨的讲座和论文以清晰而闻名。韦恩斯坦称:“在舒尔茨向我解释前,我什么也不理解。”
卡拉亚尼说,每当舒尔茨阐述他的想法,总是想方设法降低难度,试图让那些研究生新生水平人能够理解。“在他的想法中有一种开放和包容的感觉,”她说,“并且他不仅仅和部分资深专家交流想法,实际上一大批的年轻人都有机会与其接触。”卡拉亚尼认为舒尔茨友好且平易近人的举止使得他成为该领域的理想领袖。她提到有一次当她和舒尔茨在与一群数学家进行艰难的“远足”时,他是那个四处奔跑来确保每个人都能跟上的人。
尽管有了舒尔茨的解释,状似完备空间对于其他学者而言仍然是难以驾驭的,赫尔曼说:“如果你离他描绘的道路偏离了一点,那你就会发现自己处于如同丛林中央一般的困境。”但他认为舒尔茨本人“永远不会在丛林中迷失,因为他从未打算在丛林里纠缠。他总是在为了某种清晰明了的概念而寻找俯瞰整个丛林的视角。”
舒尔茨通过强迫自己飞过丛林里的藤蔓来避免被它们所困:就像他大学时一样,他喜欢不写下任何东西来工作。那样他就必须用最清晰的方法来阐明他的想法,他说:“你的大脑只有有限的能力,因此不能在其中做太过复杂的事。”
当其他数学家正开始尝试理解状似完备空间时,舒尔茨和他的合作者已经毫不意外的利用它做出最深刻的发现了。在2013年,他在网上贴出的一个结果“着实让学界震惊”,韦恩斯坦说,“我们都没有意识到这样一个定理即将诞生。”
舒尔茨的结果扩大了互反律的适用范围。互反律用“时钟的算术”(这个时钟不一定是12小时制的)来处理多项式的性质。“时钟的算术”(例如对于有12个小时的时钟,5+8=1)是数学中最自然且被广泛研究的有限数系。
互反律是有着200年历史的二次互反律的推广,而二次互反律是数论的奠基石,也是舒尔茨本人最喜欢的定理之一。这条定律陈述了给定两个素数p和q,在大多数情况下,p在有q个小时的时钟上是一个完全平方数当且仅当q是在有p个小时的时钟上的完全平方数。例如,因为5=16=42,5在有11小时的时钟上是平方数,而由于11=1=12,11在有5小时的时钟上也是平方数。
“我认为这令人震惊,”舒尔茨说,“从表面看来这两者似乎毫无关联。”
“你可以把很多的现代代数数论解释为是对推广这一定律的尝试。”韦恩斯坦说。
20世纪中叶,数学家们发现了互反律和似乎完全不同的主题之间的惊人联系:研究诸如埃舍尔(M.C.Escher)著名的“天使与恶魔”的“双曲”几何。这一联系是“朗兰兹纲领”的核心部分,这一纲领是一些揭示数论、几何与分析之间关系的定理与猜想的合集。如果这些猜想能够被证明,我们通常能得到具有强大威力的工具。比如费马大定理的证明能够被归结于解决朗兰兹纲领的一个小部分(看出这个联系也很难)。
数学家们逐渐意识到朗兰兹纲领已经远远超出了双曲圆盘:它也可以在高维的双曲空间和其他情况下的簇中被研究。如今舒尔茨展示了如何把朗兰兹纲领延伸到“双曲三维空间”(一种双曲圆盘的三维类比)中的很多结构。通过构造一个状似完备空间版本的双曲三维空间,舒尔茨发现了一系列全新的互反律。
“舒尔茨的工作完全地改变了我们对能做到的和可能做到的事的看法。”卡拉亚尼说。
韦恩斯坦称舒尔茨的成果表明朗兰兹纲领“比我们所想象的还要深刻...它更加系统化,它无所不包”。
极速前进
和舒尔茨讨论数学就如同寻求一条“先知的预言”,韦恩斯坦认为。“如果他说:“是,这可以。”那么你可以对它抱有信心;反之你则应该立刻放弃;如果他说他不知道——他确实也有不知道的时候——那么你很幸运,因为你手中有了一个有趣的问题。”
卡拉尼亚说,与舒尔茨的合作并不是像预想中一样压抑的经历。当她与舒尔茨合作时,从来没有一丝紧迫感,她说:“感觉就像我们总是走在正确的路上——用最好的方法证明了我们能得到的最一般性的定理,总是正确地做出了关键的构造。”
但他一点也不倾向于把这种激情浪漫化。当被问起是否有感觉自己注定要成为一个数学家时,他表示反对。“那听起来太哲学了”,他说。
从私人角度来说,他日渐增长的名气(例如,三月时他成为德国著名的莱布尼兹奖的最年轻得主,该奖项授予250万欧元的研究经费)让他有些许不适。“有时这有些让我不知所措,”舒尔茨说:“我试图让我的日常生活不被它影响。”
舒尔茨继续探索状似完备空间,但他也涉足其他有关代数拓扑的数学领域,该领域运用代数来研究几何。“在过去的一年半中,舒尔茨已经完全成为了这一学科的大师,”巴特称,“他改变了这一领域的思考方式。”
但是对舒尔茨而言,他到目前为止的工作只是热身。“我仍然处于试图了解“那里有什么”的阶段,有一天也许我会用自己的语言来重新描述它们。”他说,“我觉得我并没有真正地开始研究这一领域。”
据美国数学会(AMS)官方网站消息,2021年度科尔代数学奖(ColePrizeinAlgebra)颁给许晨阳教授,以表彰他在代数领域取得的最新杰出成果:许晨阳与合作者们一起发展了K-稳定法诺簇模空间的代数理论,并且用K-稳定性实现了研究极小模型纲领中奇点的一个全新途径。
科尔代数奖每三年颁发一次,以奖励在过去六年中出现的著名代数研究。该奖项和科尔数论奖设立于1928年,被认为是数学中代数分支领域最高奖项之一。也是其他更为著名奖项——比如菲尔兹奖、阿贝尔奖——的前哨奖之一。
许晨阳教授在北京大学完成本科学业,在普林斯顿大学完成研究生学业。后在麻省理工学院担任博士后职位。他于2012年入职北京大学国际数学研究中心,2013年晋升为该中心教授。2018年,他加入麻省理工学院,2020年成为普林斯顿大学教授。也是从2018年开始,许晨阳教授在包括数学领域最顶级期刊AnnalsofMath在内的诸多顶级期刊上发表了多篇论文,此次科尔代数学奖特别奖励其中的5篇论文。
许晨阳教授的主要研究领域是高维代数簇的双有理几何学,按美国数学会官网介绍,他喜欢探索这门学科与其他领域的联系。
根据中国科学技术大学科研部网站消息。中国数学家,中国科大几何与物理研究中心创始主任陈秀雄教授与王兵教授成功证明了“哈密尔顿-田”(Hamilton-Tianconjecture)和“偏零阶估计”(PartialC^0-conjecture)这两个国际数学界20多年悬而未决的核心猜想。日前,国际顶级数学期刊《微分几何学杂志》(Journalofdifferentialgeometry)发表了这一成果,论文篇幅超过120页,从写作到发表历时11年。
在闻名于微分几何界的西蒙斯几何物理中心网站,大家可以找到王兵教授的学术演讲视频,大多也和里奇流有关。
最后,祝贺中科大,祝贺陈秀雄教授和王兵教授。向每一位十年、甚至几十年甘坐冷板凳的基础数学家们致敬。
1、物理学奖
代表数学家1:罗杰·彭罗斯因“发现黑洞的形成是对广义相对论的有力预测”而获奖
在数学圈内的很多看来,彭罗斯首先是一个数学家,其次才是物理学家。而且彭罗斯的领域是数学和物理重合很高的数学物理方向。
彭罗斯三角、彭罗斯阶梯、彭罗斯平铺这些有趣又好玩的数学早就名声大振,活跃各种流行作品里。2020年,彭罗斯因“发现黑洞的形成是对广义相对论的有力预测”活动诺贝尔物理学奖,使得这位本来就多少明星气质的学者又火了一把
代表数学家2:马克斯·波恩,1954年,因“在量子力学领域的基础研究,特别是他对波函数的统计解释”获奖。
虽然一般被认为波恩是位物理学家,但是wiki上也吧数学家的头衔给了他。波恩在哥廷根大学攻读博士的时候,跟着当时最牛三位数学家——希尔伯特、闵可夫斯基、克莱因——学习过数学。后来拿的学位也是数学博士学位。而波恩的物理学研究,其实用到的非常艰深的数学方法,留下来的一些东西,其实现在数学家也在研究。2、化学奖
代表数学家:约翰·波普,1985年,因“发展了量子化学中的计算方法”获奖。
代表数学家1:约翰·纳什,1994年,因“在非合作博弈的均衡分析理论方面做出了开创性的贡献,对博弈论和经济学产生了重大影响”获奖。
列奥尼德·康托罗维奇是前苏联时期列宁格勒大学(现圣彼得堡国立大学)的数学教授,是一位应用数学家。因为数学的研究,获得过苏联国内的斯大林奖金和列宁奖金。而让康托罗维奇的获奖的线性规划,也是应用数学的一个大分支。
如果说物理、化学算是数理化不分家,而经济领域本身和数据打交道比较多,数学家拿奖还算可以理解的话,下面的奖就慢慢的让你感到数学的神奇了。4、生理学或医学奖
代表数学家:阿兰·柯马克,1979年,因“创立计算机X射线断层成像(CT)的数学理论”获奖。
1979年的诺贝尔医学奖的授奖发言中说到:“今年诺贝尔医学及生理奖的两位获奖者都不是医学专家,然而他们在医学领域掀起了一场革命……他们所发明的计算机辅助X射线成像技术,使医学如同进入了太空时代。”柯马克的主业是物理,然后在与一家医院的合作项目中,将其遇到的问题转化为了一个数学问题,并写成了论文。论文中完全没提到CT什么的。后来,人们开始研究CT的工作原理,发现几十年前柯马克的这篇论文已经建立起了数学的理论框架。但数学家们的表演还没有结束.......5、文学奖
用“不想拿文学奖的数学家不是好的哲学家”这句话来描述罗素是再好不过了。罗素与怀特海合著的《数学原理》是第一部试图形式化所有数学的专著。而他提出的“罗素悖论”引发了数学界对数学理论底层更加深刻的讨论。罗素还是上个世纪最重要的哲学家之一,和另外几位哲学大咖一起创立了分析哲学。另外,他的一部《婚姻与道德》帮他获得了诺贝尔文学奖。6、和平奖
代表数学家:莱纳斯·鲍林,1962年,因“反对核弹在地面测试的行动”获奖。
经管鲍林的化学研究用到了很多数学分析工具,但他是绝对的化学家。把鲍林列为数学家似乎有些牵强,但是小编在查阅鲍林获得过的奖项的时候,发现他在1957年获得过费马数学奖章(PierreFermatMedalinMathematics)。注意,这是一个比1989年才开始颁发的费马奖(FermatPrize)更久远的奖项,按wiki上的说法,鲍林的获奖是“300年内仅有6次颁奖中的一次”。于是,列为数学家应该也不为过吧。鲍林先在1954年得了诺贝尔化学奖,然后在1962年获得诺贝尔和平奖。
作者:MeeraDesai
翻译,日月之文,哆嗒数学网翻译组成员。
国际数学奥林匹克竞赛(IMO)是为高中生举办的世界数学锦标赛。第一次IMO于1959年在罗马尼亚举行,那年只有7个国家参加。现在,IMO已扩大到了100多个国家和地区。美国队在2018年的国际数学奥林匹克竞赛中获得了第一名,并且在2015年和2016年都获得了冠军。
参加过第一次IMO的,现为罗马尼亚科学院数学部主任的ViorelBarbu博士饱含热情地写道:“数学一直是人类的一个生生不息的创造力领域,是一门有益于科学知识和技术成果的基础科学。青年数学家的作用和责任是带来和发展新的思想,在数学和其他科学领域之间架起新的桥梁。”
在这项研究中,我发现了一些非常有趣的现象,如下所示:
1、在生产前沿数学知识的能力来看,与一般博士毕业生、甚至是精英院校的博士毕业生相比,IMO高分参赛者表现非常强劲,是压倒性的高于他们。
2、一名IMO金牌获得者成为菲尔兹奖获得者的条件概率比前十名院校数学培养计划培养的博士毕业生的相应概率高出两个数量级。
4、约22%的IMO参与者拥有数学博士学位;这些人中又有约三分之一的人是前十院校的数学博士(约占IMO参与者总数的7%)。IMO参与者中有1%成为国际数学联盟(IMC)的报告人,0.2%成为菲尔兹奖获得者。
这份研究论文清楚地阐述了IMO参与者对数学领域的贡献。该论文给出了鼓励每个人从小学开始到大学参加数学竞赛的强烈理由,因为通过参加数学竞赛而获得的解决问题的技能对你无论是对职业生涯还是学术研究工作都有长期的积极影响。
根据科学突破奖官网消息,2021科学突破奖获奖者于9月10日发布。其中数学奖被英国数学家,伦敦帝国理工学院教授马丁·海尔获得,以表彰他在随机分析理论,尤其是随机偏微分方程正则性结构理论中的革命性贡献。本次奖励的奖金是300万美元。
马丁·海尔是随机偏微分方程(SPDE)的顶级专家。与本次获奖几乎相同的理由,马丁·海尔在2014年获得了被誉为数学界最高荣誉的菲尔兹奖。随机偏微分方程在传统上意义对于数学家来说很难处理,海尔开发了一种新的理论框架,让一大类随机偏微分方程有了严谨的数学意义。这套理论也让这些方程变得更容易处理,从而开启了许多新的纯数学方向,同时对随机偏微分方程在科学和工程中的应用有着重大意义。
值得一提的是,中国数学家,中国科学技术大学校友,现加州大学伯克利分校副教授孙崧获得了新视野数学奖,以表彰他在复微分几何领域的诸多贡献,包括卡勒-爱因斯坦度量存在性以及模问题和奇异性的联系的研究。此项奖金10万美元。
孙崧出生于1986年。他在2019年和陈秀雄、西蒙·唐纳森一道,因卡勒-爱因斯坦度量存在性的成果获得了维布伦奖。而维布伦奖一般被视为几何领域的最高奖项,也是菲尔兹奖的前哨奖之一。
科学突破奖是世界上奖金最高的学术奖项,它由谢尔盖·布林、扎克伯格夫妇、马化腾、马云、尤里·米纳尔夫妇、安妮·沃西基共同出资兴办。
根据Reddit新闻以及维基百科网页更新的消息。新西兰数学家,1990年菲尔兹奖得主沃恩·琼斯爵士(SirVaughanJones)因为严重的耳部感染医治无效而去世,享年6w7岁。
琼斯教授在扭结多项式上的研究成果现被称为琼斯多项式,这也是他获得菲尔兹奖的代表作。但这项研究源自于一个从未有人预料到的来自冯·诺依曼代数的分析学分支,这个分支之前被大多数人认为已经研究得非常充分,应该没什么可以深挖的了。
2009年,琼斯获颁新西兰骑士勋章,从此有了爵士头衔。
我们知道,中国人喜欢用的微博,在国外很少有人用的。他们喜欢用一个叫作推特的东西,使用方式和国内的微博差不多。
