TMAO–谷禾健康

让食物成为你的药物,让药物成为你的食物

随着现代生活节奏的加快,疲劳、压力、不均衡的饮食,都在悄悄侵蚀着我们的健康。多糖,这些来自植物、真菌乃至海洋生物的天然赠礼,正以其独特的方式,为我们提供了一种全新的健康支持。

虽然部分多糖如淀粉可以在人体胃和小肠中被消化吸收,但仍有许多特殊结构的多糖不能在这两个部位分解。对于那些不能被宿主消化的多糖,它们可以进入结肠,而结肠是大多数肠道菌群居住的地方。在结肠中,多糖可以与肠道菌群相互作用,从而发挥营养或药理作用。

多糖与肠道菌群之间相互作用可以影响健康,同时也通过肠道菌群的代谢作用,转化为有益的代谢产物,如短链脂肪酸,这些产物对维持肠道屏障的完整性、调节免疫反应发挥着至关重要的作用,甚至扩展到了全身的健康状况,可以影响我们的精力水平、情绪状态,对疾病的抵抗力等方方面面。

本文将深入探讨多糖,了解其在人体内的消化过程、与肠道菌群的相互作用,以及它们如何通过调节肠道菌群代谢物影响健康,如短链脂肪酸、三甲胺、色氨酸,还讨论了多糖在疾病预防和治疗中的应用,包括它们在改善代谢性疾病、炎症性肠病、缓解疲劳、改善肿瘤,神经系统疾病等方面的潜在效果。这为靶向肠道菌群开发新型的营养补充剂和药物提供了新的思路。

本文目录

01多糖

02多糖调节肠道菌群的组成

为什么多糖可以调节肠道菌群的组成?

多糖促进或抑制肠道微生物群

多糖分子量、糖苷键影响其细菌调节活性

03肠道微生物将多糖代谢为短链脂肪酸

短链脂肪酸的生物学效应

人体内的多糖代谢

多糖补充与短链脂肪酸的生成

04多糖调节其他肠道微菌群代谢物

三甲胺和氧化三甲胺(TMAO)

色氨酸及其代谢产物

胆汁酸、脂多糖、胃肠道气体

05多糖调节肠道菌群修复肠道屏障

06多糖通过肠道菌群改善疾病

2型糖尿病、非酒精性脂肪肝、肥胖、高血脂症

炎症性肠病、其他肠胃疾病、肿瘤

疲劳、神经系统疾病(认知障碍、抑郁等)

07部分多糖营养与菌群调节

路易波士茶多糖、地黄多糖、五指毛桃根多糖

大蒜多糖、槐耳多糖、黄芩多糖、枸杞多糖

岩藻多糖、桑叶多糖、沙棘多糖、蘑菇多糖

08结语

糖,这个小小的分子,是能量的源泉,是细胞的加油站。除了我们熟知的葡萄糖以外,还有一种叫做多糖,由许多糖分子手拉手组成,从植物的根茎到海洋生物的细胞壁,它们以复杂多样的形态存在。

根据糖单元的数量,碳水化合物可分为几类:

多糖是由10个以上相同或不同的单糖通过α或β糖苷键连接而成的大分子化合物,分子量从几万到数百万。

例如,透明质酸和硫酸软骨素属于动物多糖,而纤维素、淀粉和糖原是常见的植物多糖。

淀粉

由大量葡萄糖分子通过α-1,4-糖苷键和α-1,6-糖苷键连接而成,形成直链淀粉和支链淀粉两种结构。广泛存在于谷物(如大米、小麦、玉米)、薯类(如土豆、红薯)等食物中。在人体消化过程中,被淀粉酶逐步分解为葡萄糖,为身体提供能量。

纤维素

由葡萄糖分子通过β-1,4-糖苷键连接而成,形成长而直的链状结构。是植物细胞壁的主要成分,在蔬菜(如芹菜、菠菜)、水果(如苹果)中含量丰富。由于人体缺乏分解β-1,4-糖苷键的酶,纤维素难以被人体消化吸收,但对促进肠道蠕动、预防便秘等具有重要作用。

果胶

是一种复杂的多糖,由半乳糖醛酸等组成。常见于水果(如柑橘、苹果)中。在食品工业中,常用于制作果酱、果冻等,增加其黏稠度和稳定性。

近年来,一些新的方法,如超声波提取、微波提取、超滤、高压电场法、超临界流体萃取、亚临界水萃取等也用于多糖的提取。这些方法不仅能够提高多糖的提取率,还能够在一定程度上保护多糖的结构完整性,从而保留其生物活性。

通常,人体分泌的消化酶只能分解几种多糖,而纤维等许多多糖不能被吸收和直接使用。因此,多糖可以通过小肠进入结肠,这是大多数肠道细菌居住的地方,然后与肠道微生物群相互作用。

细菌在肠道中通过发酵降解多糖

doi.org/10.3390/nu14194116

多糖转化为短链脂肪酸

短链脂肪酸对肠道细菌的影响

例如,短链脂肪酸能够通过调节侵袭基因的表达,抑制沙门氏菌(一种常见的食源性病原体)的生长。因此,短链脂肪酸的增加可以改变肠道菌群的功能,进而影响其组成。

肠道pH值的变化

短链脂肪酸的增加还会导致肠道pH值下降,影响细菌的适应能力。每种细菌都有其适宜的pH范围,不同细菌在特定pH条件下的适应能力各异。

综上所述,多糖通过影响肠道菌群的代谢功能,直接调节了肠道菌群的组成。这些发现为我们理解多糖如何通过肠道菌群影响宿主健康提供了新的视角。

多糖的益生元效应

多糖抑制病原菌

多糖的双向调节作用

疾病的发生是一个复杂的过程,涉及不同的微生物,包括有害细菌和有益细菌。例如:

多糖能够对肠道微生物发挥双向调节作用,即促进有益细菌的同时抑制有害细菌。

例如,口服灰树花多糖(GFHP)对非酒精性脂肪肝病的积极作用与调节肠道菌群有关。

在分子量方面,不同分子量的魔芋葡聚糖(KGM)对2型糖尿病(T2DM)大鼠的降血糖作用研究表明,中等分子量的KGM显著增加了Muribaculaceae,减少了Romboutsia和Klebsiella,但高分子量和低分子量的KGM对这些细菌的影响不显著。

高分子量的黄芪多糖具有一定的生物活性,但其相对分子量较大,溶解性差,生物利用度低,限制了其功效的发挥。低分子量的黄芪多糖具有较好的水溶性,能够在更大程度上刺激巨噬细胞摄取中性红、NK细胞增殖,发挥免疫活性。

多糖由各种通过糖苷键连接的单糖组成,糖苷键的类型和位置导致肠道微生物群的选择性发酵存在差异。

多糖的单糖组成越复杂,调节细菌的活性越强

一项关于龙眼多糖和燕麦多糖的研究表明,龙眼多糖能显著促进干酪乳杆菌、嗜酸乳杆菌、植物乳杆菌、粪肠球菌的增殖,但燕麦多糖的作用并不明显。原因是龙眼多糖由葡萄糖、甘露糖和阿拉伯糖组成,而燕麦多糖的单糖主要是葡萄糖。

短链脂肪酸(SCFA)是一组含有少于六个碳的脂肪酸,包括甲酸盐、乙酸盐、丙酸盐、丁酸盐、戊酸盐。

乙酸盐、丙酸盐和丁酸盐是肠道中的主要SCFA,约占所有SCFA的95%,三者的比例约为3:1:1。

作用机制

与GPRs的相互作用

抗炎作用

免疫调节

HDAC抑制作用

丁酸盐的作用

与疾病的关系

多糖对SCFA的调节及其对靶标的影响

doi.org/10.1016/j.foodres.2022.111653

人体内消化酶的局限

在人体消化系统中,我们自身分泌的消化酶往往难以分解复杂的多糖。这些多糖分子,因其结构复杂,通常在我们体内无法被有效代谢。

肠道菌群的代谢作用

我们的肠道菌群拥有破解这些复杂多糖的秘密武器——一系列的酶,统称为碳水化合物酶(CAZymes)。这些酶能够分解多糖,将其转化为对人体健康有益的短链脂肪酸。

碳水化合物酶的种类

肠道菌群中的“专家”与“通才”

在肠道菌群中,拟杆菌门和厚壁菌门是编码CAZymes的两大主力。

多糖的初步降解

在属的水平上,多糖最初可以由某些微生物降解,例如双歧杆菌属、真杆菌属、梭菌属、罗氏菌属(Roseburiaspp.)。

SCFAs的生成途径

尽管人体自身无法分解复杂的多糖,但我们的肠道菌群却具备了这一能力,它们通过一系列特殊的酶,将多糖转化为对人体健康有益的短链脂肪酸。

多糖对SCFAs生成的促进作用

饮食补充多糖可以为产生SCFAs的细菌提供有利的生长环境,从而促进SCFAs的生成。例如,沙棘多糖(CCPP)通过调节肠道菌群和SCFAs,能够缓解2型糖尿病。

沙棘多糖调节肠道菌群和SCFAs,缓解2型糖尿病

枸杞多糖调节肠道菌群,提高SCFAs

多糖结构对短链脂肪酸生成的影响

不同的多糖因其分子结构的不同,对SCFAs的调节作用也不尽相同。

多糖的疗效与SCFAs的非直接关联

多糖通过调节肠道菌群和促进SCFAs的产生,对健康具有多方面的益处。然而,多糖的结构与它们对SCFAs生成的调节作用之间的关系仍需进一步研究。此外,多糖的疗效可能不仅限于SCFAs的产生,还可能涉及肠道菌群产生的其他分子。

三甲胺和TMAO的代谢过程

在肠道中,饮食中的四胺类物质如胆碱、L-肉碱和卵磷脂(来自红肉、鸡蛋、鱼、海鲜)首先被微生物胆碱三甲胺裂解酶分解成三甲胺(TMA)。随后,TMA被吸收进入门脉循环,并运输到肝脏,在黄素单加氧酶1和黄素单加氧酶3的作用下转化为三甲胺-N-氧化物(TMAO)。

TMAO的潜在危害

多糖对TMA和TMAO代谢的影响

最近的研究表明,TMA和TMAO在理解多糖的作用机制中扮演重要角色。例如:

不同多糖对肠道菌群的调节作用

多糖通过调节肠道菌群,影响TMA和TMAO的代谢,从而可能对人体健康产生积极影响。然而,多糖与TMAO之间的关系复杂,需要更多的研究来阐明这些相互作用的确切机制。

色氨酸代谢的重要性

色氨酸(Trp)是人体必需的氨基酸。它的代谢可以分为内源性代谢和细菌性代谢。内源性代谢主要通过犬尿氨酸途径(KP)和5-羟色氨酸途径进行,前者产生犬尿氨酸(KYN)、犬尿酸(KA)、烟酸、黄嘌呤酸等,后者转化为5-羟色氨酸(5-HT)和褪黑素。

色氨酸代谢物的生理功能

增强免疫:色氨酸可加强免疫力,减少炎症。

神经保护:KA作为谷氨酸受体拮抗剂,具有神经保护和抗惊厥作用,还能调节能量代谢。

情绪调节:5-HT作为神经递质,可调节情绪、肠道通透性和肠道蠕动。

肠道菌群在色氨酸代谢中的作用

肠道细菌代谢色氨酸产生吲哚及其衍生物,如吲哚丙酸、吲哚乙酸等,这些物质可以缓解炎症,促进肠道上皮屏障功能。肠道菌群的色氨酸代谢异常与肠易激综合症、代谢综合症和结肠癌等疾病有关。例如,结肠癌患者常伴有色氨酸水平下降和KP代谢物水平升高。

多糖影响肠道微生物色氨酸代谢,从而改善疾病

吲哚是硫酸吲哚酚的前体,是一种蛋白结合尿毒症毒素,是心血管疾病的危险因素。对于患有终末期肾病心血管疾病的患者,吲哚水平升高,患者粪便中产吲哚细菌丰富。

总的来说,多糖可以通过调节肠道菌群来改变色氨酸代谢,最常见的是增加乳杆菌和阿克曼菌,从而缓解疾病。

胆汁酸的生物合成与功能

胆汁酸(BAs)是一类由肝脏产生的特殊类固醇分子,经过肠道菌群转化。肝脏中存在两种BA生物合成途径:

CA和CDCA是体内的主要胆汁酸。经过肠道菌群的改造,CA转化为脱氧胆酸(DCA),CDCA转化为鹅去氧胆酸(LCA)。

胆汁酸受体及其作用

胆汁酸受体包括细胞表面受体和细胞内受体。细胞表面受体包括TGR5,细胞内受体包括法尼酰X受体FXR、孕烷X受体、维生素D3受体(VDR)和组成型雄烷受体。胆汁酸通过激活相应的受体调节脂质、葡萄糖和能量代谢。例如,TGR5和VDR的激活导致GLP-1和FGF19分泌,GLP-1可以改善胰岛素敏感性,FGF19可以通过抑制脂肪生成减少肝脏脂肪变性。

多糖对胆汁酸代谢的调节作用

近年来的研究表明,多糖可以通过恢复胆汁酸的代谢来缓解疾病。

多糖对胆汁酸代谢影响的总结

多糖通过调节肠道菌群的组成,特别是Bacteroides、Lactobacillus、Clostridium、Ruminococcus、Bifidobacteria,影响胆汁酸的代谢。

某些多糖如岩藻聚糖和灰树花多糖减少了Clostridium的水平,这与文献报道的促进胆汁酸转化的作用似乎矛盾,需要进一步研究确认这些肠道细菌与多糖之间的关系。

脂多糖的危害

脂多糖(LPS)是由革兰氏阴性细菌(如大肠杆菌)产生的内毒素。持续暴露于LPS或LPS异常增加,可通过减少肠道上皮细胞活性、降低肠道细胞增殖、抑制肠道细胞迁移和诱导肠道细胞凋亡等方式,导致肠道损伤。

LPS的转移还能损伤肠道,并可能通过与多种受体的相互作用,如LPS结合蛋白、簇分化14、髓样分化2和Toll样受体4,引发糖尿病、非酒精性脂肪肝病、肥胖、动脉粥样硬化等一系列疾病。

多糖对LPS产生菌的抑制作用

许多多糖能够抑制产生LPS的细菌。例如,在链脲佐素(STZ)诱导的糖尿病肾病模型中:

多糖调节肠道菌群的矛盾效应

尽管多糖可以通过调节肠道细菌来抑制LPS,但对特定细菌的调节作用可能存在矛盾。例如,作为LPS产生菌的拟杆菌门,在多糖处理后的水平变化并不一致。有研究表明,黄精多糖和蝉花多糖增加了拟杆菌门的水平,而竹荪多糖却降低了它。这些研究表明,多糖对肠道菌群的调节效应有时可能相互矛盾,需要进一步研究以确认结果。

胃肠道气体的生成

胃肠道内通过细菌发酵食物,会产生一系列气体,包括氢气(H2)、甲烷(CH4)、二氧化碳(CO2)、硫化氢(H2S)和一氧化氮(NO)。这些气体在胃肠道中发挥着调节作用,例如影响结肠蠕动、神经通讯、血管功能和免疫反应等。

气体产生的部位和作用

CO2主要在胃中产生,而其他气体如H2、CH4、CO2和H2S主要在小肠和结肠中产生。

这些气体对人体健康至关重要,它们可以调节肠道功能,影响营养物质的吸收和疾病的发生。

多糖对气体产生的调节

尽管多糖对H2、CH4和CO2的产生有明显影响,但关于多糖结构与气体产生之间具体关系的研究会相对较少。需要更多的研究来明确这些关系,以及多糖如何通过影响肠道菌群来调节气体的产生。

肠道菌群是一个复杂的微生物群落,具有显著的组成和功能多样性。不同的微生物可以介导相同或不同的代谢物的产生,相同的微生物也有助于不同代谢物的生产。

例如,持续的研究表明:

拟杆菌门(特别是Bacteroidesthetaiotaomicron、Bacteroidesfragilis)、厚壁菌门(如Clostridiaceae、Erysipelotrichia)、以及变形菌门可以促进TMA的产生。

放线菌门(如Bifidobacteria)、厚壁菌门(如Lactobacillus、Clostridium、Peptostreptococcus)、拟杆菌门(如Bacteroides)可以促进色氨酸(Trp)的转化。

双歧杆菌、乳酸菌、梭菌、Peptostreptococcus、拟杆菌也有助于次级胆汁酸(BAs)的产生。

因此,就像肠道菌群组成的调节一样,多糖对特定肠道菌群代谢物功能的调节作用不是孤立的。

肠道是我们抵御外界有害物质和病原体侵袭的第一道防线。它由多个层次的子屏障构成:

生物屏障:由肠道细菌和病毒组成;

化学屏障:包含免疫球蛋白A(IgA)、抗菌肽(AMPs)和粘液(MUC);

物理屏障:由肠道上皮细胞构成;

免疫屏障:含有T细胞、B细胞、巨噬细胞和树突细胞等免疫细胞。

肠道菌群及其代谢物可以直接或间接影响肠道屏障:

越来越多的证据表明,多糖通过调节肠道菌群对肠道屏障有益。正常的肠道菌群组成可以通过竞争性排除,通过消耗营养源和占据附着位点,作为抵御外界病原体的屏障。

多糖→调节肠道菌群→修复肠道屏障

肠道菌群可以刺激宿主产生抗菌化合物,如IgA和AMPs,这些是化学屏障的关键组成部分。

例如,菊粉型果聚糖可以促进乳杆菌的丰度和IgA的分泌。在DSS诱导的溃疡性结肠炎小鼠模型中,金银花多糖通过增加双歧杆菌和乳杆菌,增加了分泌型IgA含量,从而调节肠道屏障。

在DSS诱导的结肠炎小鼠中,海蜇皮多糖增加Akkermansia,Akkermansiamuciniphila作为粘液的降解者,可以增强肠道屏障的完整性,减少炎症。同时海蜇皮多糖增加结肠中TJs和MUC2的表达,保护了肠道屏障。

多糖→短链脂肪酸→修复肠道屏障

短链脂肪酸和胆汁酸等肠道菌群代谢物在调节肠道屏障功能中也扮演重要角色。

多糖→色氨酸和胆汁酸代谢→修复肠道屏障

这些研究表明,多糖可以通过调节肠道菌群及其代谢物,维护肠道屏障的完整性。

代谢性疾病包括一组因碳水化合物、脂质和蛋白质代谢错误而导致的疾病。2型糖尿病(T2DM)、非酒精性脂肪性肝病(NAFLD)和肥胖是常见的代谢性疾病。

生活方式干预、全身药物治疗和外科手术等多种方法被用于预防和治疗代谢性疾病。尽管代谢性疾病的药物治疗取得了最新进展,但潜在的不良反应仍然是关键挑战。

使用天然物质的药物治疗被认为是改善代谢疾病的一种有前途且可行的方法。

doi.org/10.1016/j.biopha.2023.114538

多糖通过多种机制在治疗2型糖尿病方面表现出良好的效果,比如:

肠道菌群在代谢紊乱,特别是2型糖尿病的发展中起着重要作用。

◤车前子多糖对STZ诱导的2型糖尿病大鼠有抗糖尿病作用,这可能与其调节肠道菌群和增加短链脂肪酸水平有关。车前子多糖可显著增加糖尿病大鼠粪便中Bacteroidesvulgatus、发酵乳杆菌、Prevotellaloescheii、Bacteroidesvulgates等结肠细菌的多样性和丰度,以及短链脂肪酸的浓度。

◤桑果多糖可以丰富糖尿病小鼠的功能菌并调节微生物多样性。具体而言,该多糖显著富集了一些有益细菌(拟杆菌目、乳杆菌属、Allobaculum、拟杆菌属、阿克曼菌属),同时减少了一些致病菌(葡萄球菌、棒状杆菌属、Jeotgalicoccus、Aerococcus、Enterococcus、Facklamia)。

◤罗布麻叶的两种富含多糖的提取物改善了糖尿病小鼠的肠道微生物群失调,包括增加了Odoribacter、Anaeroplasma、Parasutterella、Muribaculum的丰度,并降低了肠球菌属、克雷伯菌属、Aerococcus的丰度。这可能有助于它们的抗糖尿病作用。

◤青钱柳叶中分离的多糖通过增加SCFAs含量和有益的肠道细菌瘤胃球菌科来减轻HFD/STZ诱导的2型糖尿病大鼠的糖尿病症状。

◤苦瓜中的天然多糖通过增加SCFAs含量和Prevotellaloescheii、Lactococcuslaudensis的丰度来改善HFD/STZ诱导的2型糖尿病大鼠的高血糖、高脂血症、高胰岛素血症。

◤天然南瓜多糖通过增加阿克曼氏菌和减少丹毒丝菌科(Erysipelotrichaceae)来显示出对HFD/STZ诱导的2型糖尿病的降血糖作用。此外,南瓜多糖还能增加2型糖尿病模型中肠道短链脂肪酸的产生。

◤灵芝多糖(GLP)通过恢复HFD/STZ诱导的肠道微生物群失调,特别是通过增加Blautia、拟杆菌、Dehalobacterium、Parabacteroides,以及减少有害的肠道细菌Aerococcus、Corynebacterium、Ruminococcus、Proteus,显示出抗糖尿病作用。

◤薏苡仁多糖通过降低厚壁菌门/拟杆菌门的比例和增加SCFAs的含量,在HFD/STZ诱导的T2DM小鼠模型中表现出降血糖活性。

◤葡甘聚糖作为铁皮石斛、芦荟和魔芋的天然多糖,通过增加厚壁菌门的丰度和减少拟杆菌门、变形杆菌的丰度,改善HFD/STZ喂养大鼠的T2DM代谢紊乱。

多糖对改善NAFLD具有有益作用,比如:

多糖可以改善肠道菌群失调并保护非酒精性脂肪性肝动物的肠道屏障完整性

◤枸杞多糖结合有氧运动通过改善肠道菌群失调改善NAFLD,包括调节肠道菌群的丰度和多样性,增加微生物代谢产物SCFA的水平,减少变形菌和厚壁菌门/拟杆菌门的比例。厚壁菌门和拟杆菌门是参与宿主代谢和脂肪积累的关键细菌。

◤麦冬多糖可以通过调节肠-肝轴显著保护NAFLD。具体来说,这种多糖显著降低了一些有害细菌的相对丰度,包括乳球菌、肠杆菌、Turicibacter、Clostridium-sensu-stricto-1、Tyzzerella、Oscillibacter,并增加一些有益菌的相对丰度,如Alistipes、Ruminiclostridium、Rikenella。这种多糖还显著增加了两种产SCFAs菌(Butyricimonas、Roseburia)的丰度以及乙酸和戊酸的水平,从而改善了炎症反应和肝脏脂质代谢。

◤灰树花杂多糖可通过调节肠道菌群来改善高脂饮食诱导的NAFLD,包括显著增加Allobaculum、拟杆菌属和双歧杆菌属丰度,减少Acetatifactor、Alistipes、Flavonifractor、Paraprevotella、Oscillibacter的丰度。

◤黄芪多糖可减轻HFD喂养小鼠的NAFLD,丰富了脱硫弧菌属,尤其是作为SCFAs、乙酸的产生者的Desulfovibriovulgaris,减轻肝脂肪变性。

◤核桃青皮多糖通过提高肠微生物群(包括普氏菌科、Allobaculum)的SCFAs含量和丰度,预防HFD喂养大鼠的肥胖和NAFLD。

◤从贻贝中提取的贻贝多糖,α-D-葡聚糖(MPA)可保护HFD喂养的大鼠的NAFLD,补充MPA可逆转HFD抑制的微生物微生态失调和SCFAs。

◤海带可溶性多糖通过降低厚壁菌门/拟杆菌门的比例,促进Verrucomirobia和丙酸盐产生菌拟杆菌和阿克曼菌,减轻高脂饮食喂养小鼠的NAFLD。

多糖通过多种机制表现出良好的抗肥胖作用,作用机制如:

◤枸杞多糖补充剂可降低厚壁菌门与拟杆菌门的比例,增加产短链脂肪酸菌,如Lacticigenium、Butyricicoccus、Lachnospiraceae_NK4A136_group数量,从而改善肥胖小鼠的肠道菌群失调。

◤桑叶多糖治疗可调节肥胖小鼠肠道菌群的组成和功能,这与增加Allobaculum、Parabacteroides、Porphyromonadaceae、Butyricimonas、Ruminococcus的水平有关。