和国内的微博一样,大家在推特上发表的话题大部分是娱乐倾向的话题。一本正经的聊大学数学作业的就更少了。这几天,就发生了这样有趣的一幕。
BarbaraFantechi是意大利国际高等研究院的数学教授,其领域是代数几何。如果你百度她的名字,能搜索到她的一部著作——对格罗滕迪克名著FGA的解读。
她在推特上贴出了一个“作业题”:
假设A是一个非空集合,+是A上满足结合律和交换律的一个运算。对任意A中的元素a,A到A的映射x→x+a是双射。求证:(A,+)是一个交换群。
既然是大教授出的题目,看到的人即便要回复,也会给点面子吧。回答之前,都会对问题本身来个“高度评价”。一位韩国的老师进行了回复。她首先说,这个问题对自己来说并不trivial,然后继续写出解答:
首先,我要找出单位元0。对每个a,由于双射的性质,我们能找到x(a)满足x(a)+a=a。我想让x(a)的值和a的选取无关。用a+b诱导一个式子x(a+b)+a+b=a+b=x(a)+a+b,于是由双射的性质,则必有x(a)=x(a+b)。这样,就得到了单位元。于是,我们把-a选成由双射诱导的,与a运算后得到单位元的那个元素。最后,他还问:我想知道,我是不是用到了选择公理?能不能不用。
很多人回复:其实没用选择公理。
高尔斯的回答是,对任意x和a,因为加法x+a是双射,所以存在b满足x+a+b=x。于是得到,对任意y,有y+x+a+b=y+x。再因为双射的性质说明a+b是单位元。不排除有更高端的证明方法,我来看看别人的回复吧。——PS,这个问题非常简单,但不显然。当我明白它不平凡之后。
有人也玩起了花样,用上了范畴论,他这样回答的:
1、映射x→x+a是集合A自身的同构
2、因此以这些映射作为态射,构成一个单对象范畴。
3、每个态射都是同构的单对象范畴构成一个群。
4、根据假设,得到运算交换性。
回复中,有人对这个办法提出异议。说:
对于第1条,需要证明逆映射也有x+a形式。
对于第2条,需要证明恒等映射也有x+a形式。
还有人开始讨论,题设是否能精简。比如双射的条件能不能改成满射,而无需单射的条件。有人回复说,只是满射的话,逆的唯一性满足不了。
有人认为交换性的条件可以不需要。马上有人就回复了反例:如果加法定义成x+a=x(原推应该有笔误),映射满足除了交换性的所有条件,但这个运算都不能做成一个群。
当然,还有人吐槽:你的推文让我头疼……,Fantechi教授只好回复说:Sorry。
原文作者,KevinHartnett,《量子》杂志高级编辑。
翻译作者,独行者,哆嗒数学网翻译组成员。
校对:Math001
2017年,一个三位数学家组成的团队解决了名为齐默猜想的问题,这个问题主要是研究在某些情形下几何空间会显示出某种特定的对称性。他们的证明是近几年来最大的数学成就之一。这个问题是齐默在20世纪70年代后期到20世纪80年代前期学术活跃期间提出的,现如今这个问题得到了解决。
齐默说,“我想说的是,在这五年期间,我对这个问题日思夜想,它每一天都在困扰着我。所以,这个问题让我辗转反侧。现如今,我很高兴地看到这个问题得到解决。”
一般而言,我们通常认为几何空间的维度越多,对称性特征也就越多。比如,你可以去比较二维平面上的圆和三维空间中的球:旋转球的方法就比旋转圆的方法要多得多。这就是因为球的额外维度使得球有了更多的对称性。
他们的研究解决了一个长期以来困扰数学界的问题,同时也开辟了新的研究方向。它揭示了几何空间中的内在特性。对称性是了解这些空间最基本的特征之一。这项新研究可以用比较准确的话来讲:这些对称特征能存在某一种空间中,但对于其它空间是不存在的。齐默猜想长达数十年间都没有取得突破,现在解决以后,数学家们便有了新的发现和成就。
对称性的满足
对称性是人们从孩提时期的数学中便接触到的几何学概念。通过动手分析,孩子们便知道由于对称性,图形可以旋转、翻转和平移,最后得到的图形和最开始是一致的。图形的这种在变化中保持不变的特性满足了某种内在特点——它揭示了宇宙法则中的某种深刻涵义。
在数学中,数学家们用自己特定的规范性语言来研究对称性。这种语言为他们提供了非常准确的方法来描述在给定的几何空间中所有不同的对称性。
比如说,正方形有八个对称变换——也就是说有八种方法可以将正方形翻转、旋转成原来的图形。而对于圆来说,圆按任意角度旋转之后仍然是圆;它有无数个对称变换。数学家把特定几何对象或空间所具有的对称性全部归类在一起,称之为“群”。
群原本就是非常有价值的研究对象。群通常会出现在特定几何空间的研究中,但是他们也会出现在非几何领域中。比如,数的集合也可以组成群。(比如说:考虑如下的对称性,例如给一个数+5或-5。)
齐默说:“理论上,各类事物的对称性都可以用群来表达。”
现在我们讨论的对称性和我们在小学时所学到的相差甚远。比如,参考格的对称性。最简单的格就是一个二维网格。在平面上,你可以将这块网格往上、下、左、右的方向平移任意方块的距离,然后得到一个它完全一样大小的网格。你还可以对网格内任何单独的正方形进行对称变换。这种有类似格的空间,一般而言会有无穷个多种多样的对称变换。
早在二十世纪,数学家们便在许多的领域中发现对称性质,不仅在几何学,还有数论领域,逻辑学和计算机科学。当新的一个新群被发现以后,我们就自然而然地会问到——一个怎样的空间会对应这个群描述的对称?
有时候是非常明显的,一些群不能应用到特定的空间中去。比如,我们就很快知道圆的对称群不能应用到正方形中。就比如说,如果将正方形旋转10°,你就不能得到原来的那个正方形了。但是如果在一个有无数个对称轴的群中和一个有多重维度的空间里进行研究,我们很难确定哪些群的元素对应着空间的变换,而哪一些则不是。
齐默说:“由于在高维度的情况下,你由此得到的群会愈发复杂,问题的解决也就变得更加困难。”
松散的联系
当我们分析对称性的时候,我们所想象到的是,整个图形正在进行旋转,就像一个正方形按顺时针方向转90°。在一个比较微观的层级中去观察,对称性与点的运动有密切的联系。按对称性将空间进行变换意味着将空间上的每一个点移动到空间的另外一处。在这种视角下,将正方形顺时针旋转90°的真正意义是:考虑正方形上的每一个点,然后将它顺时针旋转90°,这样每个点就移动到了新的边上,这些点最终出现在与初始位置不同的边上。
或多或少的,我们都是用刚性的方式来进行移动。最熟悉的一些对称操作——通过对角线进行镜面变换,或者旋转90°——都非常刚性的。他们之所以刚性的是因为他们并没有对点进行扭曲。镜面变换前在顶角上的点在变换以后还是顶角上的点(只不过是不同的顶角),镜面变换前在边上的点在变换以后还是边上的点(只不过是不同的边上)。
但是,在实际上,还有很多更为灵活的对称变换类型,这也是齐默猜想所感兴趣的地方。在这些变换中,点会被最大限度的重组;他们在变换的过程当中不会完全遵循他们在变换前的位置关系。例如你可以将正方形的每一个点都围绕着移动三个单位——这还是满足了一个对称变换的基本要求,它将空间上的每一个点都移动到了新的位置。新证明的合作者艾伦·布朗借助球的模型来解释这种不受约束的变换方式。
布朗称:“你可以试着将球的南北两极向相反方向拉扯,球上的距离和点之间的距离会加大。”
当你在讨论一个网格时,除了平移平面中的网格,你还可以对网格进行扭曲,或者在某些地方进行扭曲,而在其他地方进行拉伸,这就使得转换后的网格不再与原来的网格完全重合。这些变换就没有那么刚性了,他们被称之为微分同胚。
在他的猜想当中,齐默有非常好的理由认为这种更为柔性的变换是有意义的。在20世纪60年代,格里戈里·马尔古利斯(GrigoryMargulis)对在齐默的猜想当中涉及的这种高维格进行了研究。马尔古利斯也因为这项工作由此获得了菲尔兹奖。当要求只进行刚性的变换时,哪些空间可以由这些高维格转换而来,马尔古利斯给出了这种空间所有满足的条件。
因此,齐默猜想是对马尔古利斯研究的自然延伸。他便是开始于高维格架构变换得以实现的空间——马尔古利斯所找到的空间——并持续深入探讨如果允许不那么刚性的变换,也就是在放宽变换的条件之后,这个集合是否会进一步扩张。
在他们新的研究当中,三位数学家们证明了当高维格的放宽对对称性的定义以后,广义的对称性特征并没有本质变化。即使格进行不规则的空间变换时——比如剪切、弯曲、拉伸——高维格仍然被限制在它们所在的空间中。
费希尔说:“由于在这个问题上加了那么多的灵活性之后,你就有了一种直观的感受,这些高维格群能作用于任何空间上。所以,我们很惊讶的发现,答案是不对的。在某种情况下,他们不能作用于任何空间上。”
这几位数学家们在空间的维度和能作用在其上的高维格维度(或秩)之间建立了联系。他们证明了在通常情况下格的维度越高,空间的维度也应该越高,这样才能对格的对称性产生作用。在高维空间里,即使有非常好的空间变换灵活性,高维格的变换依旧受到高维空间的限制。
威尔金森说:“这就告诉了我们,空间将物体组合在一起会有一些非常基础的特性,这种特性使得他们能够产生这些变换。”
齐默说:“这项计划最后是要分清楚所有这些方法。在你目前所看到的问题之外还有更有趣的,有一些空间中,格是不能保持对称性的。但有趣的问题则远远超出了这些内容。”
本文作者,DavideCastelvecchi,《自然》杂志记者。
翻译作者,Math001,哆嗒数学网翻译组成员。
经过8年的漫漫征途,日本数学家望月新一终于得到了某种意义的确认。他的600页长度关于数论超级难题“ABC猜想”的论文,被学术杂志接收。
接受论文的《数理解析研究所公刊》(PRIMS)的主办单位就望月新一供职的京都大学,望月新一是该杂志的主编。——论文的接受,就是是关于这个证明的长期而激烈的争论的最新进展。
4月3日在京都举行的新闻发布会上,另外两名数理解析研究所数学家柏原正树和玉川安骑男用日语宣布了该论文的发表。柏原正树原说,该论文“将产生重大影响”。当被问及望月对报纸被接受的消息有何反应时,柏原正树说:“我认为他很欣慰。”
望月新一多年来一直拒绝接受记者采访,这回也没出现在新闻发布会上。
这个最新公告似乎并没有让多少学者站到望月新一一边。“我可以肯定地说,自2018年以来,数学界的意见没有太大变化。”加州大学圣地亚哥分校的数论学家基兰·基德拉亚说,他们多年来试图验证望月新一证明的专家之一。加州大学伯克利分校的另一位数学家爱德华·弗伦克尔说:“由于可能出现新的信息,我将不予发表有关该作品的判断,直到该作品的真正发表。”
如果证明得到确认,那么该证明可以改变数论的面貌。例如提供一种全新的方法来证明费马大定理。费马大定理的证明过程堪称传奇,它是皮埃尔·费马在1637年提出的,而1995年这个问题才被确认解决。
望月新一拒绝了所有让他出国讲授他的论文的邀请。尽管当时他的一些身边的同事说他们发现该证明是应该是对的,但世界各地的专家们不太愿意独立的去研读他的论文,更不用说对其进行验证了。随后几年就此主题举行了多次会议,与会者向外界展示了一些该问题的部分进展,但表示可能还要花费很多年才能得出最终结论。其间,包括望月新一的博导法尔廷斯在内的许多数学家也公开批评望月新一,说他没有尝试把他的证明思想表述得更清楚。
2017年12月16日,日本《朝日新闻》报道望月新一的证明已接近正式验证通过,这一成就能与1994年证明的费马大定理的证明相媲美。
同时,有传言称《数理解析研究所公刊》已经接受了这些论文,不过当时其编辑对此予以否认。但是争议再次爆发,一些数学家公开批评望月新一在自己供职的研究所发表论文实在吃相太难看。
纽约哥伦比亚大学的数学物理学家彼得·伍伊特2017年12月在他的博客上写道,该期刊对论文的接收将创造一种“数学史上前无古人的情形:著名数学期刊声称他们已经验证通过了一个非常著名的猜想,而研究该领域的大多数专家却无法理解该证明。”
负责出版该杂志的欧洲数学会主席沃尔克·梅尔曼表示,如果该期刊的编辑“抛弃这些批评”并在不进行重大修订的情况下发表该论文,就会对他们和望月新一产生不利影响。梅尔曼说(欧洲数学会对期刊的内容没有编辑控制权,直到《自然》联系他,他才知道论文即将发布的公告。)
数学家经常在他们担任编辑的期刊上发表论文。东京大学卡夫里宇宙物理与数学研究所的数学家中岛启教授说,只要作者遵照同行评议回避流程,“这种情况就不会违反任何规则,而且很普遍”。中岛启以前是《数理解析研究所公刊》编辑委员会的一员。同时,梅尔曼也确认这不会违反欧洲数学会的准则。
柏原正树说望月新一已经退出了审查程序,并且没有参加有关该论文的任何编辑委员会会议。他说,该杂志此前也曾发表过其他期刊编辑委员会成员的论文。
在数学界,期刊的认可印章通常并不是同行评审过程的终点。重要的结果只有在数学界达成共识后才能真正成为被承认的结论。在论文正式发表后数年才被真正承认的情况时有发生。
“尽管多年来历经艰难险阻,但我仍然认为,如果望月新一的思想正确无误,那就太好了。”英国牛津大学数学家金明迥说。
本文主要内容转自阿贝尔奖官方网站。
根据阿贝尔奖官方网站公布消息,2020年度阿贝尔奖颁给以色列希伯来大学的希勒尔·弗斯滕伯格(HillelFurstenberg)和美国耶鲁大学的格雷戈里·马古利斯(GregoryMargulis),以表彰他们在群论、数论和组合数学中开创性地使用概率与动力学方法。
弗斯滕伯格介绍
当希勒尔·弗斯滕伯格(HillelFurstenberg)发表其早期的一篇论文时,有传言说他并非一个人,而是一群数学家的化名。该论文涵盖的思想覆盖诸多领域,真的不可能是一个人的成果吗?
虽然这件事可能是杜撰的,但它说明了在弗斯滕伯格整个学术生涯中存在的一个事实:弗斯滕伯格拥有不同领域深厚的技术知识,并且在这些知识之间建立了深刻而令人惊讶的联系。尤其是,他在遍历理论领域做出了重要贡献,该理论在数论、几何学、组合论、群论和概率论中都有非常广泛的应用。
弗斯滕伯格1935年出生于柏林。他来自一个犹太家庭。二战爆发的前几个月,他们设法离开德国,逃往美国。弗斯滕伯格的父亲死于途中,他则由母亲和姐姐抚养长大,后来他们生活在纽约的一个东正教社区。当弗斯滕伯格看到老师在解释著名理论时陷入困境时,他开始对数学产生了浓厚的兴趣.这位学生喜欢自己寻找证据。“有时候坏老师会教出好学生!”他说。他高中和大学就读于叶史瓦大学,并于1955年获得学士学位和理科硕士学位。大学期间他就已经发表论文。《关于一种不定式的说明》(Noteononetypeofindeterminateform)(1953)和《关于素数的无穷性》(Ontheinfinitudeofprimes)(1955)均发表于《美国数学月刊》上,后者为欧几里德的著名定理提供了拓扑证明,即有无限多个素数。
弗斯滕伯格决定在以色列度过自己几乎所有的职业生涯,这使该国成为数学,尤其是遍历理论的世界中心。在1975-1976学年,他与本杰明·韦斯(BenjaminWeiss)一起在以色列高等研究院进行了为期一年的遍历理论研究,该研究被认为已改变了这一领域。在其众多荣誉之中,弗斯滕伯格还获得了以色列奖(被视为以色列最高荣誉)和沃尔夫数学奖。他还是以色列科学院和美国文理科学院的成员。
弗斯滕伯格于1958年与专攻艺术和文化的杂志作家罗谢尔(Rochelle)结婚。他们有五位子女,十六位孙辈,以及越来越多的曾孙辈。
马古利斯介绍
在辉煌的数学生涯中,格雷戈里·马古利斯(GregoryMargulis)提出了很多颇具影响力的想法,解决了长期悬而未决的问题,并发现了不同数学领域之间的深层联系。他的标志性方法是以出奇和新颖的方式应用遍历理论,从而创造出一个全新的研究领域。
年仅32岁的马古利斯凭借其对李群格子的研究,尤其是算术和超刚性定理,赢得了1978年的菲尔兹奖。该算术定理指出,秩大于2的任一半单李群的不可约格均是算术的,而超刚性定理指出,该格子的表示可扩张成周围李群的表示。超刚性定理证明了遍历理论新的应用,建立了强有力的新方法,在很多领域都颇具影响力。
1978年雅克·蒂茨(JacquesTits,2008年阿贝尔奖获得者)谈及马古利斯时表示:“毫不夸张地说,他屡次解决了在当时看起来似乎完全无解的问题,让专家们为之一惊。”然而,由于苏联当局拒绝为他提供签证去参加在芬兰赫尔辛基举行的颁奖典礼,马古利斯因此未能拿到菲尔兹奖。1979年,当苏联学者拥有更多的人身自由时,他才获准出国旅行。20世纪80年代期间,他访问了瑞士、法国和美国的多个研究机构,并于1991年定居耶鲁大学,此后便一直待在那里。
在其职业生涯早期,马古利斯曾因犹太人出身遭到歧视。尽管他是该国最杰出的年轻数学家之一,却无法在莫斯科大学找到工作。相反,他在不太知名的信息传播问题研究所工作。然而,与该研究所同事们的接触让他有了一个举世瞩目的发现。他从同事那里了解到一种被称为“扩展图”的连通网络。马古利斯在数日之内便使用表示论(一个抽象的、看似无关的领域)中的概念创立了扩展图的第一个众所周知的例子。他的发现是史无前例的,而且广泛应用在计算机科学领域。
1978年,当马古利斯公开现在称之为正规子群定理(关于李群中的格子)时,他再次展现了自己以出人意料的方式证明定理的技巧。他的证据一方面是一种非常原始的顺从群理论的组合,另一方面是表示论中的卡什但性质(T)。
1984年,他采用遍历理论中的方法证明了奥本海姆猜想,这是一个于1929年首次提出的数论思想。比结果更重要的是以这种方式运用遍历理论的整个想法,而这创造了一个新的领域,现称同质动力学。最近三位菲尔兹奖获得者林登施特劳斯(Lindenstrauss)、米尔扎哈妮、(Mirzakhani)以及文卡特什(Venkatesh)的研究成果均基于Margulis的早期思想。
2001年,马古利斯当选为美国国家科学院院士。他还是罗巴切夫斯基奖和沃尔夫奖获得者。
马古利斯与其夫人赖莎(Raisa)育有一子,并有一个孙女。
这里我们希望每一个关心这件事情的人不要嘲笑当局者的任何一方,毕竟数学学科树大根深,谁也不知道从哪个犄角旮旯里出现了一个大家都不熟知的“沉睡”了许久的简单结果
。就算菲尔兹奖得主陶哲轩,也不例外,不是是什么零零碎碎的知识,他都能迅速通过肉脑搜索出来。他出现这个乌龙,一点也不奇怪。
——而且这还是网上热点,绝佳的一个聊聊线性代数的机会不是吗?
首先,你都是考研党了,一定会复习线性代数这门课程的内容。知道矩阵、特征值、特征向量概念。陶哲轩的这个公式就是针对埃尔米特矩阵求特征值的公式。什么不知道什么是埃尔米特矩阵?不慌,这个类型的矩阵可能不是每一个学习线性代数的同学都会学,但是另外一个概念一定会学:实对称矩阵——矩阵里每个变量都是实数,且其转置等于本身的方阵。实对称阵是一种特殊埃尔米特矩阵,作为考研党的你,就把这个公式结果认为是针对是对称阵的,这样不会影响你品味这个公式。
好了,你理解了,这是一个可以对实对称阵求特征向量的公式。无论你大学老师还是你的考研辅导班的名师都会告诉你求方阵A特征向量的流程:
第一步:计算行列式|λI-A|=0的根,这个行列式的结果是个n阶多项式,会得到n个特征值,这里可能有重根。
第二步:对刚才每个特征值λ,解线性方程组(λI-A)X=0,找到每个方程的线性无关的的解,得到的解就是特征值λ对应的特征向量。
这里,帮你回忆一下用到的知识点,第一步你要会求行列式、大多时候你还要分解因式来求解方程的跟。第二步,你要用到解线性方程组,有可能用到高斯消元法。
陶哲轩的那个新公式告诉你,哪怕你很菜,直到你上考场之前,都没掌握解线性方程组的方法,你一样也有可能解出特征向量,而且用到的知识点全部都在第一步当中——你只要会求特征根就行。
——少记忆一个知识点,这样讲是不是很吸引人?
这个公式会在第二步回拆成下面几个分步做:
新第二步第一分步:删掉A第1行第1列的元素,得到子矩阵,删掉A第2行第2列的元素,得到子矩阵,……,删掉A第n行第n列的元素,得到新矩阵。最后得到n个子矩阵。
新第二步第二分步:每个子矩阵计算特征值。这样每个子矩阵有n-1个特征值,这样的特征值有n组。
新第二步第三分步:通过以上不同地方计算得到的特征值,直接计算每个特征向量的分量值的绝对值。在通过线性无关的关心决定去掉绝对值的选取的符号。
陶哲轩的公式在原文里是这样的,很吓人。
于是,我们针对三阶实对称方阵来把他简化成下图这样。
我们做一道具体的题目,就算下面这道,怎么样,是不是很像你们的课后习题或者期末考试题?
这道题很容易算出x,y的值。最后就算找一个正交矩阵做对角化的问题。那个要找的矩阵P就算单位化的特征向量拼成一个矩阵而已。
特征值是,2,1,-1,也就是:
按传统做法,回去解下面的三个线性方程组,分别得到特征向量。最后得到P。
新公式的办法,会先分列子矩阵,分别计算特征值。
然后套公式解出每个分量的绝对值。
你会发现,有两个特征向量的每个分量绝对值是完全一样的,因为特征向量需要线性无关,于是很容易决定正负号的选择。另外哪个是特征值1对应的特征向量,哪个是特征值-1的特征向量还要做乘法试一试。
这样同样能得到P的结果:
当然,我们曾经试图使用这个方法想办法解决四阶方阵的问题,一般计算量会更大,并不实用。
好了,不知道你在考试中这样做会不会得分,不过的确没有解过任何线性方程组,答案也是对的。
总之,祝你好运!
9月8日和9月10日,著名华人数学家,菲尔兹奖得主陶哲轩分别在ArXiv和其博客上发表他关于考兰兹猜想的一个结果(9月13日ArXiv上的论文有修改),引发数学社交圈的讨论。
考兰兹猜想,俗称3x+1,说的是这样一个猜想:
对于一个初始的正整数,如果它是偶数我们就把它除以2,如果是奇数就把这个数乘以3再加上1。这样将得到一个新的数字,再把这个新得到的数做之前重复的操作——如果它是偶数我们就把它除以2,如果是奇数就把这个数乘以3再加上1,然后又继续得到一个数。这样的操作一直重复下去,我得到一串正整数的数列。3x+1说,无论最早的初始正整数是多少,这一串数列最终都会进入4,2,1,4,2,1,....这样的循环。
比如,我们用10作为初始正整数:
因为10是偶数,所以除以2,得到5。
因为5是奇数,所以乘以3加上1,得到16。
因为16是偶数,所以除以2,得到8。
因为8是偶数,所以除以2,得到4。
因为4是偶数,所以除以2,得到2。
因为2是偶数,所以除以2,得到1。
因为1是奇数,所以乘以3加上1,得到4。
……
我们可以把3x+1猜想的表述改变一下,设初始正整数是n,上述操作得到的数列中一定有个最小值S(n)。那么3x+1猜想就是说S(n)=1。
于是,很多数学家开始研究S(n)的性质,比如去寻找S(n)可能的上界f(n),即S(n)≤f(n)。
1976年,Terras证明了,几乎对所有的正整数n(在自然密度意义下),有S(n) 1979年,Allouche证明了,对任意a>0.869,几乎对所有的正整数n(在自然密度意义下),有S(n) 1994年,Korec证明了,对任意a>ln3/ln4≈0.7924,几乎对所有的正整数n(在自然密度意义下),有S(n) 这一次,陶哲轩发表的结果是对上述一些成果的改进,他试图证明,只要{f(n)}是一个趋于正无穷的实数列,那么几乎对所有的正整数n(在对数密度意义下).有S(n) 陶哲轩还特别指出,这个结论中的f(n)可以是增长非常慢的的数列,比如f(n)=lnlnlnln(n)。 在众多讨论中,一位来自美国新泽西州立罗格斯大学数论教授Kontorovich唱起了“反调”。他的观点是,应该想办法去证明3x+1猜想是错的。 按Kontorovich的想法,这些“几乎”不存在的反例可能真正存在。并引用了自己之前的一些研究结论,以及Conway对3x+1猜想推广的一些结论来佐证自己的直觉。 Kontorovich说多年来他一直试图通过构造一些“奇怪”性质初始值来推翻3x+1猜想,未果。并呼吁包括博学者计划(PolyMath)在内的数学组织来一起找反例。英国数学家,同样是菲尔兹奖得主的高尔斯也参与了Kontorovich教授的讨论。 还记得2018年随着法国总统马克龙访华的这位怪叔叔吗?他穿着诡异,胸前总是扎着大大的领结,领口总是别着一个夸张的蜘蛛胸针。别人都轻装上阵,他去了哪里都背着满满的背包,感觉不是来做“国家级”的访问,倒向是来自由行旅游的。 这人是谁?说来,此人在数学界可大名鼎鼎!他的名字叫维拉尼,2010年菲尔兹奖得主。——大家知道诺贝尔奖没有设立数学奖,而菲尔兹奖在数学界有着“数学诺贝尔奖”的别称。菲尔兹奖只颁给40岁以下的数学家,而且还是四年颁发一次。从这个意义来讲,得菲尔兹奖比得到一年一度的诺贝尔奖的难度要大得多。 由于穿着时尚夸张,同时喜欢参加各自社会活动。维拉尼在数学界有着“数学界的LadyGaga”的别称。在街上的回头率也极高,他那种复古打扮让不少人回头。 维拉尼在2017年当选议员后,正式从政,后来成为总统马克龙“前进运动”团队的一员随马克龙访华。很多人也许好奇,一两年过去了,这位数学怪咖现在在做什么? 答案是:维拉尼前不久宣布,他要竞选巴黎市市长! 不过这回马克龙对维拉尼的决定可能要郁闷一阵子了。因为马克龙个人希望自己的最亲密盟友,前政府发言人本杰明·格里沃代表自己的“前进运动”阵营参选法国首都的市长。 有民调显示维拉尼和格里沃的支持度相差无几,几乎是齐头并进。如果两人只有一人参选,那么将获有巨大优势。但如果两人都参加市长的角逐,那么这个优势将被分割。而如果真是两人同时参选,将对现任市长社会党人安娜·伊达尔戈寻求连任有利。 维拉尼说:“巴黎有很多复杂的问题需要解决,而这些问题我们可以一起通过发挥自身的优势来解决。”维拉尼说,“再从政之前我一直在和各种复杂的问题做斗争。”他最后还说,他将成为首位“真正的环保主义市长”。——现任市长就是因为交通拥堵和空气污染问题被巴黎市民诟病,而支持率降低。 “前进运动”的一些大佬认为,维拉尼的政治抱负注定要失败,甚至有人提醒:“作为数学家应该把这个算清楚:分裂意味着失败,团结就是胜利。” 不过,维拉尼团队正在非常谨慎的处理这些问题,尽量不让竞选行为变成对马克龙总统权威的挑战。“维拉尼已经告诉总统马克龙和总理菲利普,可能的选情更替并不是对他们的故意冒犯。”一位来自维拉尼身边的消息人士说。 值得一提的是,法国知名数学家从政似乎本身不算什么新鲜事。大家熟悉的法国大数学家拉格朗日、拉普拉斯就是拿破仑时代的官员。另外,著名数学家,因“潘维勒超越函数论”而闻名的数学教授保罗·潘勒韦甚至在第一次世界大战关键时刻和1925年金融危机时两次出任法国总理。 根据科学突破奖官网消息。被誉为“科学界的奥斯卡奖”的2020科学突破奖获奖者揭晓,其中数学方面由芝加哥大学的阿莱克斯·埃斯金(AlexEskin)教授获得,将获得300万美元的奖金。 埃斯金教授与已故的伊朗裔女数学家、菲尔兹奖得主米尔扎哈妮合作,在阿贝尔微分的模空间的动力学和几何方面做出了革命性发现,包括证明了所谓的“魔杖定理(magicwandtheorem)”。 另外,美国加州理工学院的朱歆文教授因其“在算术代数几何中做出重要工作”获得新视野数学奖,奖金10万美元。 朱歆文是北大数学科学学院2000级本科生,这是北大本科体系培养的数学家连续三年获得此奖项。在今年早些时候,朱歆文教授还获得有着“华人菲尔兹奖”的2019年度ICCM数学奖(前晨兴数学奖)。 科学突破奖为世界上奖金最高的学术奖项。值得注意的是早期此奖的赞助者有阿里巴巴创始人马云(JackMa),而现在赞助名单中没了马云的踪影,而有了中国另外一位中国互联网巨头,腾讯公司创始人马化腾(MaHuateng)。现在官网公布的赞助者是:由谷歌公司联合创始人谢尔盖·布林,Facebook创立者普莉希拉·陈、扎克伯格夫妇、腾讯创始人马化腾、俄罗斯互联网巨头茱莉亚·米纳尔、尤里·米尔纳夫妇与23andMe公司联合创始人安妮·沃西基。 