◤黄精多糖调节HFD喂养的肥胖大鼠的肠道微生物群结构,包括降低梭菌、肠球菌、Coprobacillus、乳球菌、Sutterella的相对丰度。

◤从海带中提取的天然多糖可通过使肠道菌群正常化来缓解小鼠HFD引起的肥胖,特别是通过增加拟杆菌目和Rikenellaceae的丰度。

◤从杏鲍菇中分离出的蘑菇多糖通过增加产生SCFA的肠道细菌Anaerostipes和Clostridium的数量,在高脂饮食喂养的小鼠中表现出抗肥胖作用。

◤从苦瓜中获得的多糖通过增加有益细菌(如放线菌、Coprococcus、乳酸杆菌)和减少有害细菌(变形菌和幽门螺杆菌)来改善HFD诱导的小鼠肥胖。

◤日本刺参的硫酸多糖通过富集益生菌Akkermansia、减少携带内毒素的变形杆菌和提高SCFAs含量来预防HFD诱导的小鼠肥胖。

doi.org/10.3389/fmicb.2022.859206

高脂血症是指脂质代谢紊乱,其特征是甘油三酯(TG)、总胆固醇(TC)和低密度脂蛋白浓度升高,同时高密度脂蛋白水平降低。

◤果胶多糖(高支链RG-I,531.5kDa)显著改善了HFD引起的脂质代谢异常,TG、TC、LDL-C和游离脂肪酸水平降低。它还通过增加Roseburia、Clostridium等产生SCFA的细菌的数量来恢复肠道菌群失衡。

◤裙带菜多糖(Undariapinnatifida)修复了高脂饮食引起的肠道微生物群改变,特别是Prevotellaceae_UCG-001,发现这与脂质代谢紊乱有关。

◤龙须菜多糖调节拟杆菌、瘤胃球菌_1和乳酸杆菌的相对丰度来增强胆固醇向BAs的转化。在遗传水平上,有人认为BA代谢的调节主要涉及CYP39A1和CYP7B1。

炎症性肠病(IBD)包括溃疡性结肠炎(UC)和克罗恩病(CD),其特点是胃肠道持续炎症。IBD的症状包括腹泻、腹胀、腹痛、便血、体重减轻和不适。

◤银耳多糖(TPs)通过多途径调节肠道菌群及其代谢物,改善了DSS诱导的溃疡性结肠炎。TPs可以增加Lactobacillus的丰度,从而改善色氨酸的分解代谢。这导致黄嘌呤酸、KA和吲哚衍生物(如5-羟吲哚、5-羟吲哚-3-乙酸、5-羟吲哚乙酰酸)的增加。

TPs还可以增加Romboutsia的水平,促进DCA的产生。因此,TPs可以通过影响色氨酸代谢和胆汁酸代谢来保护小鼠免受结肠炎的侵害。

◤金针菇多糖已被证明可以通过控制结肠微生物失调、增加短链脂肪酸和抑制TLR4-NF-κB信号通路来缓解结肠炎。能促进益生菌的生长,抑制致病菌的生长,恢复肠道稳态,缓解IBD症状。

◤竹荪多糖由59.84%的葡萄糖、23.55%的甘露糖和12.95%的半乳糖组成,已被证明可以通过增加粘蛋白和紧密连接蛋白的表达,抑制有害细菌(如γ-变形菌、变形菌、拟杆菌科、拟杆菌科和肠杆菌科)并增强有益细菌(如嗜酸乳杆菌)来改善肠道菌群组成和肠道屏障功能。

◤坛紫菜多糖通过上调紧密连接蛋白,增加粘液层及其分泌,调节肠道微生物群落,富集有益细菌,如拟杆菌、Muribaculum和乳酸杆菌,从而减轻DSS诱导的结肠损伤,从而改善结肠粘膜屏障的完整性。

◤白术多糖可以缓解在DSS诱导的溃疡性结肠炎小鼠模型炎症。白术多糖可以增加Butybacterium、Lactobacillus,同时减少Actinomyces、Akkermansia、Faecalibaculum、Verrucomicrobia、Bifidobacterium等。

天然植物多糖治疗IBD的机制

doi.org/10.1016/j.ijbiomac.2023.126799

◤甘草多糖GPS上调乳杆菌科、S24–7、Turicibacteraceae、Verrucomicrobiaceae和双歧杆菌科的丰度,下调脱硫弧菌科、瘤胃球菌科、毛螺菌科、肠杆菌科、丹毒丝菌科的丰度。GPS能促进乳杆菌、拟杆菌和产SCFAs菌的生长繁殖,起到减轻炎症、升高IL-10水平、抑制TLR4活化、降低血浆LPS水平的作用,从而保护肠道免受LPS诱导的炎症。

◤何首乌多糖(TSG)的给药显著增加了厚壁菌门和拟杆菌门的相对丰度,同时也降低了幽门螺杆菌和拟杆菌门的属水平,改善了肠道菌群,起到治疗IBD的作用。

doi.org/10.3390/nu15153321

◤乳果糖通过重塑肠道菌群组成和代谢物,改善了由洛哌丁胺引起的便秘小鼠模型中的肠道水和盐代谢。具体来说,乳果糖上调了Bacteroides的丰度,并显著降低了厚壁菌门和Verrucomicrobia的水平。

此外,乳果糖减少了胆汁酸(包括CA、DCA等)、粪便中高浓度的吲哚(高浓度吲哚对细胞有毒)并增加了丙酸。

适当调节免疫反应可以降低炎症反应引起的病原体入侵的风险。

结直肠癌

灵芝多糖通过调节乳酸杆菌、双歧杆菌等有益菌的相对丰度,诱导SCFAs的产生,改善肠道屏障损伤,抑制TLR4/MyD88/NF-κB信号通路,从而降低结肠炎和致癌风险。

◤绞股蓝与灵芝多糖联合使用显著提高了SCFAs产生菌的丰度,提高了丁酸和异丁酸水平,抑制了硫酸盐还原菌的丰度。

乳腺癌

◤来自灵芝破壁孢子(分子量为3659Da)的多糖可作为乳腺癌治疗的天然佐剂,增加细胞毒性T细胞和辅助性T细胞的数量。

灵芝孢子提取物(ESG)重塑了4T1荷瘤小鼠的肠道菌群:厚壁菌门和变形菌门的相对丰度增加,放线菌、拟杆菌门和蓝藻的相对丰度降低。

◤灵芝多糖联合紫杉醇对4T1乳腺荷瘤小鼠有抗肿瘤作用。联合治疗能显著富集拟杆菌、瘤胃球菌等5个菌属,降低脱硫弧菌和Odoribacter的丰度,平衡肠道菌群,抑制肿瘤代谢。

doi.org/10.3390/foods12163083

多糖抗疲劳机制如下:

抗疲劳多糖干预后肠道菌群的变化

肠道-肌肉轴是肌肉与消化道之间的双向沟通,微生物可以通过微生物-肠道-肌肉轴作用于全身的肌肉。肠道微生物在膳食多糖的作用下,产生一些代谢产物(短链脂肪酸等),有些代谢产物会直接穿过肠道上皮细胞,通过血液循环直接或间接作用于肌肉组织和细胞,引起细胞发生生理生化反应,对疲劳产生一定的影响。

补充膳食多糖通过作用于肠道菌群及其代谢产物,间接激活AMPK/PGC-1α、PI3K/AKT、NF-κB、Nrf2/Keap1信号通路,调节能量代谢,降低炎症水平,增强线粒体功能和抗氧化能力,进一步维持肌肉质量和功能,从而缓解疲劳。

扩展阅读:

优化肠道菌群——对抗肌肉减少和骨质流失

◤从秋葵中提取的多糖,发现它对抑郁小鼠的肠道菌群有明显的恢复作用,表现为厚壁菌门比例上调,拟杆菌门和放线菌门相对比例下调。这种调节有助于强化肠黏膜屏障,维持肠道免疫系统正常功能,减少肠道炎症反应,对抗抑郁有效,抑郁症小鼠的抑郁症状有所改善。用秋葵多糖治疗的小鼠体内的SCFAs显著增加,而SCFAs作为重要的通讯介质,对抗抑郁障碍有积极的影响。

◤接受金针菇多糖(FVP)治疗的小鼠的肠道微生物组成发生显著改变,放线菌、丹毒菌和拟杆菌的丰度增加,梭菌的丰度降低,并且接受FVP治疗的小鼠的学习和记忆能力得到改善。

◤肉苁蓉多糖可以通过恢复小鼠模型中D-半乳糖诱导的衰老引起的肠道菌群稳态来抑制氧化应激和外周炎症,从而改善小鼠的认知功能。

◤从黄芪中提取的一种多糖已被证明可以通过改变糖尿病小鼠的肠道菌群来改善认知障碍。

抑郁症与肠道微生物群有何关联

阿尔茨海默病de饮食-微生物-脑轴

以下是关于一些多糖的详细介绍,包括其功效,与肠道菌群的关联等,更深入地了解多糖在人体中的重要作用。

路易波士茶是什么?

路易波士茶(Rooibos)又名Aspalathuslinearis,中文也有译作“路易博士茶”,取自原产于南非的一种豆科植物的茎叶。虽然带有一个茶字,但路易波士茶并不是传统意义上的茶叶。

路易波士茶因不含咖啡因、单宁含量低而受到南非人的喜爱,并在全球范围内进行商业化种植和销售。2014年,中国卫生和计划生育委员会批准路易波士茶作为新的食品原料,丰富了中国的食品和药物资源。

路易波士茶具有良好的抗氧化、抗过敏、解痉和降血糖作用。也可以预防心血管疾病、神经退行性疾病、各种癌症、骨质疏松症等。

路易波士茶多糖

一项研究从路易波士茶中分离得到均一酸性多糖(ALPs),水溶性多糖ALP由β-糖苷键连接,含有吡喃糖环,主要由岩藻糖、鼠李糖、阿拉伯糖和半乳糖组成。

结合RT-PCR结果推测,ALP可能通过降低Cyp2e1和Keap1的mRNA表达,增加Nrf2和HO-1的mRNA表达,激活Cyp2e1/Keap1-Nrf2-HO-1信号通路,调控下游抗氧化酶活性和炎症因子表达,减轻氧化应激损伤和炎症反应造成的损伤,从而改善急性酒精性肝损伤。

路易波士茶多糖对肠道菌群的影响

多样性

急性酒精性肝病模型对照组(MC)的物种多样性和丰富度显著降低(p≤0.05)。高剂量和低剂量ALP处理组的物种多样性和丰富度有所增加,其中高剂量组的增加更为显著。

干预后改善的菌群

ALP干预后疣微菌丰度显著升高(p≤0.01),而脱硫杆菌丰度及F/B值均降低,但差异不显著。

ALP显著改善了小鼠急性酒精性肝损伤中Alloprevotella和Alistipes丰度显著降低的情况(p≤0.05)。

“肠-肝轴”途径

地黄是玄参科地黄属植物,在我国拥有久远的药用历史,作为滋阴补肾的传统中药,也被《神农本草经》列为上品。

多糖是地黄中的主要活性成分之一。地黄多糖具有免疫调节、抗肿瘤、抗氧化、抗衰老等多种生物活性。

迄今为止,从地黄中分离纯化了20多种多糖,主要由阿拉伯糖、鼠李糖、半乳糖、葡萄糖、甘露糖、木糖、岩藻糖和半乳糖酸组成。

地黄多糖能增加DSS诱发小鼠的体质量指数和结肠长度、降低DAI评分,改善组织病理学损伤。同时,地黄多糖能阻断NF-κB信号通路,降低细胞内促炎因子表达,减轻炎症,增加紧密连接蛋白表达,维持肠道上皮屏障。

地黄多糖可能在肠道微生物作用下发酵转化为SCFAs,增加肠道中乙酸、丙酸和丁酸的含量,起到缓解IBD的作用。

拟杆菌属、乳酸杆菌属、Alistipes是导致DSS结肠炎组肠道微生物组失衡的关键细菌类型,而补充地黄多糖可以逆转这种有害变化。

五指毛桃,又叫粗叶榕(FicushirtaVahl),常被用作滋补品的草药成分,以其丰富的多糖含量和生物活性而闻名。

一项研究发现,FHVP-3对肠道微生物群产生影响:

下列菌群富集:

FHVP-3抑制了下列机会性致病菌属的丰度:

作为可发酵底物,FHVP-3还增加了短链脂肪酸的浓度,包括乙酸盐、丙酸盐和丁酸盐。FHVP-3对脂多糖(LPS)诱导的RAW264.7巨噬细胞表现出显着的抗氧化活性和显着的抗炎作用。

doi.org/10.1021/acsfoodscitech.3c00626

研究表明,大蒜多糖在调节肠道微生物群方面发挥着作用,但它们是否具有维持肠道健康的全面功能并可作为有效的益生元仍不清楚。

为了探索这一点,通过管饲法给昆明小鼠施用不同剂量的大蒜多糖(1.25-5.0g/kg体重)和菊粉(作为阳性对照),并评估它们对肠道上皮、化学和生物屏障的影响。还使用洛哌丁胺建立了便秘模型,以研究大蒜多糖对缓解便秘的潜在影响。

施用大蒜多糖显著上调昆明小鼠小肠组织中紧密连接蛋白和粘蛋白的表达。大蒜多糖提高了盲肠丁酸含量,降低了脱硫杆菌的丰度,并降低了厚壁菌门与拟杆菌门的比例(F/B)。大蒜多糖还促进了Bacteroidesacidifaciens、Clostridiumsaccharogumia的生长。

Tax4Fun功能预测表明,大蒜多糖具有预防人类疾病的潜力,可降低胰岛素抵抗、传染病和耐药性的风险。

大蒜多糖还通过增强小肠转运、软化粪便稠度、加速排便和促进兴奋性神经递质的释放,在缓解洛哌丁胺引起的便秘症状方面表现出有益作用。

多年来,槐耳(TrametesrobiniophilaMurr)一直被用于药物治疗。槐耳含有多种成分,包括多糖、蛋白质、酮和生物碱,其中蛋白聚糖和多糖是主要的生物活性成分。

槐耳提取物具有免疫调节活性,并可通过激活自噬、抑制铁死亡、抑制内质网应激等过程对细胞发挥保护作用。研究表明,槐耳水提取物可通过抑制NLRP3炎症囊泡活化,减轻肠道屏障损伤和炎症反应,并抑制DSS和氧化偶氮甲烷(AOM)联合诱导的结肠肿瘤形成。

可缓解DSS引起的肠道菌群紊乱

一项小鼠研究显示,槐耳多糖干预显著逆转了DSS引起的Muribaculaceae_unclassified、Anaerotruncus、Ruminococcaceae_unclassified丰度的下降以及Escherichia-Shigella丰度的增加(p<0.05)。

其中,Muribaculaceae_unclassified是健康人中发现的肠道微生物,参与丁酸代谢和色氨酸代谢,可产生对人体有益的短链脂肪酸。

黄芩的根通常用作药物,用于清热利湿、泻火解毒。多糖是黄芩的最重要成分之一。

一种来自黄芩的多糖通过抑制NF-κB信号传导和NLRP3炎症小体活化来改善溃疡性结肠炎。在多糖的分离和纯化过程中,研究人员还获得了另一种名为SP2-1的均质多糖。SP2-1由甘露糖、核糖、鼠李糖、葡萄糖醛酸、葡萄糖、木糖、阿拉伯糖和岩藻糖组成。

研究人员发现其对肠道菌群紊乱、肠道屏障改善以及短链脂肪酸产生影响。

在UC患者中,SP2-1显著抑制了促炎性细胞因子IL-6,IL-1β和TNF-α。

溃疡性结肠炎患者的屏障完整性被破坏,TJ蛋白的表达发生改变,SP2-1增加小鼠TJ蛋白的表达,修复肠道屏障。

SP2-1对肠道菌群的影响

SP2-1组的粪便微生物群多样性明显高于DSS组。

临床上,溃疡性结肠炎患者的双歧杆菌和乳酸杆菌的丰度降低。与模型组相比,SP2-1组的双歧杆菌、乳酸杆菌和Roseburia的水平提高。

而拟杆菌和葡萄球菌的种群受到抑制。肠道菌群中存在过量的拟杆菌和葡萄球菌对肠道免疫系统有害。

Roseburia通过调节调节性T细胞的发育和分化、增加抗炎细胞因子的分泌和抑制促炎细胞因子的产生来缓解UC。

枸杞多糖对肠道菌群的影响

癌症

一般来说,抗癌化疗药物除了会诱导癌细胞凋亡外,还会对肠道菌群产生不利影响,主要表现在肠绒毛缩短,乳酸杆菌和肠球菌丰度下降,节段丝状菌丰度增加。而枸杞多糖治疗可通过增加有益菌相对丰度来改善肠道环境和免疫功能,逆转环磷酰胺引起的有害菌(瘤胃拟杆菌科、Longibraceae、脱硫弧菌和厌氧拟杆菌科)相对丰度的增加。

厚壁菌门与拟杆菌门(F/B)比例的变化与许多疾病状态有关,它被视为菌群失调的重要指标,有助于了解肝脏和代谢疾病的发展。枸杞多糖可降低高脂饮食大鼠的F/B比,表明补充枸杞多糖有助于调节肠道菌群失调。

doi.org/10.1080/10408398.2022.2128037

神经系统

枸杞多糖可通过调节肠道菌群-肠-脑轴的神经免疫通路,对中枢神经系统产生多方面的保护作用。枸杞多糖可改善菌群失调、肠道屏障受损等问题,并通过抑制细胞凋亡、促进自噬等机制发挥神经保护效应。

肝脏

枸杞多糖能够影响NAFLD患者的肠道菌群组成、肠道屏障及肝脏炎症。

代谢(肥胖、糖尿病)

后续研究发现,LBPs可通过调节肠道菌群组成和短链脂肪酸生成来改善肥胖。

枸杞多糖可作为2型糖尿病的潜在辅助药物。

LBPs能调节肠道菌群,激活大鼠肠黏膜TLR2+上皮细胞γδT细胞,增强肠道屏障功能,改善糖尿病。此外,LBPs能明显降低血浆中促炎性细胞因子IL-1β、IL-6、IL-17A和TNF-α,而抗炎性细胞因子IL-10水平在糖尿病大鼠中有所升高。

哮喘

枸杞多糖还可以通过直接或间接地改变肠道菌群,参与炎症介质的调控,从而改善肺功能和过敏性哮喘症状。

肠道菌群测序分析显示,LBPs能够促进哮喘小鼠肠道中乳酸杆菌和双歧杆菌增加,并降低厚壁菌门和放线菌水平,通过肠道介导缓解哮喘。

岩藻糖(Fucose),参与构成肠上皮细胞(IEC)顶端表达的聚糖,并介导肠道中的许多生物过程,尤其是宿主-微生物相互作用。

岩藻多糖

岩藻多糖是一种含有岩藻糖和硫酸基团的多糖,可改善糖尿病肾病。

一项小鼠研究发现,岩藻多糖可显著改善肾小球滤过率高滤过和肾纤维化,其机制与短链脂肪酸产生菌富集、增加盲肠内乙酸浓度、提高肾脏ATP水平以及改善线粒体功能障碍有关。此外,岩藻多糖还可通过抑制MAPKs通路来改善肾脏炎症和纤维化。总之,岩藻多糖可通过改善线粒体氧化应激和抑制MAPKs通路,靶向肠道菌群-线粒体轴,改善早期糖尿病肾病。

桑叶的药用功能最早在2000多年前的汉代被发现,并记载于《神农本草经》。明代李时珍在《本草纲目》中对桑叶的药用功效有更详细的描述,包括活血化瘀、祛风、清热解毒等功能。桑叶已被列入国家卫生健康委员会公布的食药同源资源名单。

桑叶多糖(MulberryLeavesPolysaccharides,MLPs)是从桑树(MorusalbaL.)叶片中提取的一种植物多糖。它们是桑叶中主要的活性成分之一,由多种单糖组成,主要包括木糖、阿拉伯糖、果糖、半乳糖、葡萄糖、甘露糖等。

桑叶多糖对人体的影响

桑叶多糖具有多种生物学活性,包括降低血糖、抗氧化、免疫调节、抗肿瘤、抗菌、抗凝和调节肠道菌群等。这些活性使得MLPs在医药和食品领域具有广泛的应用前景。并且安全、有效、低毒、副作用小。

doi.org/10.1016/j.ijbiomac.2023.128669

桑叶多糖对肠道菌群的影响

桑叶多糖通过调节肠道菌群的平衡,进而对人体的健康产生积极的影响。以下是桑叶多糖影响的肠道菌群及其变化情况:

桑叶多糖能够调节短链脂肪酸和肠道菌群的相对丰度,降低真细菌与过敏性细菌的比例,从而改善肠道屏障功能。

沙棘果实在藏族食品和药物中已有数千年的传统。沙棘多糖(SP)是沙棘果实中的主要功能成分之一。

对高脂饮食诱导的肥胖小鼠:沙棘多糖治疗提高了p-AMPKα和PPARα蛋白的表达,刺激了小鼠肝脏中ACC1的磷酸化,并抑制了FAS、PPARγ和CD36的蛋白表达。

沙棘多糖上调Muribaculaceae_unclassified、双歧杆菌、Rikenellaceae_RC9_gut_group、Alistipes、Bacteroides的比例,并下调Lactobacillus、Firmicutes_unclassified、DubosiellaBilophila、Streptococcus的比例,重组了HFD诱导的肥胖小鼠的肠道微生物群。

蘑菇多糖是一类存在于蘑菇中的生物活性多糖,它们包括但不限于几丁质、甘露聚糖、半乳糖聚糖、木聚糖、葡聚糖、云芝多糖、灵芝多糖、半纤维素。这些多糖在蘑菇细胞壁中含量丰富,赋予蘑菇独特的结构和生物活性。

蘑菇多糖的功效

蘑菇多糖对人体具有多种潜在的健康益处。它们可以增强免疫系统、具有抗肿瘤活性、调节肠道菌群、抗氧化、抗糖尿病、抗衰老作用。

蘑菇多糖对肠道菌群的影响

促进益生菌生长

蘑菇多糖通过选择性地促进益生菌的生长,增强肠道健康。例如,灵芝和茯苓中的多糖被发现可以增加有益细菌的数量,这些细菌可以对抗肥胖、产生短链脂肪酸和乳酸。香菇中的多糖也显示出对嗜酸乳杆菌(Lactobacillusacidophilus)有促进作用。

抑制病原菌

蘑菇多糖能够通过增强肠道屏障功能和促进益生菌的生长来间接抑制病原菌。双孢蘑菇中的多糖已被证明可以限制大肠杆菌的生长。

增强肠道屏障功能

蘑菇多糖通过增强肠道上皮细胞的功能,提高肠道屏障的完整性,减少有害物质的渗透。云芝(Trametesversicolor)中的多糖肽PSK和PSP能够调节肠道菌群,增加有益菌双歧杆菌和乳杆菌的数量,同时减少有害菌如梭状芽孢杆菌和金黄色葡萄球菌。在降低腹泻、艰难梭菌感染、炎症性肠病等方面发挥作用。

调节免疫反应

产生短链脂肪酸

蘑菇多糖在肠道发酵过程中产生短链脂肪酸,这些物质对维持肠道健康和调节宿主代谢具有重要作用。蚝菇(Pleurotusostreatus)中的β-葡聚糖衍生物能够诱导前列腺癌细胞的凋亡,并且显示出免疫调节、巨噬细胞激活、抗肿瘤和免疫刺激活性。

多糖的多样性和复杂性使其在人体内的作用千变万化,它们能够通过与肠道菌群的互动,从调节免疫功能到改善代谢性疾病等。

然而,利用天然多糖通过肠道菌群治疗疾病仍存在一些限制和挑战。对肠道菌群和多糖之间相互作用的全面了解需要进一步研究,由于大多数研究都是在动物身上进行的,因此开展研究多糖-微生物组-疾病相互作用的临床试验并实现临床转化至关重要。

幸运的是,随着生命科学领域新兴技术的发展,我们有了更多的工具来揭示这些复杂问题。高通量测序技术、多组学技术、人工智能和大数据分析的交叉融合,为研究多糖和肠道菌群的相互作用提供了强大的技术支持,推动了这一领域的快速发展。

此外,多糖与肠道菌群之间的相互作用不仅揭示了多糖的生物活性,也突显了肠道菌群对健康的重要贡献。多糖与肠道菌群的相互作用为我们提供了一个全新的视角,了解个体的肠道菌群组成,不仅有助于我们理解自身的健康状况,更为个性化的营养和健康管理提供了科学依据。肠道菌群检测可以揭示个体对多糖等营养成分的响应差异,从而为制定个性化的饮食和治疗计划提供指导。

注:本账号内容仅作交流参考,不作为诊断及医疗依据。

主要参考文献

XueH,MeiCF,WangFY,TangXD.RelationshipamongChineseherbpolysaccharide(CHP),gutmicrobiota,andchronicdiarrheaandimpactofCHPonchronicdiarrhea.FoodSciNutr.2023Aug6;11(10):5837-5855.

XuX,WangL,ZhangK,ZhangY,FanG.Managingmetabolicdiseases:Therolesandtherapeuticprospectsofherb-derivedpolysaccharides.BiomedPharmacother.2023May;161:114538

ZhangD,LiuJ,ChengH,WangH,TanY,FengW,PengC.Interactionsbetweenpolysaccharidesandgutmicrobiota:Ametabolomicandmicrobialreview.FoodResInt.2022Oct;160:111653.

ChenR,ZhouX,DengQ,YangM,LiS,ZhangQ,SunY,ChenH.Extraction,structuralcharacterizationandbiologicalactivitiesofpolysaccharidesfrommulberryleaves:Areview.IntJBiolMacromol.2024Feb;257(Pt2):128669.

LanY,SunQ,MaZ,PengJ,ZhangM,WangC,ZhangX,YanX,ChangL,HouX,QiaoR,MulatiA,ZhouY,ZhangQ,LiuZ,LiuX.Seabuckthornpolysaccharideameliorateshigh-fatdiet-inducedobesitybygutmicrobiota-SCFAs-liveraxis.FoodFunct.2022Mar7;13(5):2925-2937.

FengY,SongY,ZhouJ,DuanY,KongT,MaH,ZhangH.RecentprogressofLyciumbarbarumpolysaccharidesonintestinalmicrobiota,microbialmetabolitesandhealth:areview.CritRevFoodSciNutr.2024;64(10):2917-2940.

CuiL,GuanX,DingW,LuoY,WangW,BuW,SongJ,TanX,SunE,NingQ,LiuG,JiaX,FengL.ScutellariabaicalensisGeorgipolysaccharideamelioratesDSS-inducedulcerativecolitisbyimprovingintestinalbarrierfunctionandmodulatinggutmicrobiota.IntJBiolMacromol.2021Jan1;166:1035-1045.

TangYF,XieWY,WuHY,GuoHX,WeiFH,RenWZ,GaoW,YuanB.HuaierPolysaccharideAlleviatesDextranSulphateSodiumSalt-InducedColitisbyInhibitingInflammationandOxidativeStress,MaintainingtheIntestinalBarrier,andModulatingGutMicrobiota.Nutrients.2024Apr30;16(9):1368.

ZhaoQ,JiangY,ZhaoQ,PatrickManziH,SuL,LiuD,HuangX,LongD,TangZ,ZhangY.Thebenefitsofediblemushroompolysaccharidesforhealthandtheirinfluenceongutmicrobiota:areview.FrontNutr.2023Jul6;10:1213010.

álvarez-MercadoAI,Plaza-DiazJ.DietaryPolysaccharidesasModulatorsoftheGutMicrobiotaEcosystem:AnUpdateonTheirImpactonHealth.Nutrients.2022Oct3;14(19):4116.

TangM,ChengL,LiuY,WuZ,ZhangX,LuoS.PlantPolysaccharidesModulateImmuneFunctionviatheGutMicrobiomeandMayHavePotentialinCOVID-19Therapy.Molecules.2022Apr26;27(9):2773.

SunCY,ZhengZL,ChenCW,LuBW,LiuD.TargetingGutMicrobiotaWithNaturalPolysaccharides:EffectiveInterventionsAgainstHigh-FatDiet-InducedMetabolicDiseases.FrontMicrobiol.2022Mar15;13:859206.

GanL,WangJ,GuoY.Polysaccharidesinfluencehumanhealthviamicrobiota-dependentand-independentpathways.FrontNutr.2022Nov9;9:1030063.

ChenJ,GaoY,ZhangY,WangM.Researchprogressinthetreatmentofinflammatoryboweldiseasewithnaturalpolysaccharidesandrelatedstructure-activityrelationships.FoodFunct.2024Jun4;15(11):5680-5702.

ChenP,HeiM,KongL,LiuY,YangY,MuH,ZhangX,ZhaoS,DuanJ.Onewater-solublepolysaccharidefromGinkgobilobaleaveswithantidepressantactivitiesviamodulationofthegutmicrobiome.FoodFunct.2019Dec11;10(12):8161-8171.

Wang,A.;Liu,Y.;Zeng,S.;Liu,Y.;Li,W.;Wu,D.;Wu,X.;Zou,L.;Chen,H.DietaryPlantPolysaccharidesforCancerPrevention:RoleofImmuneCellsandGutMicrobiota,ChallengesandPerspectives.Nutrients2023,15,3019.

Zhou,Y.;Chu,Z.;Luo,Y.;Yang,F.;Cao,F.;Luo,F.;Lin,Q.DietaryPolysaccharidesExertAnti-FatigueFunctionsviatheGut-MuscleAxis:AdvancesandProspectives.Foods2023,12,3083

Shen,Y.;Song,M.;Wu,S.;Zhao,H.;Zhang,Y.Plant-BasedDietaryFibersandPolysaccharidesasModulatorsofGutMicrobiotainIntestinalandLungInflammation:CurrentStateandChallenges.Nutrients2023,15,3321

LvH,JiaH,CaiW,CaoR,XueC,DongN.Rehmanniaglutinosapolysaccharidesattenuatescolitisviareshapinggutmicrobiotaandshort-chainfattyacidproduction.JSciFoodAgric.2023Jun;103(8):3926-3938.

越来越多的研究表明,肠道菌群作为一个不可或缺的“隐形器官”,在人类新陈代谢和包括心血管疾病在内的疾病状态中发挥着至关重要的作用。

在可能影响肠道微生物群的许多内源性和外源性因素中,饮食成为宿主-微生物群关系的重要组成部分,可能与CVD易感性有关。

本文主要介绍肠道微生物群饮食调节的主要概念,及其参与心血管疾病发展。还讨论了调节CVD进展的饮食-微生物群串扰的机制,包括内毒素血症、炎症、肠道屏障功能障碍和脂质代谢功能障碍。也阐述了关于微生物群产生的代谢物,包括三甲胺-N-氧化物、次级胆汁酸、短链脂肪酸以及芳香族氨基酸衍生的代谢物如何在CVD发病机制中发挥作用。最后,列举了与肠道微生物群相互作用的潜在饮食干预措施,作为CVD管理的新型预防和治疗策略。

在了解CVD中基于菌群的饮食干预之前,首先我们来了解一下,饮食变化对肠道微生物群可能产生哪些影响?

主要可概括为三个方面:

(1)快速/短期效应

对在植物性(高纤维)之间切换的人类受试者和以动物为基础的(高脂肪)饮食的研究表明:

所有受试者的微生物群组成在1-2天内发生变化,厚壁菌门在植物性饮食中代谢膳食纤维的丰度增加,在动物性饮食中耐胆汁微生物Alistipes和Bilophila增加。然而,即使经过10天的干预,短期饮食改变对肠型也没有影响。

(2)长期影响

尽管微生物群落迅速调节,但长期的饮食干预不仅与成分改变有关,还与生理变化有关。

(3)特定饮食引起的特定微生物变化

例如,膳食纤维的摄入促进了肠道微生物群的丰度或多样性以及厚壁菌门的增加。抗性淀粉饮食干预下Ruminococcusbromii增多。

XufeiZhang,etal.,Comput.Struct.Biotechnol.J.2022

在健康状态下,适当的肠道屏障提供了抵御病原体的关键第一道防线,它由多种生理成分支持,包括粘液层、由紧密连接蛋白连接的上皮细胞和免疫细胞。

然而,心力衰竭或高血压的CVD患者经常观察到肠道屏障功能障碍,伴随全身微生物成分LPS和炎症的增加。

那么CVD过程中,引发肠道渗漏和炎症的风险因素是什么?

其中一个假设是,长期食用西方饮食或HFD会导致生态失调并损害肠道屏障,从而增强LPS易位和全身炎症,导致心血管疾病风险增加。

在大型队列研究中,长期(6个月)食用HFD会导致微生物菌群失调,其中革兰氏阴性菌(如Alistipes和Bacteroides)的比例增加,同时参与LPS生物合成的基因水平更高。同时,已发现膳食脂肪通过激活促炎细胞因子(例如TNF-α、IFNγ和IL-1β)的分泌来损害肠道屏障。促炎细胞因子的上调进一步激活MLCK(肌球蛋白轻链激酶)信号通路,重组紧密连接蛋白,包括occludin、ZO-1(Zonulaoccludens-1)并导致肠漏。

当肠道屏障被破坏时,LPS或病原体可能转移到循环中,引起内毒素血症,从而刺激全身性促炎细胞因子的释放。一旦在血流中易位,内毒素可以通过与细胞表面的TLR-4(Toll样受体4)相互作用来触发内皮细胞的损伤,并增强ROS(活性氧)的产生,从而降低内皮细胞NO(一氧化氮)的生物利用度导致形成斑块和动脉粥样硬化病变。

这一假设已在动物模型中得到证实,其中ApoE-/-西方饮食下的小鼠动脉粥样硬化病变加重,变形菌(革兰氏阴性促炎细菌)和全身LPS水平显着增加。

此外,西方饮食促进炎症细胞因子(如TNF-α和IL-1β)的上调,增加肠道通透性,同时修饰ApoE-/-小鼠中的紧密连接蛋白(如occludin)。

除了饮食-微生物群对炎症和肠道屏障功能的相互作用外,肠道微生物还通过宿主脂质代谢影响CVD。

越来越多的动物和人类研究表明,肠道微生物群与脂质代谢紊乱有关,如血脂异常或高脂血症,它们是CVD发展的主要危险因素。

肠道微生物群将胆固醇转化为粪(甾)醇降低胆固醇

例如,GF小鼠的胆固醇代谢发生了改变,而ApoE-/-小鼠肠道微生物群的消耗导致与传统的ApoE-/-小鼠相比,血浆胆固醇伴有更大的主动脉病变。

此外,从高血浆胆固醇人类到小鼠的微生物群移植引发了上调循环胆固醇的表型以及肝脏胆固醇合成的减少。

这可能是由于肠道微生物群将胆固醇转化为粪(甾)醇,这可以促进体内胆固醇的消除和降低胆固醇血症。

胆固醇代谢的数学模型已经证实了这一点,最近发现肠道菌群的胆汁盐代谢和胆固醇向粪(甾)醇的转化都会影响血液中的胆固醇水平。

此外,最近对人类队列进行的一项有趣的研究也证实了这一点,并确定了含有胆固醇代谢酶ismA的Eubacteriumcoprostanoligenes等粪(甾)醇形成菌的个体,粪便胆固醇水平显著降低,血清总胆固醇显著降低。

有趣的是,肠道微生物群的缺失似乎减弱了长期膳食脂质消耗的致动脉粥样硬化作用。

具体而言,与传统小鼠相比,HFD喂养的无菌Ldlr-/-小鼠的血栓大小显着减小。尽管无菌和常规Ldlr-/-喂食HFD小鼠的血浆TC水平没有差异,但与喂食的无菌小鼠相比,富含脂质的饮食仍然诱导无菌小鼠的TC水平(TC≈1.6mg/dlx103)约两倍配合食物(TC≈0.8mg/dlx103)。

相比之下,HFD诱导常规小鼠血浆TC增加约8倍(TC≈1.6mg/dlx103)与以食物喂养的小鼠相比(TC≈0.2mg/dlx103)。在这项研究中也发现了VLDL的类似发现。富含脂质的饮食还加剧了Ldlr-/-小鼠的微生物群失调,梭菌科、葡萄球菌科、芽孢杆菌科的丰度增加,乳酸杆菌科的丰度降低。然而,最近的研究表明,在晚期主动脉粥样硬化方面,无菌Ldlr-/-与常规小鼠之间没有发现显着差异。