此奖项共设立生命科学、基础物理、数学三大奖项。每个获奖席位300万美元奖金。另外,还为物理和数学的“学术新人”设立了科学突破新视野奖,每个获奖席位10万美金。按官网介绍,2020年的科学突破奖会有2160万美元的奖金发出。 而昨天有人在了麻省理工学院数学系的网页上贴上了一个等式,网页同样很简单,但没给出结果: (-80538738812075974)^3+80435758145817515^3+12602123297335631^3 等于多少自己算?——他居然等于——等于42! 于是下面这句话成为定理: 除了9n±4型自然数外,所有100以内的自然数都能写成三个整数的立方和。 据悉发现此等式的数学家是来自布里斯托大小的AndrewBooker和来自麻省理工学院的AndrewSutherland。 如果有人要问,此结果有什么用?数学家们负责发现数学规律,有没有用之类的问题不是数学家必须回答的——但是搞这个本身很好玩不是吗? 这意味着,最小的没被写成三个整数立方和的自然数为114。 附上100以内三立方和的非零解全表(多种写法选取其中一个) 数学学科排名方面,前十名的高校全部来自美英法三个国家。其中美国5席、英国3席、法国2席。而第一名依然是毫无悬念的普林斯顿大学。这第一到第十分别是:普林斯顿大学(美国)、索邦大学(法国)、纽约大学(美国)、斯坦福大学(美国)、巴黎第十一大学(法国)、牛津大学(英国)、麻省理工学院(美国)、剑桥大学(英国)、加州大学洛杉矶分校(美国)、华威大学(英国)。 数学榜单前十中的九个都出现再去年的数学排名前十中。唯一的不同是英国的华威大学顶替掉了加州大学伯克利分校进入前十。自2014年华威大学的马丁·海尔获得菲尔兹奖后,数学排名稳步上升,已经位居前十。另外,传言中,伯克利的优秀数学教授逐年流失,这几年数学排名也缓慢下降。说明,教师学术成果在此排名中占有非常重要作用。 还有一个值得一提的是。法国之前一直苦于一些名校排名太低,导致知名度逐年下降的现实,于是启动“卓越大学计划”,决定合并学校,提升排名。这回索邦大学排名第二,和这个计划不无关系。这个大学是2018年1月由巴黎第六大学和巴黎第四大学合并后组成。 亚洲方面各大高校的排名普遍下跌。日本的京都大学排名第一,总排名20名。以色列的耶路撒冷希伯来大学排名第二,总排名第21。沙特阿拉伯的阿卜杜勒阿齐兹国王大学排名第三,总排名第31。来自中国的北京大学排名第四,总排名第44。下面的亚洲前十因为并列原因,其实有15所高校。 中国高校有84所大学进入榜单,数量上较于去年上涨10所。在中国的高校的排名中,排名第一的是北京大学,世界排名第44名。是唯一一个进入前50名的中国高校。而复旦、清华、中科大位列51-75名次区间。哆嗒数学网下面再次为你奉上所有中国高校的排名。 原文作者,马丁·海尔等众多Quora用户。 翻译作者,我是崔小白,哆嗒数学网翻译组成员。 也许你再知乎看到太多类似的提问——“XXXX是一种怎样的体验?”。再国外著名的问答网站Quora上,也经常有相同格式的问答但这回的数学逼格似乎有点高,这回问的是: 获得菲尔兹奖是一种怎样的体验? 众所周知,菲尔兹奖是数学界的最高奖项之一。貌似这个问题也应该让一位真正获得过菲尔兹奖的数学家来回答。但是,似乎要让这种世界上最尖端人才来到这个网站来回答这个问题似乎是一种奢望。 一位叫做利夫·杰拉姆的历史学家也持有相同意见,他回答道: 能获的菲尔兹奖的人数并不多,而且他们的名字和电子邮件地址都很容易获知,那为什么没有人给他们其中的一个写信呢? 我只是一个低调的历史学家,但我的概率直觉告诉我,在现在不到40位(纯粹猜测)活着的的菲尔兹奖得主中,在无人帮助情况下回答这个问题的几率相当低…… 我猜他们的答案应该会有一些感情抒发或标准感言,“感觉很棒”,“我感到微不足道”,“这真的是一个团队努力的成果。”大多数“感觉如何”的问题(实际上大多数问题)需要相对固定的答案。 哈哈,我不太确定格里戈里·佩雷尔曼会不会有同样的反应。 他拒领菲尔兹奖章,说他的的成果能被接受是对他最大的奖励,不需要什么菲尔兹了。 而且最牛逼的是他拒绝领奖的原因是他觉得给他颁奖的那些的委员还不够资格。 利夫·杰拉姆:膜拜!夏肖克·雷:他还拒绝了千禧奖。 我想知道跟其他学术研究相比,数学研究总体上是否更缺乏合作性。 利夫·杰拉姆:我对此深表怀疑。历史学家们几乎从来没有认真合作过——他们声称与人合作是为了获得经费,但实际上他们通常只是独自一人在档案馆里工作。欧洲资助机构有时坚持要求要有更多的合作者,但结果非常糟糕。 然而事情的反转在于,菲尔兹奖得主真的来回答了。 马丁·海尔,2014年因为在随机偏微分方程的贡献获得了菲尔兹奖。他回答道: 打断一下:其实整个数学界都不喜欢获奖之后的这个代表权。 马丁·海勒:;-) 讲真的菲尔兹奖章可能是唯一一个在公众中享有盛誉的数学奖(实际上和诺贝尔奖同样级别的应该是阿贝尔奖,只是没太有人听说过而已),我没记错的话主要原因是跟60年代斯梅尔的政治事件有关…… 当时数学家们决定(并发信给一些重要的人说明这一点)将菲尔兹奖这个最负盛名的奖项颁给他,以便帮助他摆脱当时遇到的一些麻烦。 本文原载于2019年2月27日《环球时报》上,原文标题《奥数不能功利也不能不给力》。由于篇幅受限,《环球时报》上刊出的内容有所删改,现将全文完整版发出。 第11届罗马尼亚数学大师赛(RMM)于25日于闭幕。美国代表队获得三块金牌,俄罗斯代表队获得两块金牌。而参加本次比赛的六位中国选手中最好成绩为15名,并获得了银牌。而中国队的团体成绩为第六位。 罗马尼亚数学大师赛被认为是中学生数学奥林匹克竞赛中难度最高的一项赛事,也是我国以国家队名义组队参赛的3项中学生数学国际赛事(IMO、RMO、RMM)之一。我国自第二届开始组队参加,由每年数学冬令营(CMO)中团体第一、第二的省份组队参赛,今年由上海组织队员参赛。 而据笔者了解,这次美国在RMM中派出的是二队上游选手,其他国家派出的选手大多是一线选手。中国本次是由上海的学习组织参赛。相当于中国队用省队于别人的国家队比拼,自然有些劣势。而且中国历年参加RMM的成绩都不是很突出。2016年的成绩更差,仅有1枚银牌,排名12位。 客观地说,只要IMO成绩没有掉出前三,中国队依然是奥数强队。个别奥数竞赛不能得到冠军,天也塌不下来。但笔者真正担心的是某些人对奥数学习赶尽杀绝的林林总总的手段,可能误导社会大众,导致包括数学在内的基础学科人才培养热度的降低。 奥数对教育的负面影响,各方面的论述不少。在曾经的加分与保送的诱惑下,很多学生学奥数可能不是因为真正对数学感兴趣,而是把奥数当做名校敲门砖,不少曾在奥数比赛上取得好成绩的学生,后来并没有走上学术路,而是走上了华尔街,让学奥数丧失了其初衷。 现在国内的奥数成绩之所以没有没有体现在菲尔兹奖上,很大程度与中国数学整体底子较薄有关,毕竟诺贝尔的自然科学科方面的奖我们也才得了一个。这些都说明在基础学科方面,之前我们差的很远,现在仍然在追赶。然而,要成为数学或者科学强国,我们还需要积累,依然在路上。 一个好的现象是,从最近几年的趋势看,已经有越来越多奥数高手留在数学界。比如,奥数届内的巨星级人物“韦神”韦东奕、“恽神”恽之玮等。就是说,这些人会以学术上的成就为自己的毕生追求,这是中国社会整体向前发展的结果。 数学是自然科学之母,数学的发展与培养不仅在学科内部影响巨大,任何一项科技的运用和实践都与数学有关。现在,但凡时髦点科技词汇,诸如人工智能、大数据、5G通讯、无人驾驶……,背后都有一套高深的数学支持其运转。 国家建设初期,整体国力较弱,大学和社会中需要的是能马上转化并应用的成果,基础学科没有应用学科受到的重视大,这可以理解。而到了当下这个阶段,当所有可以引进和转化的资源慢慢转化殆尽的时候,薄弱的基础科学就可能成为创新的瓶颈。中国要发展,就必须培养一批甘坐基础科学冷板凳的人,而奥数就应当成为培养孩子对基础科学兴趣的阵地。 对“减负”和奥数的关系,社会上以往有很多讨论,但并没有讨论出一个很好的结果。而我们应该看到的是:首先,奥数之所以在过去呈现出一些功利性,是因为很多家庭有通过某种竞争关系实现阶层流动的需求,而普通学习和竞赛等途径对他们来说性价比最高。的确随着社会分层的加剧,形成了有钱人接受辅导班培训,没钱人学不到就吃亏的现实,甚至一些“天价辅导班”的出现影响了这种教育公平,但奥数本身不应背这种“破坏公平”的“黑锅”,也背不起。 另外,网上有人拿着个别题目抨击奥数摧残下一代。但这些题目很多都不是奥数题目,甚至根本不是数学题目,而是脑筋急转弯题目。它们被一些不良商人或者水平低劣的老师编进了奥数教材,这个“锅”也不应该奥数来背。相反,我们更应该普及数学,提高大众数学素养来帮助大众以及部分教师识别这种“伪奥数”。而奥数中有很多有趣味的问题,执行这种功能反而非常合适。 我们再来看,实际上取消了奥数加分以后,很多学生依然在学奥数,奥数的热度并没有实质上降低多少。这是因为奥数中的确有很多实实在在的数学技能,能够学到很多在课堂中学不到的东西。这些技能就会反映在学校学习当中。实际上高考中难度高一点的题目,或者高校自主招生中的题目,就有奥数的影子。况且学校也不傻,奥数比较好的学生,学习能力一般也比较突出,这也是学校愿意选择奥数好的学生的原因。所以,只要人类社会对数学的需求在,只要选拔制度在,对奥数之类的课堂外的数学学习需求就永远在。 以往学奥数有很强功利性,这种功利性应该被挤掉。我们应该考虑的是如调整、改良奥数,让奥数健康发展。但调整和改良并不意味着,从“全民奥数”那个极端,走向全民把奥数当“洪水猛兽”这个极端。 国际顶尖的奥数比赛一来是国际交流活动,二来也是顶尖人才切磋试金的机会,是选拔培养优秀人才的途径。现在有些地方将传统奥数竞赛叫停或整改。过去从小学直到高中的一整套比赛体制慢慢被瓦解,只保留几个最核心的赛事。这样“一刀切”,对数学人才的培养并不是好事。 平心而论,这位演员在各个影视作品的表现还算小有所成,有没有这个博士学位根本不会影响他在娱乐圈内的发展。自己发个博士学历的微博无非就是吹吹牛X,得瑟得瑟,满足一下自己被捧为学霸的快感而已——这种事情很多人做过吧。但他忘了,这些做学术的博士们其实是非常较真儿的人,他们用学术上的严谨态度和求证方法把这位演员搞得狼狈不堪。 以下便是哆嗒数学网小编为你整理的五个著名的数学装X失败事件! No.5《奔跑吧,兄弟》:关晓彤因会解二元一次方程被封学霸。 《奔跑吧,兄弟》是一款竞技真人秀节目。参加节目的明星们会被要求解出一些谜题通关。其中有不少是数学题。第一季,因为“0”是不是自然数的问题,而引发讨论。不过情有可原,因为只是不同时期的规定而已。 而第六季,因为关晓彤解出一道简单二元一次方程,而被其他人用膜拜的眼光看着,字幕还不断暗示关晓彤的数学有多好,第二天“学霸关晓彤”还上了热搜。这个的吐槽显然超过了上一个…… 哆嗒君点评:这个事情关晓彤本人也许有点无辜,毕竟这个“学霸”不是她自己封的。就公开的资料显示,关晓彤的数学高考能上130+,应该说能到这个分数的人,数学水平已经超过绝大多数普通人了。槽点在于,因为解出每个初中生都会的题目,就被其他人捧为学霸,——本来是想秀某人有多好,却变成了秀其他一大票人是有多缺智…… No.4电影《少年班》:用占卜算卦解出数学题目。 《少年班》是一部青春片。这部由孙红雷、周冬雨参演的电影在豆瓣的评分在5+左右,应该说是一个不好评分。 电影中有个剧情是,主角们需要现场在黑板上解出一道题目,才能有资格参加一项国际大学生的数学竞赛。而所有主角都在题目卡住了,参加竞赛的前景突然暗淡了下来。仔细辨认题目,题目差不多是要证明卡莱曼不等式,的确是有竞赛考过,这个X装的不错。 但是,解决这个问题的过程是:其中一位主角拿出他的“文王金钱卜”,在教室里算了一卦,根据卦中指示解出了题目,少年班的主角们瞬间翻盘! 哆嗒君点评:可以理解编导组设置这个剧情的初衷。一些高智商人总有一些让人无法理解觉得神奇的行为方式。但无论科学还是数学世界里,这种迷信的神神叨叨的东西干扰工作是最被人反感的——最后没人觉得这个人神奇,剧情过于无厘头。 No.3《非诚勿扰》:证明了哥德巴赫猜想 《非诚勿扰》是国内最著名的相亲节目了,节目引发的大讨论不少。 有一期,有一位36岁的男嘉宾自称从七岁开始迷恋数学,自认为是一个数学奇才,并且声称证明了哥德巴赫猜想。而自己最大的愿望是当一名数学老师,这样能把数学的优雅和美丽传播给下一代。节目组说无法判断男嘉宾证明的对错,呼吁专业人士或机构帮助其核验。 哆嗒君点评:失败点主要在于如果经常了解数学新闻,这为男嘉宾的路数是典型“民科”路数,却没有人指出——之前没有论文成果,一上来就说解决大问题。在现场还没人挑明这一点,反而在讨论“兴趣能不能成为工作”的问题。难以想象,如果这位男嘉宾成为数学老师,将传播什么样的数学给下一代。 No.2电视剧《历史转折中的邓小平》:穿越的数学教材 《历史转折中的邓小平》是一部主旋律电视剧,讲述邓小平1976年至1984年的事迹。电视剧的第九集是讲教材改革的,里面出现的小Bug让人忍俊不禁。 剧情是说当时中国教材严重落后,需要重新编写。这时,需要从国外采购一批外国教材做参考。于是,就出现了下面的场景——主角拿着一本英国作者马修斯的《向量微积分》,感慨外国教育的先进。——等等,这本由斯普林格出版社的教材是其“斯普林格大学本科数学系列”中的一本,是怎么也是2000年左右出版的,难道穿越了? 这还不是最过分的,后面还有一个剧情。剧中一角色拿着黄澄澄的GTM的数学书(仔细辨认,可以辨认出是GTM73,《代数》(Algebra)),硬要说这本书是英国高中生物教材。 哆嗒君点评:把历史剧拍成穿越剧就罢了,可以忍。你把研究生的数学的GTM教材硬说成高中生的生物教材,你让那些还在数学专业里摸爬滚打的同学们情何以堪? 应该说靳东还是有很多成功的影视作品。2017年,红的发烫电视剧《我的前半生》的主角贺涵的扮演者正是靳东。如果好好拍戏,在演艺圈内也是一位非常优秀的演员。 这下,好玩了。无论你是了解诺贝尔奖,还是了解数学的各大奖项,都应该知道——诺贝尔奖里没有设置数学奖。