总之,不同的研究表明肠道微生物群对血脂代谢。这种影响对CVD发展是否具有保护作用或加重作用仍不清楚。这种差异可能取决于动物模型、动物年龄、饮食类型、喂养期以及住宿条件。未来的研究可以将这些因素纳入考虑范围,以便进行更好的调查。

TMAO,是一种饮食诱发的心血管疾病风险微生物生物标志物。

★饮食-肠道菌群代谢物TMAO(三甲胺-N-氧化物)

这是一种从饮食营养素衍生的肠道微生物共同代谢物,十年前首次被发现并被报道预测CVD的风险。饮食前体磷脂酰胆碱、胆碱和L-肉碱通常存在于奶酪、红肉、海鲜、蛋黄和其他西式营养素中,主要由特定的肠道微生物酶代谢,产生高水平的三甲胺(TMA)。

在人类肠道中发现了七种不同的表达TMA裂解酶CutC/D的菌株,包括:

此外,TMA可以通过微生物里斯克型左旋肉碱加氧酶CntA/B从左旋肉碱合成。

虽然CntA/B编码基因已在变形杆菌中鉴定,但尚未证明共生肠道微生物群形成依赖于L-肉碱的TMA。然而,最近的一项研究发现,两种细菌菌株Emergenciatimonensis和IhubacterMassilensis的新组合在肉碱转化的TMA积累中具有潜在的重要作用。

★饮食-微生物群衍生的TMAO在CVD发病机制调节中的作用

最初的研究表明,高胆碱或肉碱饮食饲养的小鼠循环TMAO水平升高,巨噬细胞泡沫细胞形成的增加和主动脉粥样斑块形成的增强(图1)。

因此,微生物群对于TMAO的产生是必要的,TMAO通过以下几种机制参与动脉粥样硬化的进展:

1)泡沫细胞形成

微生物群衍生的TMAO可以激活应激诱导的热休克蛋白(HSP)HSP70或HSP60的表达,这可能触发巨噬细胞中清道夫受体(例如SR-A1)和CD36的激活,以刺激氧化低密度脂蛋白(ox-LDL)的摄取和泡沫细胞的形成。

2)炎症

TMAO通过激活Ldlr中的丝裂原活化蛋白激酶(MAPK)和NF-κB信号通路,诱导促动脉粥样硬化炎症标志物表达,包括IL-6、环氧合酶2(COX-2)和细胞内粘附分子Ldlr/小鼠吃富含胆碱的食物。

循环TMAO的增加与促炎细胞因子TNF-α和IL-1β的升高以及抗炎细胞因子IL-10的降低有关。

3)脂质代谢

TMAO可抑制胆固醇逆向转运(RCT),导致动脉胆固醇沉积,加速动脉粥样硬化病变。

4)血小板高反应性和血栓形成

饮食诱导的高水平微生物TMAO可刺激血小板激活次最大刺激物,包括凝血酶、二磷酸腺苷(ADP)和胶原,并诱导细胞内钙的释放,导致血小板高反应性。

然而,一些研究显示了相反的结果,表明饮食中的TMAO、胆碱或肉碱不会诱发ApoE/的动脉粥样硬化或者Ldlr/小鼠模型。这种差异可能是由于居住条件和小鼠模型造成的,但确切的原因仍有待进一步发现。

最近证明,TMA(而非TMAO)降低了心肌细胞和血管平滑肌细胞的活力。在大鼠体内静脉注射TMA时,平均动脉血压显著升高,表明TMA对CVD有有害影响。

图1肠道菌群产生的膳食代谢物在心血管疾病发病中的潜在机制

★人体循环TMAO在心血管疾病预测和预后中的研究

大量人体研究已经证明肠道微生物衍生的TMAO在预测CVD风险中的作用。

最初的研究调查了1800多名受试者的人类队列,发现血浆TMAO升高与多种CVD亚型的发生有关,包括外周动脉疾病(PAD)、冠状动脉疾病和心肌梗死史。

此外,已发现高水平的TMAO与人类队列中促炎性单核细胞和心血管风险的增加有关。

同样,一项系统回顾和剂量反应荟萃分析招募了13000多名参与者,发现血浆TMAO水平升高与炎症标志物C反应蛋白(CRP)升高之间存在非线性关联。然而,并非所有的人体研究都发现了类似的数据。例如,无症状动脉粥样硬化患者的肠道微生物群和血液TMAO水平没有明显变化。然而,中风和短暂性脑缺血发作患者表现出肠道微生物群的显著失调,但血浆TMAO水平降低。

相比之下,在一组35-55岁的参与者(n=817)中,在10年的随访中,TMAO浓度与动脉粥样硬化进展之间没有显著关系。

有趣的是,最近的一项研究发现,TMA而非TMAO与高血压负荷和CVD风险因素有关,并与早期慢性肾病(CKD)受试者中Akkermansia属、粪杆菌属、Ruminococcus、Subdoligranulum的丰度降低有关。

然而,仍需对人类队列进行进一步研究,以调查TMAO前体TMA是否是早期CVD发病机制调节中被遗忘的毒素或预测因子。

胆汁酸(BAs)是羟基化和饱和类固醇,有助于乳化和肠道吸收膳食脂肪和脂溶性分子。

在人类肝细胞中,初级胆汁酸(胆酸和鹅去氧胆酸)由胆固醇通过催化酶合成,如胆固醇7a羟化酶(CYP7A1)、甾醇27羟化酶(CYP27A1)、氧化甾醇7a羟化酶(CYP7B1),其表达受肠道微生物群的调节。

然后,初级胆汁酸与甘氨酸或牛磺酸结合,95%以上的初级胆汁酸被重新吸收并再循环回肝脏。非再吸收的胆汁酸可通过催化酶胆盐水解酶(BSH)解结合,该酶由几种共生肠道细菌表达,包括革兰氏阳性双歧杆菌、梭菌、肠球菌、乳酸杆菌和革兰氏阴性拟杆菌。

此外,胆汁酸的氧化和差向异构化是通过羟类固醇脱氢酶(HSDHs)催化的,这种酶已在各种细菌中发现,包括放线杆菌、变形杆菌、梭菌和其他细菌。

一旦微生物代谢的胆汁酸进入循环血液,胆汁酸受体就可以介导信号通路来调节宿主代谢,有助于CVD的发展。

最重要的胆汁酸受体之一是FXR,它是肝脏初级胆汁酸和肠道次级胆汁酸的主要传感器。FXR在调节脂质和葡萄糖代谢方面已被证实。

有趣的是,在动脉粥样硬化易感小鼠中FXR的激活在动脉粥样硬化病变的形成中显示出保护作用。相应地,ApoE/中FXR的缺失导致脂质代谢缺陷的严重程度增加,主动脉斑块形成增强。相比之下,对FXR/ApoE或FXR/Ldlr双缺陷小鼠的其他研究显示主动脉病变和血浆LDL胆固醇降低。有趣的是,FXR还通过调节FMO3活性来调节TMAO途径。

另一个重要的胆汁酸受体是TGR5,通过继发性胆汁酸激活该受体,可通过减少斑块内炎症、斑块巨噬细胞含量和脂质负荷来减轻血管病变的形成。

与其他受体相比,PXR的激活提高了脂蛋白VLDL、LDL和CD36的表达水平,从而聚集动脉粥样硬化形成中的ApoE/小鼠,而PXR在载脂蛋白E中的抑制作用ApoE/小鼠,通过减少巨噬细胞的脂质摄取和CD36表达减轻了主动脉病变区域。

总之,肠道微生物群衍生的胆汁酸通过多种类型的胆汁酸受体调节CVD的发展,而血浆胆汁酸可能是CVD发生的另一个重要预测因子,仍需进一步研究。

短链脂肪酸是膳食纤维(主要是多糖)发酵的主要微生物产物,主要由乙酸盐、丁酸盐和丙酸盐组成。肠道微生物群的特定成员参与短链脂肪酸合成的特定发酵途径。

肠道微生物群调节富含纤维的饮食与心血管疾病风险之间的保护性关联。具体而言,许多研究已经阐明了膳食纤维或短链脂肪酸在缓解高血压或其他CVD亚型中的功能作用(图1)。

其中一项研究发现,高纤维饮食和补充乙酸盐都可以降低收缩压和舒张压、心肌纤维化和左心室肥厚,这与改善肠道失调和增加拟杆菌的数量有关。

类似地,丙酸盐治疗可保护小鼠免受高血压心血管损伤,而产丁酸盐的细菌(如Roseburiaintestinalis)可减少主动脉粥样硬化病变面积。

研究发现,Olfr78和GPR41参与调节宿主血压和内皮功能。具体而言,丙酸盐通过调节Olfr78和GPR41表达的中断,在野生型小鼠中诱导急性低血压反应。然而,抗生素治疗Olfr78/小鼠(而非野生型小鼠)血压升高,GPR41升高,与野生型小鼠相比,小鼠也有收缩性高血压。

此外,最近的一项研究表明,乙酸盐和丁酸盐通过仅对丁酸盐进行GPR41/43激活,从而提高NO的生物利用度,从而改善大鼠主动脉内皮功能障碍。为了揭示短链脂肪酸在CVD发病机制中的机制作用,还需要进行进一步的研究。

★人类研究

在一项荟萃分析研究中也发现了粘性可溶性纤维对血压的类似保护作用。

相比之下,最近的一项干预研究报告称,高纤维高蛋白饮食可能通过上调循环短链脂肪酸水平增加CVD的风险。具体来说,高蛋白高纤维饮食诱导丙酸水平升高,这与LDL胆固醇和血压的上调有关;较高的丁酸水平与葡萄糖的上调和高密度脂蛋白胆固醇的下调有关。然而,它仍然局限于短链脂肪酸对人类CVD风险或保护作用的直接证明,需要进一步澄清。

芳香族氨基酸(AAA)是含有芳香环的氨基酸,包括苯丙氨酸(Phe)、色氨酸(Trp)和酪氨酸(Tyr)。

最近,几项研究发现,苯丙氨酸衍生的微生物代谢物苯乙酰谷氨酰胺(PAG)与主要心脏不良事件(如心肌梗死、急性缺血性中风或冠状动脉疾病)之间存在密切关系。

具体来说,膳食中的苯丙氨酸通过富含porA基因的肠道微生物群转化为苯乙酸,随后在肝脏中转化为PAG。PAG进一步激活G蛋白偶联受体,包括α2A、α2B和β2肾上腺素能受体,以促进动脉损伤动物模型中的血小板反应性和血栓形成潜能。

同样,来自Trp的肠道微生物衍生代谢物吲哚硫酸酯(IS)和来自Tyr的对甲酚硫酸酯(PCS)也被确定为预测CKD患者CVD事件的有价值标记物。

这可能是由于IS和PCS通过诱导尿毒症毒性和内皮功能障碍而产生的有害影响。

然而,一些研究发现IS、PCS或PAG与CVD结果无关。这种差异可能是由于不同研究的阈值效应造成的。这些肠道微生物代谢物在心血管疾病进展中的作用尚需进一步研究。

健康饮食模式已被建议预防CVD进展(图2),包括地中海饮食(Med-diet)、阻止高血压的饮食方法(DASH)和间歇性禁食(IF)等喂养模式。

图2针对肠道微生物群的饮食干预在预防心血管疾病方面的潜在疗法

★饮食类型

多项临床试验证实了地中海饮食对主要血管事件、冠状动脉事件、中风和心力衰竭的保护作用。这种效应与微生物群多样性和微生物代谢物短链脂肪酸的增加以及TMAO和血浆LPS水平的降低有关。

然而直到最近,才发现地中海饮食的长期干预可以通过肠道微生物群调节来预防CVD。

具体来说,地中海饮食的长期干预可以通过富含膳食纤维代谢物(如Faecalibacteriumprausnitzii和Bacteroidescellulosilyticus)显着改变整体肠道微生物组。

特别是,在没有普氏菌的情况下,地中海饮食对CVD危险因素(包括脂质代谢、炎症和葡萄糖稳态)显示出强大的保护作用。

尽管多项数据表明DASH饮食可以通过降低血压和血脂异常来改善心脏危险因素,仍然缺乏关于DASH饮食与CVD预防中微生物群改变之间直接联系的数据。

★喂养模式

间歇性禁食(IF)是一种重要的饮食喂养模式,是一种周期性能量限制的做法,可以通过改变肠道微生物群来降低CVD风险。

具体而言,自发性高血压卒中易感大鼠在IF干预50天后,肠道微生物群β多样性发生显著变化,这与通过调节胆汁酸代谢降低血压有关。这些发现已通过对GF大鼠的粪便移植得到证实。