数学的最高奖项也应该是菲尔兹奖、阿贝尔奖、沃尔夫奖之类。靳东的这一番发言,引发各路知识圈内的网友吐槽。于是有媒体评价到,靳东的“精英人设”就此崩塌。 哆嗒君点评:就用某网友的一句话——咱别装了行吗? 根据比利时媒体12月29日释放的消息,比利时著名数学家让·布尔甘(JeanBourgain)因病医治无效,于2018年12月22日在比利时某医院逝世,享年64岁。 布尔甘教授曾被认为是在世的分析领域最顶级的专家之一(有部分人认为,之一两字去掉也无妨)。很多其他顶级分析学家的成果,从某种程度看,就是布尔甘教授成果的推广或者延续。1994年,因研究巴拿赫空间、调和分析和遍历理论的成果"而获得菲尔兹奖。2000年,他用学界看起来神乎其技的手段将挂谷问题(Kakeyaproblem)与算术组合学建立起关系。布尔甘教授长期活跃在数学学术最前沿的研究战线,年逾六十仍然能发表不少顶级数学成果,并发表于数学领域的四大刊物上。 另外,布尔甘教授还获得过2010年邵逸夫数学奖、2012年克拉福德奖、2017年科学突破数学奖。 以下内容改编至美国数学会的官网。 2018菲尔兹奖颁布 2018年,被人们视为数学最高荣誉的菲尔兹奖发布,四位数学界的顶级专家获得次殊荣,他们是: 贝尔卡,英国剑桥大学。 费加里,瑞士苏黎世联邦理工学院 舒尔茨,德国波恩大学 文特卡什,美国纽约大学 本届大会出现一个花絮,贝尔卡的菲尔兹奖牌在获奖后几分钟之内被盗,大会紧急重制了一个奖牌,并重新颁奖。贝尔卡自嘲道:“我是唯一一个两次获得菲尔兹奖牌的数学家。” 数学与选区划分 格里蝾螈(Gerrymandering)指专对特定某方利益设计并划分后的选区的手段。今年美国的中期选举引发了关于格里蝾螈的数学讨论。 甲壳虫乐队的歌是谁写的 新的三维形状扭曲棱柱 发表在《自然通讯》(NatureCommunications)上的一篇研究显示,科学家发现了一个此前在几何学中或尚未被定义过的三维形状,扭曲棱柱(scutoid)。利用此形状,可解释大自然如何有效地将细胞包装成三维结构。此消息被各个科技媒体广泛报道。 谷歌庆祝高斯的诞辰 传奇数学家高斯上了谷歌搜索引擎的首页,这回是为了纪念他241周年诞辰。记住是4月30日! 如何掰断一根干挂面条 你有没有思考过这样一个问题。你拿着一根干的挂面条的两端,慢慢的掰弯它,直到掰断。这个面条为什么总是断成两截、三截,很少恰好是两截的。科学家们利用数学发现了如何确保断成两截的办法,并写成论文,发在四大名刊之一的《美国科学院院报》上(PNAS,ProceedingsoftheNationalAcademyofSciences)。 最大的素数 数学家维拉尼的政治家生活 维拉尼是2010年菲尔兹奖得主。2017年,这位顶级数学家当选法国议员,开始了其政治家的生涯。我们哆嗒数学网的小编提醒你,2018年1月,法国总统访华的时候,维拉尼就如影随形,其夸张的装束,抢了不少镜头。 聚焦数学学科中的女性 另外,不断有当代以及历史上的女性数学家的故事见诸媒体,其中有卡瑟琳·约翰逊、诺特、阿涅西、勒芙蕾丝伯爵夫人等。 如何将沙发搬上楼 美国的一个情景喜剧系列表演了一个利用搬沙发引发的爆笑故事。于是,针对这个的讨论在网上开始了。搬沙发问题背后其实蕴藏着数学。每到毕业季,搬家旺季,是利用这科普数学的好机会! 数学继续助力前沿医学研究 π和圆周率数学节 abc猜想是一个数论猜想,最先由乔瑟夫·奥斯达利及大卫·马瑟在1985年提出。数论中,很多问题,包括一些菲尔兹奖级别的问题,都仅仅是abc猜想的简单推论。如果abc猜想能被证明,将是数论这门学科的重大进步。 黎曼猜想是数学界最重要的猜想之一(有人说可以把“之一”两字去掉)。克雷数学研究所现在还悬赏100万美元征解。问题本身,只需要有过复变函数学习经历的人都能看懂。而它的一个等价变形,高中生都能看懂。 黎曼猜想原始版本 考虑下面一个函数项级数定义复变函数, 在实部Re(s)>1时,级数收敛,其余部分(s≠1)可以用解析延拓得到。解析延拓后的函数,叫做黎曼ζ函数。经过,一些简单的计算,对于负偶数,ζ(-2n)=0,那么负偶数就是黎曼ζ函数的平凡零点。而黎曼ζ函数还有别的零点,叫做非平凡零点。目前,发现的黎曼ζ函数的非平凡零点是的实部都是1/2。于是,黎曼猜想是说黎曼ζ函数的所有非平凡零点的实部都是1/2。 高中生能看懂的版本 我们先来定义这样两个函数。 对于一个正整数n,我们把它所有的约数加起来,得到的正整数记为σ(n)。比如24的约数为1,2,3,4,6,8,12,24,那么σ(24)=1+2+3+4+6+8+12+24=60。 同样是正整数n,我们把不大于它的所有正整数的倒数加起来,记为H(n),就是说H(n)=1+1/2+1/3+...+1/n.比如H(3)=1+1/2+1/3=11/6。 通过σ(n)和H(n),黎曼猜想等价于下面这个不等式成立: 是否是“真”证明还得等待 至于这次是真是假,作为吃瓜群众只能等待了。我们哆嗒数学网小编发稿时,海德堡获奖者论坛已经崩溃。 2018年国际数学家大会(ICM)在国际数学联盟主席森重文深思的语调中谢幕,他的发言激起了参与者对会议中最欣赏什么和学习了什么的思考. 本届大会将作为第一届在南半球举办的国际数学家大会载入史册,这是充满了激发灵感的对话、令人着迷和开天辟地的数学思想的两个星期. 以下是本次大会的一些高光时刻(温馨提示,视频更精彩): 悼念“闪耀之光”米尔扎哈尼 “2018菲尔兹奖得主面对面”和“为什么菲奖被誉为‘数学界诺贝尔奖’” 贝卡尔(CaucherBirkar),费加里(AlessioFigalli),舒尔茨(PeterScholze)和文卡特什(AkshayVenkatesh)因他们在学术领域的不同贡献,把数学界最有声望的奖项带回了家.我们与历史学家巴拉尼(MichaelJ.Barany)对话,关于这惹眼的奖项,他告诉了我们一些它的历史,并消除了我们对它的一些讹传. 达斯卡拉基斯讲述深度学习与机器学习 纵贯本次数学家大会,脸书直播会采访一些具有独特个性的数学家。“计算的诗人”、奈望林纳奖得主达斯卡拉基斯(ConstantinosDaskalakis)讲述深度学习和机器学习. 贝卡尔:”没有梦想的数学人不是数学家.“ 贝卡尔以他独具创造性的数学方法和代数几何为人所知.陈荣凯教授称他与他同事最近的工作是“双有理几何的巨大突破”.陈荣凯叙说着贝卡尔蹒跚学步时在被战争撕裂的库尔德的生活经历,以及之后在英国寻找难民庇护的事.陈荣凯说:“他的经历,尤其是对于那些在艰苦之地、处于困境的年轻人来说,是启发性的.” 254度灰——多贝茜的美丽的逻辑财富 对于自己的工作在纯数学之外被应用,多贝茜(IngridDaubechies)显得很高兴.她的突破性工作被应用于JPEG2000标准(一种电子图片的储存格式)的开发.她独特的数学公式使得数据可以更有效地压缩和存储.得益于她的研究,人们可以轻松地储存和发送自拍和旅拍照片了. 维拉尼举办“地球的年龄”公开讲座 在标志性的蓝色西服和绿色大领花的装束下,2010年菲尔兹奖得主维拉尼(CédricVillani)举办了一场公开讲座,阐释了科学家们如何确定地球的真实年龄. 原文来自2018年国际数学家大会官网。 翻译作者,radium,哆嗒数学网翻译组成员。 校对,Math001。 在里约热内卢举办的2018年度国际数学家大会(ICM)的这个特殊仪式上,数百名朝气蓬勃的巴西中小学生收到了巴西奥数比赛的金牌---而18岁的卢卡·艾斯柯贝利就是其中的一员。卢卡来自南部里奥格兰德州立大学,他因杰出的数学能力,在富有革新精神的巴西公校奥林匹克数学竞赛(OBMEP,BrazilianMathsOlympiadforPublicSchools——编者注,虽然名称是公校,其实私校现在亦可参赛了)中获得了六次金牌。而OBMEP是世界上规模最大的中小学数学竞赛,会有超过8%巴西人口的学生参加此项竞赛考试,以测试数学水平。 去年,超过1800万青少年参加了初赛(超过智利人口!),这项竞赛由巴西基础数学和应用数学研究所(IMPA)和巴西数学会主办,覆盖了巴西全国99.6%的城市。 OBMEP协调员兼IMPA副主任克劳迪奥·拉得利姆解释说,每年都有6,500名奖牌获得者受邀请学习当地大学的课程,并从CNPq(BrazilianNationalCouncilforScientificandTechnologicalDevelopment巴西国家科学技术发展委员会)获得每月100雷亚尔(约185人民币)的科学启动奖学金(PIC)。“由大学的教授授课,教授他们在原本所在学校不能学到的学科以及讲解原本所在学校不能遇到的题目。与此同时,我们试图激励他们继续在大学深造,“他说。 PIC教学方法与传统的中小学课程不同,来自圣埃斯皮里图州的法比奥拉·洛特里奥(18岁)解释说,今年她和她的三胞胎姐妹一起获得了她的第三枚金牌。这三人现在在圣埃斯皮里图州联邦大学一起学习数学。在她早期的PIC时代,法比奥拉发现很难适应不同的数学学习方式,“但是一旦习惯了它,我开始越来越喜欢数学。之前在学校,总是专注于公式,而忽略了概念的理解。 巴西公校奥林匹克数学竞赛(OBMEP)于2005年开始举办,旨在发掘具有在数学上有一定能力的学生,目的是帮助这些青少年(从小学六年级到高中一年级)激发他们在数学方面的潜力,重点是逻辑运用能力和创造能力,而不是传统的公式记忆。 自2005年开始举办以来,OBMEP已经对巴西所有公立中小学校的学生进行了测试,去年对私立中小学校也进行了测试。今年13%的金牌奖给了私立教育机构的青少年。(编者注:巴西人阿维拉(Avila)在2014年获得了数学最高荣誉菲尔兹奖) 哆嗒数学网成员ALIMJAN、小米、小饕、radium各自翻译了本文的一部分 贝卡尔:我飞了起来! 菲尔兹奖得主高雪·贝卡尔(CaucherBirkar)具有库尔德和英国的双重公民身份,而且还具有难民状态。“我非常高兴,同时非常兴奋。获得这个奖意味着我能继续数学研究和从事我钟爱的事业。”在2018年国际数学大会开幕式上获得菲尔兹这一权威奖项的贝尔卡满带笑容的说道。 1978年,贝尔卡出生在两伊之交库尔德地区的马里万省。现在他已经是剑桥大学的研究员了。几百年前,在这同样一片土地上,生活着伟大的数学先贤——比如,莪默·伽亚谟(1048——1131)、艾德丁·图西(1048——1131)。现在贝尔卡也追随他们来到了数学世界。“当一名库尔德人是艰辛的,”贝卡尔说到,“我们库尔德人有句俗话:‘除了大山,库尔德人没有朋友。’我希望我获奖的消息能带给4000万库尔德人哪怕一丝丝笑容。”贝卡尔生长在伊朗农村,他的哥哥在那时教了他数学。“我的父母都是农民,我应该是不可能在数学上有什么成绩的。”贝尔卡在官方的获奖视频中感谢了库尔德的传统文化,他说靠它才活了下来。 从德黑兰大学毕业后,他一直致力于解决现代数学中如极小模型,法诺簇和奇点问题等关键问题。过去8年里,贝卡尔已经为该领域做出了杰出贡献,并且已经获得了巴黎基础科学数学奖和美国数学协会摩尔奖。 对于这位年轻的数学家来说,他的职业有两个阶段。第一步是学习前人已经积累的知识。“阅读优美的数学世界就像漫游在一个美丽的古镇。当你四处遨游时,你会发现那些华丽的建筑。第二阶段,就像突然间我有一双翅膀,我飞了起来,在城市上空鸟瞰我在地上看不到的景色。“ 费加里:家庭生活还没有“最优”的最优传输专家 阿雷西奥·费加里(AlessioFigalli,)1984年出生于意大利的那不勒斯。他在最优传输理论中的贡献帮助他夺得了数学界的最高荣誉并名留数学史。 关于数学,他最喜爱的事情之一就是能够在世界上任何地方开展工作,但他的家庭生活却不像他的研究方向,远远没有达到“最优”。令人沮丧的是,他和老婆十天才能见一次面;不过他希望能很快解决这个问题。“在我的数学生涯中我已经解决了一些困难的问题,我也知道自己今后三四十年的研究方向。只有一个问题我真心希望能马上解决,那就是我能和我的老婆生活在同一个城市。” 阿雷西奥·费加里现在是苏黎士联邦理工的教授。他的工作建立了等周问题与最优传输问题之间的联系:前者在罗马神话中已有踪迹,而后者则探究运输给定质量的最优解。“他显然已经是当今全球数学界一股推动力,”路易斯·卡法莱利在一次介绍费加里工作的讲座上说道,“他的解决问题方法灵活、动态而有成效。他一定会成为这个时代最有影响力的数学家之一。” 当他还是孩子的时候,他从未意识到——或从未被告知——他对数学的兴趣将会成为一个职业。在发现了这种可能性之后,他便义无反顾地投入了这个领域并在其中展露锋芒。 文卡特什:曾经被视为神童 亚克西·文卡特什(AkshayVenkatesh),2018年菲尔兹奖得主,13岁时便开始了本科阶段的学习,并在20岁之前完成了普林斯顿大学的博士学位。“7岁左右的时候我有了这个螺旋图案的笔记本,然后开始写下这些二进制数。”他回忆道。 成为两个孩子的父亲改变了他的职业生涯和家庭生活。“在数学中,我们倾向于追求过分的完美。我觉得其实被别人强迫停止去干某件事情挺好的。孩子们就很擅长阻止你尝试去干其他事情。”他开玩笑说。 作为一个在印度新德里出生,在澳大利亚长大的美国居民,文卡特什因其在数论方面的杰出贡献今天把这个数学界最有威望的奖项带回了家。他利用动力学中的想法来解决数论问题——一个上世纪70年代末密码学出现之前没有任何应用的抽象问题。 压力大的时候,文卡特什通过跑步来清理头脑和放松。如果跑的过程中还是可以思考的话,他解释道,那么他会跑得更快一些。“在你做数学的很多时候,你会卡壳。但你会觉得能够尝试去解决问题是一件很荣幸的事。你会进入一种超然的状态然后感觉自己成为了某些很有意义的东西的一份子。”他思考着说。 他的贡献在数学研究的好几个领域中都是奠基性的,他在研究中使用的探究式的富有创造性的方法也备受称赞。“多亏了他明智地创新地使用现代数学工具来研究数论,”彼得·撒纳克(PeterSarnak)在文卡特什颁奖大会上说,“他在影响着从自守形式到表示论的很多领域。” 舒尔茨:数学中还有无穷多个问题等着我 年仅30岁的菲尔兹奖得主,彼得·舒尔茨(PeterScholze),已经被科学界认为是世界上最有影响力的数学家之一。然而,他是一个非常脚踏实地的人。 我经常对我想要理解的东西有一个模糊的概念,但又不知道如何用精确的语言描述它,”他说。“直到我读了另一篇论文,突然间,我想我就可以表达了。 24岁时,他在仅5个学期完成本科课程和硕士学位后,成为德国波恩大学的正教授。 2010年,他将数论中的一个定理(哈里斯和泰勒合著的数学证明《TheGeometryandCohomologyofSomeSimpleShimuraVarieties》)的证明从288页简化为37页,宣告了一个时代巨人的出现。 舒尔茨获得顶级数学奖就跟玩一样:欧洲数学学会奖(EMS),2016莱布尼兹奖(Leibniz),2015费马奖(Fermat),2015奥斯特洛斯基奖(Ostrowski),美国数学会Cole奖,2014克雷研究奖(ClayResearch),2013拉马努金奖(SASTRA),Prix奖和CoursPeccot奖的前任获奖者。现在,他用菲尔兹奖章将樱桃放在蛋糕上作为点缀。 他的工作重点是建立算术和几何之间的桥梁。尽管已经取得如此大的成就,但他的潜力依然深不可测,而舒尔茨根本没有放缓的迹象。“一旦你解决了一个问题,就会有10个问题随之而来,”他解释道。 根据2018国际数学家大会(ICM)官方网站消息。2018年被视为国际数学最高奖项的菲尔兹数学奖已经揭晓他们是: 就职于剑桥大学的伊朗裔英国数学家高雪·贝卡尔(CaucherBirkar) ForhisproofoftheboundednessoftheFanovarietiesandforcontributionstotheminimalmodelprogram. 表彰其证明法诺簇的有界性并对极小模型程序的贡献; 就职于苏黎世联邦理工学院的意大利数学家阿雷西奥·费加里(AlessioFigali) 表彰其最优传输理论及其在偏微分方程、度量几何和概率论方面的应用; forhiscontributionstothetheoryofoptimaltransportanditsapplicationsinpartialdifferentialequations,metricgeometry,andprobability. 就职于波恩大学的德国数学家彼得·舒尔茨(PeterScholze) 表彰其将p进制域上的算术代数几何转换成对拟状完备空间(perpectoidspace)并将其应用在伽罗瓦表示论上,以及对上同调理论的发展做出的贡献; Fortransformingarithmeticalgebraicgeometryoverp-adicfieldsthroughhisintroductionofperpectoidspaceS,withapplicationtoGaloidsrepresentationsandforthedevelopmentofnewchomologytheories. 就职于普林斯顿大学印度裔澳大利亚数学家亚克西·文卡特什(AkshayVenkatesh) 表彰其综合解析数论,齐次动力系统,拓扑学和表示论的贡献; Forhissynthesisofanalyticnumbertheory,homogeneousdynamics,topology,andrepresentationtheory 足球世界杯刚结束,四年一度有着“数学界奥运会”之称的国际数学家大会即将在8月在巴西里约热内卢开幕。届时,大会将颁发数学界最高荣誉的菲尔兹奖。 谁将获得菲尔兹奖呢,国外有个投票网站做了一次投票,结果非常有趣。其实,在菲尔兹奖的评选上,也经常会有“大热必死”现象。因为获奖有40岁的年龄限制,所以有传言,评委会优先考虑最后一次机会获奖的人。另外,很少情况下,会将奖颁发给同一个国家或者同一个学校的人。所以下面的舒尔茨和布伦德也许在国籍上会有冲突。 我们将前10名和大家一起讨论。 第十名胡戈·度米尼尔-柯平(HugoDuminil-Copin)法国 概率论、随机过程专家,现为日内瓦大学教授。 度米尼尔-柯平对伊辛模型的研究情有独钟,此模型在物理研究中有着特别的地位。度米尼尔-柯平对此模型的研究让他收获无数荣誉。 所获奖项:2013奥博沃尔法赫奖、2016欧洲数学会奖、2017科学突破新视野数学奖、2017雅克·埃尔布朗奖、2017勒夫奖 第九名詹森·米勒(JasonMiller)美国 概率论、随机过程专家,现为剑桥大学教授。 他与Sheffield一起关于高斯自由场的研究(GFF),奠定了他在随机游走、布朗运动研究方向上的学术地位。 所获奖项:2015戴维逊奖、2016怀德海奖、2017克雷研究奖 第八名张伟(WeiZhang)中国 数论专家,现为麻省理工教授。 很高兴在这个列表中看到中国人。他在博士二年级的时候,他对库达拉(KudlaConjecture)猜想的工作,让他在数论领域崭露头角。张伟的成名作是和恽之玮合作,对L函数为L函数的泰勒展开的高阶项提供几何解释。 所获奖项:2013拉马努金奖(SASTRA)、2016晨兴数学奖、2018科学突破新视野数学奖 第七名西蒙·布伦德(SimonBrendle)德国 微分几何、偏微分方程专家,现为哥伦比亚大学教授。 所获奖项:2012欧洲数学学会奖、2014博谢奖、2017费马奖 第六名马丽娜·维娅佐夫斯卡(MarynaViazovska)乌克兰 离散几何专家,现为国立基辅大学教授。 维娅佐夫斯卡大学时期,获得了2次国际大学数学竞赛(IMC)的第一。维娅佐夫斯卡的成名作是解决了8维空间的球体堆积问题,她还和同事一起解决了24维的球体堆积问题。在此之前,人类只是解决了3维和3维以下的球体堆积问题。而3维情况的解决使用了大量的计算机计算,而维娅佐夫斯卡的8维和24维情况的证明,却被人形容为“简单的让人吃惊”。 所获奖项:2016年塞勒姆奖、2017克雷研究奖、2017拉马努金奖(SASTRA)、2017欧洲组合学奖、2018科学突破新视野数学奖 学生时代奖项:国际大学生数学竞赛两次第一 第五名乔迪·威廉姆森(GeordieWilliamson)澳大利亚 群论几何表示论专家,现为悉尼大学教授。 威廉姆森是澳大利亚科学院史上最年轻的院士。威廉姆森对Kazhdan-Lusztig猜想用纯代数方法重写和简化了证明。在这个过程中,威廉姆森研究出了一种技术手段,在群论的诸多问题中,使用这个技术手段可以得到一些的重要成果。 所获奖项:2016年接连获得谢瓦莱奖、2016欧洲数学学会奖、2016克雷研究奖、2016科学突破新视野数学奖 第四名齐普里安·马诺列斯库(CiprianManolescu)罗马尼亚-美国 规范场论、低维拓扑专家,现为加州大学洛杉矶分校教授。 马诺列斯库在学生时代是数学竞赛的高手,连续三届以满分获得国际数学奥林匹克竞赛((IMO))金牌。进入学术生涯后专注于低维拓扑的研究。2013年在马诺列斯库发表了一篇论文,否定的解决了5维以及5维以上的流型中的三角形解剖猜想。 所获奖项:2012欧洲数学学会奖、2017费尔特里内利奖 学生时代奖项:国际数学奥林匹克3金、摩根奖 第三名阿雷西奥·费加里(AlessioFigalli)意大利 变分法、及偏微分方程专家,现为苏黎世联邦理工学院教授。 所获奖项:2012欧洲数学学会奖、2017费尔特里内利奖 第二名费尔南多·马克斯(FernandoMarques)巴西 几何、拓扑以及偏微分方程专家,现为普林斯顿大学教授。 所获奖项:2013拉马努金奖(ICTP)、2016维布伦几何奖 第一名彼得·舒尔茨(PeterScholze)德国 算术代数几何专家,现为波恩大学教授。 所获奖项:2013拉马努金奖(SASTRA)、2014克雷研究奖、2015费马奖、2015奥斯特洛斯基奖、2015柯尔代数奖、2016莱布尼兹奖、2016科学突破新视野数学奖(本人谢绝)、2016欧洲数学学会奖 学生时代奖项:国际数学奥林匹克3金1银 原文作者,圣安德鲁斯大学数学与统计学院。 翻译作者,mathyrl,哆嗒数学网翻译组成员。 校对,math001。 从今天起,我们将连载这部数学编年史。本文是翻译版本,因为工作量巨大,必有疏漏(包括原文也会有错误),欢迎指正。 这应该是网上最全的数学编年史,从公元前30000年到公元2000年,哆嗒数学网为你奉献。 这里是【大结局】数学上下三万年(八):二十世纪下半叶的数学 二战结束,和平与发展成为世界主题。计算机的广泛使用让世界逐步进入信息时代。 本期出场人物有:塞尔、霍奇、柯尔莫哥洛夫、米尔诺、斯梅尔、索伯列夫、邦别里、科恩、格罗腾迪克、阿蒂亚、森重文、康威、瑟斯顿、曼德博、唐纳森、孔涅、怀尔斯、威腾、朗兰兹等。 中国人或华人也有陈景润、丘成桐、王秋冬登场。 本系列下面是往期内容: 1950年 卡尔纳普(Carnap)出版了《概率的逻辑基础》(LogicalFoundationsofProbability)。 汉明(Hamming)发表了关于误差检测与误差校正编码的基础论文。 霍奇(Hodge)提出了关于射影代数簇的“霍奇猜想”。 1951年 塞尔(Serre)利用谱序列来研究纤维丛的纤维、全空间和底空间的同调群的关系。这使得他发现了空间的同调群与同伦群之间的基本关联,并证明了球面同伦群的重要结果。 1952年 霍尔曼德尔(H?rmander)开始了偏微分方程理论的工作。十年后他因为这项工作获得菲尔兹奖。 1954年 塞尔(Serre)由于他的谱序列的工作以及层的复变理论的工作获得了菲尔兹奖。 1955年 嘉当(Cartan)与艾伦伯格(Eilenberg)发展了同调代数,将强大的代数方法与拓扑方法关联起来。 诺维科夫(Novikov)证明了群的字问题不可解。 谷山丰(Taniyama)提出了关于椭圆曲线的猜想,将在费马大定理的证明中起到重要作用。 1956年 米尔诺(Milnor)出版了《论同胚于7维球面的流形》(Onmanifoldshomeomorphictothe7-sphere),打开了微分拓扑的新领域。 1957年 柯尔莫哥洛夫解决了“希尔伯特第13问题”,它是关于某些3变量连续函数不能被表为2变量连续函数的问题。 1958年 托姆(Thom)由于拓扑学的工作获得菲尔兹奖,特别是有关示性类、配边理论和”托姆横截理论”。 1959年 布恩(Boone)证明了群的许多判定问题不可解。 马歇尔·赫尔(MarshallHall)出版了他的著名教科书《群论》(TheoryofGroups)。 1960年 铃木通夫(MichioSuzuki)发现了有限单群的新的无穷族。 1961年 爱德华·洛仑兹(EdwardLorenz)发现了一个具有混沌现象的简单数学系统。它导致了被广泛应用的混沌理论的新数学。 斯梅尔(Smale)证明了n>4的高维庞加莱猜想,即同伦等价于n维球面的n维闭流形必定是n维球面。 1962年 雅各布森(Jacobson)出版了他的经典教科书《李代数》(Liealgebras)。 索伯列夫(Sobolev)出版了《泛函分析在数学物理的应用》(ApplicationsofFunctionalAnalysisinMathematicalPhysics)。 1963年 约翰·汤普森(JohnThompson)与费特(Feit)发表了《奇数阶群的可解性》(SolvabilityofGroupsofOddOrder),证明了所有非阿贝尔有限单群都是偶数阶群。他们的论文用了250页来证明这个定理。 科恩(Cohen)证明了选择公理与连续统假设的独立性。 1964年 广中平佑(Hironaka)解决了代数簇上有关奇点消解的一个重要问题。 1965年 谢尔盖·彼得罗维奇·诺维科夫(SergiNovikov)关于微分拓扑的工作,特别是计算稳定同伦群与分类光滑单连通流形,导致他作出“诺维科夫猜想”。 邦别里(Bombieri)利用他改进的大筛法证明了关于算术级数的素数分布的“邦别里中值定理”。 杜奇(Tukey)与库利(Cooley)发表了一篇论文,介绍了快速傅立叶变换算法。 塞尔顿(Selten)发表了区分在预测博弈结果时的合理决策与不合理决策的重要工作。它导致了1994年的诺贝尔奖。 1966年 兰德尔(Lander)与帕金(Parkin)利用计算机寻找欧拉猜想的反例。他们找到了27^5+84^5+110^5+133^5=144^5。 艾伦·贝克(AlanBaker)证明了“格尔丰德猜想”,它是关于有理数域上代数数的线性独立性。 1967年 阿蒂亚(Atiyah)发表了《K理论》(K-theory),详述了他关于K理论的工作和指标定理,而之前此工作让他获得了1966年的菲尔兹奖。 1968年 诺维科夫(Novikov)与阿迪安(Adian)联合发表了一个证明,证明了对于d>1与n>4380,伯恩赛德群B(d,n)是无限的。 1969年 康威(Conway)发表了他的新的零散有限单群的发现。 1970年 艾伦·贝克(AlanBaker)由于他在丢番图方程的工作获得菲尔兹奖。 马季亚谢维奇(Matiyasevich)证明了“希尔伯特第10问题”不可解,即没有通用方法判定一个多项式方程是否有整数解。 1971年 1972年 托姆(Thom)发表了《结构稳定性与形态发生学》(StructuralStabilityandMorphogenesis),解释了突变理论。这个理论研究了渐变力导致突变的情况,在光学与生物学有重要应用。 奎伦(Quillen)阐述了高阶代数K理论,它是一个新工具,使用几何与拓扑的方法与思想来描述与解决代数中的重要问题,特别是环论与模论。 1973年 德林(Deligne)证明了三个“韦伊猜想”。 陈景润证明了每个充分大的偶数可表为一个素数与一个不超过两个素数的乘积之和。它是对哥德巴赫猜想的重要贡献。 1974年 芒福德(Mumford)由于代数簇的工作获得菲尔兹奖。 1975年 费根鲍姆(Feigenbaum)发现了一个新的常数,约等于4.669201609102...,它涉及倍周期分岔,在混沌理论中起着重要作用。 曼德博(Mandelbrot)出版了《分形学:形态,概率和维度》(Lesobjetsfractals,forme,hasardetdimension),描述了分形理论。 1976年,拉卡托什(Lakatos)的著作《证明与反驳》(ProofsandRefutations)在他去世两年后发表。首次在1963-64年分4部分发表,这部著作给出了拉卡托什关于数学如何发展的阐述。 1976年 瑟斯顿(Thurston)由于他在叶状结构(Foliations)的工作获得美国数学会韦伯伦几何学奖。 1977年 阿德曼(Adleman)、李维斯特(Rivest)和萨莫尔(Shamir)引入了公钥编码,它是一个用于传递秘密消息的系统,使用大素数和一个公开密钥。 1978年 费夫曼(Fefferman)由于他在偏微分方程、傅立叶分析,特别是收敛性、乘数算子、发散性、奇异积分与“哈代空间”的工作获得菲尔兹奖。 森重文(Mori)证明了“哈茨霍恩猜想”,即射影空间是具有丰富切丛的唯一光滑完备代数簇。 1979年 孔涅(Connes)出版了关于非交换积分理论的著作。 1980年 有限单群的分类完成。 1982年 曼德博(Mandelbrot)出版了《自然的分形几何》(Thefractalgeometryofnature),比1975年的工作更完整地发展了他的分形几何理论。 弗里德曼(Freedman)证明了同伦等价于4维球面的4维闭流形必定是4维球面。这是在1961年斯梅尔的工作之后证明了高维庞加莱猜想的进一步情形。 丘成桐(Shing-TungYau)由于他对偏微分方程、代数几何中的卡拉比猜想、广义相对论的正质量猜想以及实与复蒙日-安培方程的贡献获得菲尔兹奖。 1983年 唐纳森(Donaldson)出版了《自对偶连接与光滑4维流形的拓扑》(Self-dualconnectionsandthetopologyofsmooth4-manifolds),导致了关于4维流形几何的全新思想。 法尔廷斯(Faltings)证明了“莫德尔猜想”。他证明了对任意充分大的n,最多有有限组互素的x,y,z满足x^n+y^n=z^n,这对费马大定理作出重要贡献。 1984年 布兰吉(LouisdeBrange)解决了比贝伯猜想。 沃恩·琼斯(VaughanJones)发现了3维球面中纽结和链的一个新多项式不变量。 威腾(Witten)出版了《超对称与莫尔斯理论》(SupersymmetryandMorsetheory),包含了在微分几何研究中具有核心重要性的思想。 1986年 马古利斯(Margulis)证明了关于不定无理二次型在整点的值的“奥本海默猜想”。 1987年 泽尔曼诺夫(Zelmanov)证明了关于一个无穷维李代数何时为幂零的重要猜想。 1988年 朗兰兹(Langlands)是第一个获得美国国家科学院数学奖的人。他获奖是由于“将群表示论带入到与自守形式理论和数论的革命性新关系的非凡远见”。 艾尔基斯(Elkies)找到了欧拉猜想在n=4的一个反例,即2682440^4+15365639^4+18796760^4=20615673^4.。其后同年弗莱斯(Frye)找到了一个最小反例:95800^4+217519^4+414560^4=422481^4。 1989年 布尔甘(Bourgain)使用分析与概率方法解决了L(p)问题,这是在巴拿赫空间理论与调和分析中为时已久的问题。 1990年 德林菲尔德(Drinfeld)由于在量子群以及数论的工作在日本京都的国际数学家大会获得了菲尔兹奖。 1991年 泽尔曼诺夫(Zelmanov)解决了群论的有限制的伯恩赛德问题。 王秋冬(QuidongWang)找到了n体问题的无穷级数解(除了少量例外)。 1993年 梅纳斯科(Menasco)与斯莱维(Thistlethwaite)证明了纽结理论的猜想“泰特第二猜想”,即同一个素纽结的两个约化交错图由一个扭转序列关联。 1994年 怀尔斯(Wiles)证明了费马大定理。 孔涅(Connes)出版了关于非交换几何的重要教科书。 利翁(Lions)由于他在非线性偏微分方程的工作获得菲尔兹奖。 约克斯(Yoccoz)由于他在动力系统的工作获得菲尔兹奖。 克里斯蒂娜·古皮尔堡(KrystynaKuperberg)解决了关于动力系统拓扑的“塞夫特猜想”。 1995年 银行家安德鲁·比尔提供大奖悬赏求解比尔猜想:对p,q,r>2以及互素整数x,y,z,方程x^p+y^q=z^r无解。 1997年 怀尔斯由于解决了费马大定理获得沃尔夫斯凯尔奖。 1998年 博赫兹(Borcherds)由于在自守形式与数学物理的工作获得菲尔兹奖;高尔斯(Gowers)由于泛函分析与组合数学的工作获奖;孔采维奇(Kontsevich)由于代数几何、代数拓扑与数学物理的工作获奖;麦克马伦(McMullen)由于全纯动力系统与3维流形几何的工作获奖。 托马斯·黑尔斯(ThomasHales)证明了关于最密堆积的开普勒问题。 1999年 互联网梅森素数大搜索项目(GIMPS)找到第38个梅森素数:2^6972593-1。 康拉德(Conrad)与泰勒(Taylor)证明了“谷山-志村猜想”。怀尔斯在1993年解决费马大定理的途中证明了其中一个特殊情形。 2000年 在洛杉矶举行的美国数学会的一个会议上提出了“21世纪的数学挑战”。不同于100年前的“希尔伯特问题”,这次的问题由30位数学家的团队给出,其中8位是菲尔兹奖得主。 一个700万美元的大奖被设立来求解七个著名数学难题。称为千禧年大奖难题:PvsNP;霍奇猜想;庞家莱猜想;黎曼假设;杨-米尔斯规范场的存在性与质量缺口;纳维-斯托克斯方程解的存在性与光滑性;贝赫和斯维纳通-戴尔猜想。 世界数学家大会(InternationalCongressofMathematicians,简称ICM)是世界上最重要的数学会议。因为这个大会每四年举办一届,所以有着“数学界的奥运会”的别称。这个会议会讨论世界上最前沿的数学学术问题,也会有各种普及讲座推广数学。另外,被认为数学最高荣誉,有着“数学界的诺贝尔奖”的菲尔兹奖,也是在这个会议上办法的。 2018年又是世界数学家大会的举办年份。此次世界数学家大会将在巴西最大的港口城市里约热内卢召开。大会组织方精心录制了一个大约3分钟左右宣传视频,欢迎大家来参会。 视频虽然短小,但内容丰富。大致介绍了城市的概况和发展、城市的活动组织经验(奥运会、世界杯)、巴西组织的数学活动(数学文化节、奥数竞赛)、会场准备情况、会场周边配套和交通状况以及大会的会议内容。 欢迎欣赏。enjoy! 一位杰出的数学家运用物理学中的概念研究了困惑人们数千年的数学问题,并取得了进展。 数学里面充满了超自然的数的系统,其中大部分人从来没有听说过,甚至理解起来有困难。但是有理数是家喻户晓的,它们是自然数和分数——这些有理数你从小学就知道了。但是对于数学家来说,最简单的问题往往最难理解。它们简单的就像一堵抗风墙,没有裂缝、突出物或者明显你可以抓住的某些东西。 牛津大学的一位叫金明迥的数学家,对于寻找哪些有理数可以解特定类型的方程特别感兴趣。几千年来无数数论学家挑战过这个问题。他们在解决问题方面进展甚微。当一个问题研究了很久却没答案,我们很自然的就认为唯一的出路就是有一个人能提出新的想法。这个人就是金明迥。 在过去的十年间,金明迥想出了一个非常新颖的方法----在看似无规律的有理数域寻找模式。他将这种方法写进论文里,发布在讨论会中,并将其传递给学生,现在学生们自己继续进行研究。但是他一直保留着一些东西,他的思想正走向成熟,不是基于纯粹的数论,而是从物理中借用概念。对于金明迥来说,有理数解多少有点像光的轨迹。 如果这样的联系让你觉得像天方夜谭,那就对了,因为一些数学家也甚至和你有相同想法。由于这个原因,金炯明长期以来没有吐露这个想法。“我将它藏了起来,因为一直以来我多少会因为物理联系而不安,”他说。“数论学者是一群相当严谨刻板的人,物理的因素的加入有时使他们更加怀疑我做的数学。” 但是现在金明迥说他已经打算向世人表达他的想法。“我想这个改变单纯的是因为思想成熟起来了!”53岁的金明迥在我们交流这个故事的一封邮件的开头写到。 至今仍有一个绊脚石——数学和物理类比的最后一部分,金明迥仍需要继续攻克下去。他希望邀请更多的人去参与他的研究,特别是物理学家,他需要物理学家的帮助去完善它。 一个古老的挑战 方程的有理解深深地吸引着人们。找到方程的有理解,就像拼图块完美地落实到对应的位置那样令人满足。基于这样的理由,数学中很多著名的猜想都是关于方程有理解的。 有理数包含整数和任何可以表示为两个互素的整数之比的数。例如1,-4以及99/100.数学家对丢番图方程(Diophantineequation)——整系数多项式方程的有理数解特别感兴趣。就像x2+y2=1。公元3世纪,生活在古希腊亚历山大城的丢番图就研究了很多这样的方程。 有理解很难用全面的方法所找到,因为他们不遵循任何几何模式。考虑方程x2+y2=1。它的实数解是一个圆,拿走在这个圆上的所有不能表示为分数的点,所留下的就是有理解,而这样的解不会形成一个规则的形状。有理解是随机分布在圆周上的。 “具有有理坐标点的条件根本不是几何条件。你无法知道如果一些有理点满足某方程,它必须满足写什么条件”金明迥说。 有的方程,通常容易找到某个单一的有理解,甚至许多有理解。但对于不喜欢松散结果的数学家来说,他们对研究所有的有理解更有兴趣。这样问题就会难很多了。事实上,甚至是关于有理数最直白的结果,足以让你在数学圈出人头地。如同在1986年,一个名叫法尔廷斯(GerdFaltings)的数学家荣获了数学最高荣誉的菲尔兹奖,他就是解决了一个叫莫德尔猜想(Mordellconjecture))的问题,证明了一族特定的丢番图方程仅有有限多的有理解(而不是无限多解)。 法尔廷斯的证明在数论中是一个具有举足轻重的结果。但这也是数学家所说的“无用的证明”,事实上这意味着它没有精确计算出有理解的数量,更不用说找出它们了。从那以后,数学家开始寻找解决下一步的方法。有理点看起来就像一个方程的普通图像上的随机点。如果他们改变他们所研究问题的条件,数学家们希望这些点将看起来像一个星座一样,他们能以一些精确的方式去描述。但问题是,在已知的数学领域并没有给出这样的条件。 “为了得到关于有理解的有效结果,人们当然会认为,解决这个问题需要一个全新的想法。”艾伦伯格说。 目前,关于新想法是什么样,有两个主要研究。一个来自于日本数学家望月新一,2012年,他在京都大学的教职员网页上发表了数百页复杂又新奇的数学成果。五年后,他的论文依然是高深莫测的。而另一个新想法就来自于金明迥。他试图在扩张的数论空间中思考有理数,在这其中隐藏的模式开始出现。 一个对称解 为了见识一下对称性如何帮助数学家解决问题,画一个圆。可能你的目标是定义在圆上的所有点。对称性是一个有用的工具因为它创建了一个映射,可以让你从已知点的性质推出未知点的性质。 想象一下,你已经在下半圆找到了所有的有理点。因为圆是反射对称的,你可以水平直径为对称轴翻转下半圆的有理点(改变所有y坐标的符号),于是一下子你就可以得到在上半圆的所有有理点。事实上,一个圆拥有丰富的对称性,即使知道一个单点的位置,结合对称知识,如果你需要找圆上的所有有理点,只要围绕原点无限旋转对称就可以得到。 但是如果你处理的几何对象有着高度无规律性,就像一个随机游走路径,你将需要努力去分别独立找出每一个点——这儿没有对称关系帮助你去将已知点映射到未知点。 数的集合也可以拥有对称性。集合的对称性越多,就越容易去理解——你可以应用对称性去发现未知的值。具有特定类型对称关系的数聚在一起形成一个“群”,数学家可以使用群的性质去理解包含在其中的所有的数。 一个方程的有理解集合不具有任何对称性也不形成一个群。从而使数学家们不可能一次性就发现所有的解。 从二十世纪40年代开始,数学家们开始探索一种方法去将丢番图方程的解放到一个拥有更多对称性的空间中去找。数学家沙博蒂(ClaudeChabauty)发现在他构建的更大的几何空间的内部(通过一个被称为p进数(p-adicnumbers)的扩张的全域),有理数形成了自己的对称子空间。他开始用这样的子空间与丢番图方程的图像联系起来。两个空间相交的点就是方程的有理解。 在二十世纪80年代,数学家科尔曼(RobertColeman)对沙博蒂的结果进行了改进。在那之后的几十年里,科尔曼-沙博蒂方法成为数学家寻找丢番图方程有理解最有效的工具。但只有当方程的图像与更大的空间大小成比例时,它才起作用。当不成比例时,那么就很难精确找出方程曲线与有理数相交的点。 “如果你有一条曲线在空间内,而且有太多有理点,这些有理点集纠结在一起,你就很难区分哪些有理点在曲线上。”一位在加州大学圣地亚哥分校名叫凯德拉亚(KiranKedlaya)的数学家说。 于是,金明迥开始着手起这个问题了。为了在沙博蒂的基础上取得更进一步的成果,他希望去寻找一个甚至更大的空间去思考丢番图方程——一个有更多有理点分布的空间,于是他就可以研究更多不同种类丢番图方程的相交点。 空间的空间 如果你在寻找一个更大的空间,以及在思考如何沿着对称这条线索来寻找答案,借助于物理办法是个好的选择。 一般来说,在数学的意义上,一个空间是一个拥有几何或拓扑结构的点集。随意分散的一千个点不会形成空间,因为没有任何结构将他们联系在一起。但是对于一个球,由特殊的连续分布的点构成,它是一个空间。同样的环面、二维平面、或者我们生活中四维时空也是一个空间。 除了这些空间外,存在更多的风格迥异的空间,你可以把它看成“空间的空间”。举一个非常简单的例子,想象你有一个三角形——这是一个空间,那么继续想象所有可能的三角形,它们组成一个空间。在这个更大空间内的每一点代表一个特定的三角形,由它所表示的三角形的角的顶点的坐标。 理学中出现的这些更大的空间空间具有额外的对称性,这些对称性并不存在 对称性与物理之间的纠缠 数论没有粒子可以追踪,但是数论多少有点像时空,为此它也提供了一种寻找所有可能的路径方法和构建对所有可能路径的空间。从这种基本的对应中,金明迥提出了一种方案:寻找光的轨道以及探寻丢番图方程的有理解是同一个问题的两个方面.正如他在德国海德堡举行的数学物理会议上解释的那样。 丢番图方程的解形成空间是由方程定义的曲线。这些曲线可以像圆一样是一维的(一维流形),或者他们可以是更高维的空间。例如,如果你试图寻找丢番图方程———x^4+y^4=1的复解,你就得到了一个三孔环面。在这个环面上的有理解缺乏几何结构,这样就很难去找到他们,但是它们可以被做成对应于具有结构的空间的更高维空间中的点。 金明迥通过考虑可以在环面上绘制环的方式(或等式定义的任何空间)来构造空间的高维空间。绘制环的过程如下:首先,选择一个基点,然后从该点绘制一个环到任何其他点,然后再返回。重复这个过程,画出连接基点和圆环面上其他点的路径。最后,你会有一个所有可能的环,他的起始点和结束点都在基点。这种环的集合是数学中一个重要的中心对象,它被称为空间的基本群。 你可以使用在环面上的任何点作为你的基点。每一个点将有一个独一无二错综复杂的路径。每一个这些路径的集合可以被表示为一个点在一个更高维的“路径集合的空间”(就像所有的可能的三角形的空间)。这个空间的几何上非常类似于物理学家在规范场理论中构造的“空间空间”。当从一个点移动到环面上另一个点时,路径集合的变化非常类似于在实际空间中从一个点移动到另一个点时场变化的方式。 “我时常用到的一个短语是这些路径中有一种“隐藏的算术对称性”,高度类似于规范场论中内在的对称性”金明迥说。 就像沙博蒂所说的那样,金明迥通过考虑在他所构造的更大的空间结构中交叉的点去寻找有理解,同时运用这个空间中的对称性去限制空间中的交叉点。他希望建立一个方程去精确的找到这些点。 “我开始寻找的东西是一个在数学环境中的最小作用量原理,他在邮件中写道。“我还是不太清楚,但我有信心,它就在那里,我能找到它。” 一个不确定的未来 在过去的几个月,我对几位数学家描述了金明迥由物理所启发的想法,他们都仰慕金明迥对数论的贡献。然而,当把金明迥遇到的困难传达给他们时,他们并不知道该如何下手。 至今,金明迥并没有在他的论文中提及物理学。取而代之的是,他把他的目标称为Selmer簇,他考虑Selmer簇在所有Selmer簇空间中的关系。这些对于数论学者来说是可识别的术语。但是对于金明迥来说他们一直是物理学中某些物体的另一个名称。 “利用物理学中的思想去解决数论中的问题是有可能的,但是我还没有想好如何建立起这样的框架,”金明迥说,“我们在一个关键点上,对物理的理解足够成熟,以及有足够多的数论学者对这个问题感兴趣,所以接下来我们需要进一步推进。” 阻碍推进金明迥的方法一个困难在于在所有错综复杂的圈所组成的空间中寻找一些最小作用量的类型。在物理世界中,这样的观念十分自然,但是在算术中并不那么显然。甚至是对金明迥的工作了解最深的数学家,也非常关心他是否会找到它。 “我认为金明迥的工作将会给我们带来许多有价值的东西。我不认为我们要像金明迥想要的那样清晰的理解有理解所在的地方是某种算术规范场理论(arithmeticgaugetheory)的经典解”哈佛大学数学物理教授阿尔纳夫·特里帕蒂说。 今天,物理学的语言几乎完全在数论的实践之外。金明迥认为这种情况肯定会改变。40年以前,物理和几何、拓扑的研究几乎都是独立。但在20世纪80年代,屈指可数的几位数学家和物理学家建立了有效的方法,该方法运用物理去研究形状的性质,现在这些学者都是领军人物了,而且该领域从未停止向前。 “如今不了解物理学几乎不可能对几何学和拓扑学感兴趣。我有理由确信在数论上也会有这种情况发生”在接下来的15年,金明迥说,“这样的联系将变得十分自然。” 原文作者,KevinHartnett,量子杂志资深作家。 两位数学家已经证明了两个不同的无穷其大小是相等的,解决了数学界一个长期存在的问题。他们的证明建立在无穷的大小和数学理论的复杂性之间意外的联系上。 在一项颠覆了几十年传统智慧的突破中,两位数学家证明了两种不同的无穷大实际上大小相等。这一进展涉及到数学中最著名、最棘手的问题之一:自然数的无穷与实数的无穷之间是否存在别的无穷。 这个问题早在一个世纪前就被发现了。当时数学家们知道“实数比自然数多,但不知道多多少。实数的无穷是刚刚好比自然数大的那个无穷,还是它和自然数之间还有别的无穷?”芝加哥大学的马利亚里斯(MaryantheMalliaris)说,他与耶路撒冷希伯来大学和罗格斯大学的萨哈龙·希拉一起合作完成了这项新工作。 “当然,无论是我个人观点,还是之前大家的看法,都认为p应该小于t,”希拉说。 多种无穷 无穷的概念令人费解。那么会不会存在很多大小不同的无穷呢?这可能是有史以来最违反直觉的数学发现。然而当我们用一个配对的游戏来解释的时候,连小孩子都能理解。 假设你有两组物体,或者两组“集合”,就像数学家所说的那样:一组汽车和一组司机。如果每辆车只有一个司机,没有空车,没有司机留下,那么你就知道汽车的数量等于司机的数量(即使你不知道这个数字是多少)。 在19世纪后期,德国数学家乔治·康托在数学的形式语言中领会到了这种匹配策略的精髓。他证明了两个集合当它们可以一一对应时,它们大小是相同的,或者说它们具有相同的“基数”——即当每辆车只有一个司机时。也许更令人惊讶的是,他证明了这种方法也适用于无限大的集合。 考虑自然数:1、2、3等等。自然数的集合是无限的。但是对于偶数和质数的集合呢每一个集合起初看起来都是自然数的一个较小的子集。实际上,在数轴上的任何有限长度上,都有大约一半的偶数是自然数,而质数的数目则更少。 然而无限集的表现却不同。康托表示这些无限集的元素之间存在一一对应关系。 12345…(自然数) 246810…(偶数) 235711…(质数) 正因为如此康托得出的结论是,三个集合都是一样大。数学家把这个大小的集合称为“可数的”,因为您可以为每个集合中的每个元素标记一个编号。 在确立无限集的大小之间可以进行一一对应的比较后,康托做出了一个更大的飞跃:他证明了一些无限集其实比自然数集更大。 考虑实数,也就是数轴上的所有点。实数有时被称为“连续统”,反映了它们的连续性:在一个实数与下一个实数之间没有空隙。康托能够证明实数不能与自然数进行一一对应:即使在创建了一个将自然数与实数相匹配的无限列表之后,总是可以拿出另一个不在你的列表上的编号的实数。因此他得出结论:实数集合大于自然数集合。于是第二种无穷诞生了:即不可数无穷。 然而有个问题康托始终无法解决,即是否存在一个中间大小的无穷——介于可数的自然数集的大小和不可数的实数集之间。他认为没有,这是一个现在被称为连续统假设的猜想。 在1900年,德国数学家希尔伯特列出了数学中最重要的23个问题。他把连续统假设放在首位。“这似乎在说,我们迫切的想知道这个问题的答案,”马利亚里斯说。 在这之后的一个世纪,尽管数学家们拼尽全力,这个问题本身已经证明它是史无前例的难以攻克。介于中间的那个无穷存在吗?我们可能永远都不知道。 力迫法证明 在整个20世纪上半叶,数学家试图通过研究出现在许多数学领域的各种无限集来解决连续统假设。他们希望通过比较这些无穷大之间的大小,可以开启对自然数的大小和实数的大小之间可能存在的中间数的间隔的理解。 这些无穷大的大小判定研究,很多被证明对连续统假设没有用。在20世纪60年代,数学家保罗·科恩解释了其中的原因。科恩提出了一种叫做“力迫”的方法,证明了连续统假设独立于数学公理,也就是说,在集合论的框架内是无法证明的。(科恩的工作补充了库尔特·哥德尔1940年的工作,哥德尔的成果表明连续统假设不能用通常的数学公理来否定它。) 科恩的工作成果于1966年为他赢得了菲尔兹奖(数学最高荣誉之一)。数学家随后用力迫法来解决在前半个世纪中所提出的无穷之间的许多大小判定,表明这些大小判定也不能在集合论框架得到肯定或否定的回答。(具体来说,ZF(策梅洛-弗兰克尔)集合论加上选择公理。) 然而有些问题仍然存在,其中包括20世纪40年代提出的关于p是否等于t的问题。p和t都是两个无穷有序集的大小,它用精确的(而且似乎是唯一的)方法量化了自然数极小子集族的大小。 两个集合大小的细节并不重要。更重要的是数学家们很快就发现了p和t大小的两种情况,首先,两组都比自然数大。第二,p总是小于等于t,因此如果p小于t,那么p就是一个中间的无穷——介于自然数和实数的大小之间。那连续统假设便是错误的了。 简单的说说这个问题是什么:p是一个具有“强有限交性”和没有“伪交性”的自然数无穷子集合组成集族的最小的无穷,这意味着其中的子集以一个特定的方式相互重叠;t称为“塔数”并且是按“反向几乎包含”且没有“伪交性”的自然数无穷子集合组成的集族的最小大小的有序集合的无穷。 数学家之前倾向于认为p和t之间的关系不能在集合论框架内被证明,但是他们也不能确定问题的独立性。p和t之间的关系几十年来一直处于这种未确定的状态。直到马利亚里斯和希拉涉及别的研究领域后,才最终找到了解决办法。 复杂性的序 当保罗·科恩用力迫法证明了连续统假设在通常的数学框架之外的时候,模型论领域正在开展一项截然不同的工作。 对于模型论家来说,“理论”是定义数学领域的一套公理或规则。你可以将模型论视为一种对数学理论进行分类的方式——对数学源代码的探索。威斯康星大学麦迪逊分校数学退休教授H·杰罗姆·基斯勒说:“我认为人们有兴趣对理论进行分类的原因是他们想要了解一些特定事情在不同数学领域里发生的真正原因。” 1967年,基斯勒介绍了现在所谓的基斯勒序,这个序关系试图根据数学理论的复杂性将其进行分类。他提出了一种衡量复杂性的技术手段,并试图证明数学理论至少可以分为两类:最小复杂性和最大复杂性。基斯勒说:“这是一个小起点,但是我的感觉就是这里有无穷的类。 在基斯勒建立基斯勒序十多年后,希拉发表了一本有影响力的书,其中包括一个重要的章节,证明了复杂性中有自然发生的跳跃——具有较大复杂性的理论与较小复杂性理论之间可能存在一条明确的分割线。而此后30的年,基斯勒序的研究几乎没有任何进展。 一个理论具有复杂性,其意义并不总是那么显而易。这个领域的很多工作在某种意义下是如何让大家直观的理解这些问题。基斯勒将复杂性描述为一种理论中可能发生的事情的范围,如果一个理论较之于另一个理论中可能发生的事情越多,我们就说前者理论更复杂。 然后,在她2009年的博士论文和其他早期论文中,马里亚里斯重新开始了关于基斯勒序的工作,并为其作为分类程序的权提供了新的证据。2011年,他和希拉开始合作,旨在更好地理解序的结构。他们的目标之一是依托基斯勒的标准,找到更多的性质,构造出具有最大复杂性的理论。 “不知不觉中,一切都准备就绪,”马里亚里斯说。“然后问题就顺理成章的解决了。” 今年七月,马利亚里斯和希拉被授予豪斯多夫奖(HausdorffMedal),集合论的最高奖项之一。这项荣誉印证了他们证明是一个令人惊奇的结果,也印证了他们证明的强大力量。因为在集合论的框架内证明p和t不相等是不可能的,大多数数学家曾经期望p可以小于t。马利亚里斯和希拉证明了两个无穷大是相等的。他们的工作也表明,p和t之间的关系比数学家之前知道的要深奥得多。 “我觉得如果有一天人们意外地发现两个基数相等,那么该证明可能是令人惊讶的,但那可能是一个简短而睿智的论证,不涉及建立任何实体的机制。”康奈尔大学的数学家贾斯汀·摩尔(JustinMoore)说到,他发表了一篇有关马利亚里斯和希拉的证明的概述。 相反,马利亚里斯和希拉证明了p和t是相等的,通过在模型论和集合论之间开辟一条通路,并已经在这两个领域开辟了新的研究前沿。他们的研究也最终解决了数学家们希望能够帮助解决连续统假设的问题。然而专家们的压倒性的感觉是,无法解决的连续统假设是错误的:虽然无穷在很多方面的性质异于常态,如果在已发现的无穷之间没有更多大小不同的无穷,那么这太不同寻常了。 我们哆嗒补录的番外篇: 遗憾的是我们偶然发现这里居然有笔误。这里两个箭头,左边一个箭头的α不应该写在下标位置,应该写在正常位置。而右边箭头的α其实写错了,应该是a。我们已经把这个问题向出版社反馈了。 总体来说,这本书是本非常好的收录当代数学难题的工具书。 不得不说,数学从来没有像这样,被所有国家政府如此重视过…… 不久前,法国著名的“议员数学家”,2010年菲尔兹奖得主维拉尼,法国教育部督查局总监托罗萨安,以及法国教育部部长布兰克共同发布一份报告,研究如何改进法国的数学教学。并且提出21条建议,提振法国中小学数学教育,以改变当前法国“灾难般”的现状。 据报道,这份报告推荐的改进方案的主要学习对象是新加坡。这个亚洲的城市国家在过去20多年间,数学基础教育水平突飞猛进,成为世界最好的国家之一。而上世纪90年代左右,新加坡的学生数学水平几乎垫底。 “新加坡模式”要做的不仅仅是改变老师给中小学生教授数学的方式,同时还试图让老师他们自己在接受基础教育的时候,能更好的接受数学教育。这回的21条建议,也主要针对提高老师水平方面。 发布报告时作者们强调,这21条并不是一个“奇迹药”,而是一个在其他国家实行多年的一个有效成熟的方案。报告作者们说,在新加坡早期的小学教育中,强调动手操作和实验,然后语言表达,而在这些之后才会进入抽象阶段诸如公式、数、符号的学习。期间还会加入语言和绘画方面的教学内容。 法国是从近代起就是数学强国,但是数学精英与普通民众差距甚大。顶端的精英阶层出类拔萃,他们在高水平高中预科班学习,之后进入著名高校。但绝大多数的学生却在师资质量一般,教学水平低下的学校就读。由于高智商的数学天才努力向上流动,进入科研、金融等领域,不愿做中小学教师,结果导致中小学大部分数学教师不得不降低标准录用,由此影响了基础阶段的数学教学。 数论中,有很多著名问题都是ABC猜想的推论。比如我们列举的下面三个,曾经是数学界的神级问题,但在ABC猜想面前,就是简单的特例了: 莫德尔猜想:该猜想于1984年被法尔廷斯证明。法尔廷斯因此获得1986年的菲尔兹奖。该奖被誉为“数学界的诺贝尔奖”,是数学研究的最高荣誉。 费马大定理:该猜想于1995年被英国数学界怀尔斯证明,轰动全球。初版证明300多页,精简后也有100多页。如果利用ABC猜想,将极大简化费马大定理证明。 比尔猜想:该猜想由比尔本人提出,并通过美国数学会悬赏100万美元求解。难度极高,用比尔猜想,你可以不超过5句话证明费马大定理。