★水果和蔬菜中的多酚

多酚是一大类常见于植物产品中的有机化合物,尤其是水果和蔬菜。超过90%的总多酚在小肠中不可吸收,并被大肠中的肠道微生物群进一步代谢。

越来越多的研究支持膳食多酚对肠道微生物群的修饰和CVD保护的作用。

白藜芦醇(在葡萄、苹果和浆果等水果中发现)已被确定通过下调TMAO水平和上调BAs合成来减轻ApoE-/-小鼠的动脉粥样硬化,而BAs合成与有益菌拟杆菌、乳酸杆菌、双歧杆菌和阿克曼菌的丰度增加有关。

口服槲皮素(在洋葱、西兰花和西红柿等蔬菜中发现)可以抑制体重增加,改善动脉粥样硬化病变的程度,降低胆固醇水平、致动脉粥样硬化溶血磷脂酰胆碱水平,减少革兰氏阴性菌疣状芽胞菌的丰度,同时增加微生物多样性。

在人类受试者中,富含多酚的饮食干预发现,饮食多酚可以显著增加微生物多样性和Ruminococcaceae,这些与心脏代谢危险因素(如血浆甘油三酯和大VLDL中的胆固醇)的改善有关。

总的来说,水果和蔬菜中的多酚可能是心血管疾病的潜在治疗干预措施,它们的部分保护作用可以通过肠道微生物群的修饰来介导。

★膳食纤维

膳食纤维是不易消化的碳水化合物,包括水溶性或不溶性形式,通常存在于水果、蔬菜、全谷物、坚果和豆类等中。

膳食纤维不能被小肠吸收,“喂养”健康的肠道微生物群,导致短链脂肪酸的多样性和产量增加。

如前所述,短链脂肪酸激活特异性受体,从而改善高血压和主动脉内皮细胞功能障碍。

最近的一项研究发现鹰嘴豆膳食纤维提高了微生物多样性,增加了拟杆菌和乳酸杆菌的相对丰度,并提高了丙酸水平。鹰嘴豆膳食纤维也可以通过对肠道微生物群进行类似的修饰来改善高血糖症。

全谷物燕麦还能降低血浆胆固醇水平,提高胰岛素敏感性,这与微生物群中有益乳酸杆菌的增加有关。同样,人类食用全谷物产品时,总胆固醇和低密度脂蛋白胆固醇水平较低,双歧杆菌含量较高。

益生元是植物源性或不易消化的食物成分,可刺激胃肠道中“友好”微生物的生长。

大多数益生元是膳食纤维,而不是所有膳食纤维都可以归类为益生元。常见的益生元包括低聚糖和多糖,如菊粉、低聚果糖、β-葡聚糖,它们通常能诱导肠道微生物群的特定修饰。

许多研究通过三个主要方面有趣地研究了益生元对宿主代谢的有益影响,以改善CVD状况(图2):

1)降低血脂

补充益生元纤维(例如菊粉)可以降低血浆胆固醇水平,并减少肝脏中的TAG积累;

2)减少内毒素血症和炎症

3)降低血压

补充富含益生元纤维的饮食可以通过GPR43信号通路降低收缩压和舒张压。

益生菌被定义为“活的微生物,当给予足够的量时,会给宿主带来健康益处”。人类饮食中的大量发酵食品,如酸奶、酸菜、开菲尔、泡菜,都含有益生菌菌株。

作为益生元,益生菌菌株也被确定在更多方面防止CVD进展(图2):

1)改善血管内皮功能

服用植物乳杆菌299v可改善冠心病患者阻力动脉的内皮依赖性血管舒张功能。同样,发酵乳杆菌CECT5716治疗可降低大鼠的血管氧化应激并改善内皮功能。

2)降低血糖和氧化活性

益生菌酸奶的干预显著降低血糖,提高总抗氧化状态。

3)降低胆固醇

补充长双歧杆菌BB536对降低总胆固醇、肝脏脂质沉积和脂肪细胞大小有显著效果。

4)减轻内毒素血症和炎症

通过恢复肠道屏障功能,通过改善系统性内毒素血症诱导的炎症,口服粘液阿克曼菌已被证明可减少动脉粥样硬化病变。此外,补充乳酸杆菌L.reuteriV3401可降低炎症标志物水平,如TNF-α、IL-6、IL-8,这与降低CVD风险有关。

如何调节肠道菌群?常见天然物质、益生菌、益生元的介绍

一些来自中药的天然成分也通过调节肠道微生物群被用作潜在的CVD疗法(图2)。

小檗碱(BBR),一种生物活性异喹啉生物碱,广泛存在于各种中草药中并从中提取,已被证明具有许多有益的作用。

最近发现,高剂量的小檗碱不仅通过降低总胆固醇和极低密度脂蛋白胆固醇水平来改善脂质代谢,还下调促炎细胞因子TNF-α、Il-1β、Il-6和上调的抗炎性Il-10水平,这些水平与参与短链脂肪酸产生的Alistipes和Roseburia的丰度增加有关。

Roseburia菌详见:肠道重要基石菌属——罗氏菌属(Roseburia)

此外,BBR可以通过重塑肠道微生物群成分来抑制TMAO的产生,从而减轻胆碱诱导的动脉粥样硬化。

红曲米(RYR)可以通过降低总胆固醇和低密度脂蛋白水平来缓解斑块的形成,而总胆固醇和低密度脂蛋白水平与厚壁菌/拟杆菌的比例降低有关,同时也降低了黄曲霉和黄酮类提取物的丰度。

RYR干预还能改善肠道屏障功能,并通过TLR信号通路减轻炎症。

灵芝是一种药用蘑菇,通过降低携带内毒素的变形菌水平和增加有益细菌(包括梭菌和真杆菌),来减少肥胖、内毒素血症、慢性炎症以及恢复肠屏障功能。

然而,更多的研究数据表明,肠道微生物群对饮食代谢在调节CVD发病机制中的主要作用包括:

1)代谢饮食胆碱或L-肉碱以诱导TMAO的释放,促进动脉粥样硬化的进展;

2)调节胆汁酸代谢,可能通过多种受体途径调节动脉粥样硬化的形成;

3)产生芳香族氨基酸代谢物PAG、IS、IPA或PCS,加速动脉粥样硬化形成;

4)发酵膳食纤维以产生短链脂肪酸,这对CVD的进展起到了一些有益的作用。

这些发现为开发CVD的新型潜在预防和治疗方法提供了一些极好的支持,例如可以通过健康饮食和喂养模式、含有健康膳食成分的饮食等干预措施改善菌群,从而预防改善CVD。当然也包括:来自水果和蔬菜的膳食多酚、膳食纤维和益生元、益生菌以及饮食中药等干预措施。主要参考文献:

XufeiZhang,PhilippeGérard.Diet-gutmicrobiotainteractionsoncardiovasculardisease.ComputationalandStructuralBiotechnologyJournal.2022,Mar:1528-1540.doi:org/10.1016/j.csbj.2022.03.028

SafariZ,GérardP.Thelinksbetweenthegutmicrobiomeandnon-alcoholicfattyliverdisease(NAFLD).CellMolLifeSci.2019Apr;76(8):1541-1558.doi:10.1007/s00018-019-03011-w.Epub2019Jan25.PMID:30683985.

BaptesteE,GérardP,LaroseC,etal.,TheEpistemicRevolutionInducedbyMicrobiomeStudies:AnInterdisciplinaryView.Biology(Basel).2021Jul12;10(7):651.doi:10.3390/biology10070651.PMID:34356506;PMCID:PMC8301382.

TangWHW,LiDY,HazenSL.Dietarymetabolism,thegutmicrobiome,andheartfailure.NatRevCardiol.2019Mar;16(3):137-154.doi:10.1038/s41569-018-0108-7.PMID:30410105;PMCID:PMC6377322.

慢性肾病(CKD)影响着全球约13.4%的人口,是一个日益严重的全球健康负担。成人中,高血压和糖尿病是慢性肾病的主要原因,而先天性肾脏和泌尿生殖道异常占儿童慢性肾病病因的大部分。慢性肾病与心血管疾病、神经系统并发症、不良妊娠结局和高钾血症等严重健康状况的发展有关。在儿童中,慢性肾病会影响神经认知能力、学校表现、成长、生活质量等。

而许多研究已证明,慢性疾病过程与人类肠道微生物群及其代谢物之间存在关联。

那么慢性肾病与肠道微生物群之间存在什么关系?

肠道菌群代谢产物在慢性肾病中起着什么样的作用?

肠道失调是如何启动炎症过程并导致菌群代谢产物泄漏到血液中的?

哪些饮食方式可以对其进行干预?

本文一起来了解一下。

概要

·慢性肾病与菌群关系是双向的;肠源性代谢物和毒素影响慢性肾病的进展,尿毒症环境影响微生物群。

·微生物代谢物和毒素的积累与肾功能丧失和死亡风险增加有关,但短链脂肪酸和胆汁酸等肾脏保护代谢物有助于恢复肾功能和提高慢性肾病患者的存活率。

·改变肠道微生物组的特定饮食干预可改善慢性肾病患者的临床结果。

·低蛋白和高纤维饮食增加了产生短链脂肪酸和抗炎菌的丰度。

·尿液微生物组的波动与感染易感性和抗生素耐药性的增加有关。

01

慢性肾病是什么

肾脏的存在好处多多。肾可以帮助调控血液稳态,维持电解质平衡,调控全身水平衡,甚至可以产生激素。

慢性肾病的病理生理学

慢性肾病的潜在病因因年龄、合并症、急性肾损伤反复发生和蛋白尿水平而异。

无论潜在的病因如何,剩余肾单位的过度过滤和肥大、肾小管间质纤维化、肾素-血管紧张素-醛固酮系统的激活以及内皮屏障的破坏都很常见,并导致肾排泄功效和eGFR下降。

从一个等级到下一个等级的转变通常伴随着肾脏内分泌功能的丧失。特别是,患有心血管病的慢性肾病患者表现出肾功能恶化和严重炎症。

肾小管间质间隙中免疫细胞的浸润和免疫衍生成分的积累促进慢性肾病的进展。

慢性肾病治疗的一个关键目标是防止患者进展到疾病的下一阶段。

02

慢性肾病中的肠道菌群失调

最近的研究表明,肠道微生物群失调在慢性肾病的病理生理学中起着关键作用,并导致严重的慢性肾病。

慢性肾病中的菌群变化

另一项对92例慢性肾病患者的研究报告称:

慢性肾病队列中的Paraprevotella,Pseudobutyrivibrio(假丁酸弧菌属),Collinsella数量增加;这一发现使作者提出,这个特征可以用来区分慢性肾病患者(甚至是处于疾病早期的患者)和健康人。

肠道菌群失调引发慢性肾病的两种机制

其一:影响肠道屏障

微生物群组成的变化增强了肠道氨的产生,从而提高了肠腔的生理pH值,导致粘膜刺激并破坏了结肠上皮屏障。这导致肠道通透性增加,通常称为“肠漏”。

因此,内毒素和细菌产物易位进入循环并诱导局部炎症,由免疫细胞激活和促炎细胞因子和趋化因子的释放引起,以及慢性全身炎症,加剧肾功能的恶化。

其二:影响血压变化

肠道菌群失调可能促进慢性肾病进展的另一个机制是通过肠道生态失调在内皮功能障碍、血管收缩反应和随后的高血压发展中的作用。

肠道中乳酸杆菌的较低丰度与高血压和肾脏疾病的发生有关。与正常饮食的小鼠相比,高盐饮食的小鼠具有异常的微生物群;这些变化与T淋巴细胞活化和血压升高有关。

肠道微生物群的变化可能是慢性肾病通过一系列免疫反应改变、血压改变、代谢变化和长期炎症进展的起点。

上述是菌群失调影响慢性肾病,反过来,慢性肾病也影响菌群失调。

肠道菌群慢性肾病

菌群失调与慢性肾病的发病机制之间存在双向关系。

吃进去的营养物质被分解代谢最终产物中的氨,通过肝脏代谢转化为尿素,并释放到循环中。尿素主要通过肾脏排出,部分通过结肠排出。

肾功能的恶化将主要排泄部位从肾脏转移到结肠。结肠中尿素的持续存在会触发产脲酶菌的增殖,导致肠道生态失调。

肠道微生物组与慢性肾脏病之间的关系是双向的

AlKhodorD,etal.,FrontiersinMedicine,2022

←在一个方向上,肠道菌群影响肾脏:

(A)健康的肠道

(B)肠道微生物失调和破坏粘膜层

(C)释放血液中炎性因子和炎症级联的开始,尿毒症毒素积累

(D)估计的肾小球滤过率下降(eGFR),白蛋白肌酐比值(ACR)升高,肾脏内分泌功能丧失

→在另一个方向,慢性肾病驱动肠道内的生态失调(虚线箭头所示),并引发炎症级联

03

慢性肾病中的微生物代谢物

菌群代谢产物和慢性肾病的关系

一些人类和动物研究已经证明了TAMO对肾脏的有害影响,表现为肾间质纤维化、eGFR下降、内皮功能障碍和心血管疾病风险增加。

我们知道,肾脏的功能就是代谢身体废物,它的功能类似一个“清洁工”,肾脏生病也就是清洁工罢工,那么代谢废物就清除不出去了,于是在血浆中累积。

慢性肾病患者死亡率和发病率的增加归因于毒素的积累:硫酸吲哚酚和硫酸对甲酚。这些毒素与血浆蛋白具有很高的亲和力,从而减轻了它们通过透析膜的清除。

TAMO、硫酸吲哚氧基和硫酸对甲酚分别参与SMAD信号传导、色氨酸代谢和酪氨酸途径。

广泛的尿毒症毒素和其他微生物代谢物积聚在慢性肾病患者的生物样本中,包括血浆、粪便和尿液等常见生物样本中的毒素和其他微生物代谢物,也包括呼出气中的挥发性代谢物和粪便培养物中收集的气体。例如,慢性肾病患者体内会积聚气体代谢物,包括异戊二烯、醛、二甲基二硫、二甲基三硫和硫酯。

04

慢性肾病中的饮食干预

慢性肾病患者存在微生物失调和肠道代谢物积累。

益生菌

对慢性肾病患者进行的随机对照临床试验表明,益生元和益生菌治疗后肠道微生物群组成的变化改善了疾病结果,并降低了尿毒症毒素水平。

双歧杆菌和乳酸杆菌含量高的患者血清中尿毒症毒素水平较低,炎症环境减轻,肾功能改善。

益生元

益生元是不易消化的膳食成分,如膳食纤维和耐消化淀粉。它们存在于谷物、水果、牛奶、蜂蜜和蔬菜中,或者可以作为膳食补充剂。益生元发酵通过增加双歧杆菌和乳酸杆菌的丰度,降低类杆菌、梭状芽孢杆菌和肠杆菌的水平,有益地改善肠道细菌。

不利肾脏的食物:

低蛋白饮食减少炎症菌

一项前瞻性交叉临床试验将60例慢性肾病患者随机分为不同的饮食干预组;与常规饮食组相比,极低蛋白饮食组的肠道放线菌丰度增加,炎性变形菌减少。

膳食纤维降低慢性肾病风险

抗性淀粉降低血浆毒素

研究人员研究了补充抗性淀粉(16克/天)对慢性肾病患者的影响;他们观察到尿毒症毒素(硫酸吲哚氧基和硫酸对甲酚)、IL-6和硫代巴比妥酸反应物质的血浆水平降低。

乳果糖糖浆降低血清肌酐

这些结果与另一项将32例慢性肾病患者随机分为两组的研究一致;接受乳果糖糖浆治疗8周的组,肠道微生物群中双歧杆菌和乳酸杆菌的含量更高,血清肌酐水平降低。

虽然这些研究表明益生菌和益生元对慢性肾病有有益的作用,但也有其他研究表明循环肠道菌群代谢物或慢性肾病结果没有显著变化。

总之,这些研究表明,饮食干预疗法有可能调节微生物组组成及其代谢产物,从而改善慢性肾病并发症和慢性肾病进展率。然而,需要进一步设计良好的前瞻性研究来明确证明营养疗法对慢性肾病的益处。

05

尿和血液微生物群在慢性肾病中的作用

新一代测序技术的发展使研究表明,健康个体的尿路由不同种类的微生物控制,这些微生物的分布模式影响尿路健康。

健康个体的循环微生物群包含多种细菌类群,其中以变形菌门为主。血液中循环的肠源性内毒素可改变血液微生物组。

因此,肠道微生物群通过不同途径对慢性肾病的结局产生最终影响。

06

结语

通过饮食干预调节肠道微生物群可以改善慢性肾病患者的临床结果。

随着肠道微生物群的深入研究,可为慢性肾病的病因、代谢途径和潜在治疗提供线索。

未来可在以下方面深入开展研究:

主要参考文献:

AlKhodorD,WehedyE,ShatatIF.Thehumanmicrobiomeinchronickidneydisease:adouble-edgedsword[J].FrontiersinMedicine,2986.

MertowskaP,MertowskiS,WojnickaJ,etal.ALinkbetweenChronicKidneyDiseaseandGutMicrobiotainImmunologicalandNutritionalAspects.Nutrients.2021;13(10):3637.Published2021Oct17.doi:10.3390/nu13103637

FengZ,WangT,DongS,etal.Associationbetweengutdysbiosisandchronickidneydisease:anarrativereviewoftheliterature.JIntMedRes.2021;49(10):3000605211053276.

GiordanoL,MihailaSM,EslamiAmirabadiH,MasereeuwR.MicrophysiologicalSystemstoRecapitulatetheGut-KidneyAxis.TrendsBiotechnol.2021Aug;39(8):811-823.doi:10.1016/j.tibtech.2020.12.001.Epub2021Jan6.PMID:33419585.

疾病表现、进展和治疗反应的可变性一直是医学的核心挑战。尽管宿主因素和遗传学的变异性很重要,但很明显,在迈向个性化治疗的过程中,必须考虑肠道微生物组具有巨大的遗传和代谢多样性。

疾病表现、治疗反应和治疗不良反应的个体差异是有效管理疾病和患者安全的主要挑战。这种认知是精准医学的基础,其最简单的形式可以这么说,用个性化方法为合适的患者确定合适的治疗方法,无需反复试验。

将肠道微生物组与人类遗传学区分开来的一个方面是它代表了我们健康的动态组成部分,通过复杂的网络不断与宿主和环境因素相互作用。虽然存在潜在挑战,肠道微生物组的可塑性也提供了一个独特的机会,使其成为精准医学的一个有吸引力的目标。

本文支持使用肠道微生物组作为精准医学工具的当前证据,并建议未来需要将微生物组作为个体化治疗或干预工具的工作。

该研究团队选择了六个广泛的疾病组,这些组具有相对较强的证据表明肠道微生物组的作用。尽管每个疾病组都有不错的发展,但在考虑临床影响时,不同疾病组的前景和成熟度各不相同(下图)。

抗生素诱导的肠道微生物组破坏会促进机会性和医院感染的机制。最常见的院内腹泻感染艰难梭菌为例,强调可能解释临床结果的个体差异的微生物组和病原体特异性特征。

复发性艰难梭菌感染(CDI)一直是微生物组研究的中心焦点。CDI出现最常见的原因是使用抗生素,但矛盾的是,CDI的一线治疗也包括抗生素。

抗生素对一般人相当有效,但为什么部分患者出现治疗失败,或是成功治疗后复发?

这可能与宿主特征(例如高龄)或药物的使用(例如质子泵抑制剂)有关,以及肠道微生物组中特定病原体的特征有关。

除了宿主因素外,肠道微生物群的破坏也是CDI的关键因素。

·与健康对照个体相比,CDI患者的肠球菌、韦永氏菌、乳杆菌、γ-变形菌属的相对丰度较高,而拟杆菌属、毛螺菌科、瘤胃球菌科的含量较低。

无论是什么社会阶层

无论以前的职业是什么

任何人都有可能患上阿尔兹海默症

这种疾病如同橡皮擦一般

逐渐抹掉一个人的记忆

在详细了解阿尔兹海默症之前,我们先来看一个动画短片(2020年奥斯卡最佳动画短片提名),该片讲述的是一位患有阿尔茨海默病的艺术家慢慢失去自己记忆的故事。

2020奥斯卡最佳动画短片提名——勿忘我(Mémorable)_腾讯视频

“他们彼此搂着对方在旋转中化作了记忆的露珠”

“你是我空白世界里最后一处的风景”

阿尔兹海默症正在呈指数级蔓延,目前却没有治愈的方法。

本文,我们在了解阿尔兹海默症的同时,也带来了关于阿尔兹海默症研究的新方向——结合肠道微生物群(“肠-脑轴”的阐述)来更深入了解该疾病。

缩略词:

因此,通过健康饮食来逆转肠道菌群异常可能有益于大脑并降低AD风险。

·遗传

·病理

病理上,细胞外神经原纤维斑块和细胞内高磷酸化tau(pTau)缠结遍布AD大脑皮质实质,尤其是颞叶。深部脑萎缩也可能支持AD的诊断,这些明显的特征长期以来被认为是AD病理的主要因素。

新皮层中pTau的Aβ斑块和神经原纤维缠结的堆积会引起炎症,氧化应激和最终的神经退行性变。这些症状也可以通过活性氧来介导,活性氧通常通过酶促抗氧化剂来控制。然而,当抗氧化剂水平降低时,活性氧会引起氧化应激并导致神经退行性变。

大脑中的炎症也与AD患者常见的肠道渗漏有关,免疫系统因子如多形核中性粒细胞能够从肠壁漏出。来自肠道的持续炎症可开始降解血脑屏障,使这些炎症因子进入大脑并引起进一步的炎症。

用于AD诊断的生物标志物包括低Aβ-42和脑内高tau水平,PET上氟脱氧葡萄糖摄取减少,MRI上出现结构性脑萎缩。

AD的临床诊断因患者而异,很难用一系列规定的症状来描述。

早期症状

记忆:丢钥匙,忘记朋友的名字或最近的一次谈话,在熟悉的地方迷路。

讲话:重复自己的话或努力跟上对话。

视觉:很难看到三维的东西和判断距离。

决策:难以做出决定、解决问题或完成多步骤任务,比如做饭。

情绪:感到焦虑、沮丧或易怒的。

晚期症状

错觉:

例如,毫无理由地相信有人在偷他们的东西

不寻常的行为:

表现出攻击性或躁动、喊叫或扰乱睡眠模式

行走和说话困难:

卧床不起或坐轮椅,需要24小时护理来帮助进食、饮水和上厕所

由于淀粉样蛋白级联假说的不可理解性,研究正在调查Aβ斑块和pTau作为一个系统的标志物,这个系统从许多末端被破坏。

研究假设β-淀粉样蛋白是一种抗菌肽,由于非有益微生物的大量携带,可能来自炎症导致的血脑屏障降解,因此可能会在AD大脑中积聚。这些淀粉样蛋白是由APP的裂解和toll样受体2激活的髓样分化主要反应途径形成的。

脑淀粉样变性外,肠道中还存在细菌淀粉样蛋白,其三级结构类似于中枢神经系统淀粉样蛋白,并可能在刺激大脑中的免疫系统中发挥作用,因为免疫系统学会了识别肠道中的淀粉样蛋白,然后大脑中淀粉样蛋白的增强攻击,导致炎症。

Aβ斑块和tau缠结假说是AD病理生理学的理想模型。然而,新的研究已经证实AD是系统性功能障碍的一个组成部分,至少部分由慢性、全身性和神经元炎症以及肠道微生物群介导。在这一点上,神经炎症假说建立在肠-脑轴上,它将肠道微生物群活动与神经元健康和功能障碍联系起来(下图)。

AD中肠道微生物群的作用是由微生物代谢物介导的,这些代谢物作用于肠道和周围组织中的局部神经元并向大脑发送信号,和/或从肠道吸收并通过循环到达大脑。例如:单胺类、短链脂肪酸(SCFA)、γ-氨基丁酸(GABA)、β-甲胺基-L-丙氨酸、脑源性神经营养因子、血清素和多巴胺。

KincaidHJ,etal.,AnnNutrMetab,2021

MCI和AD患者中饮食与微生物组相互作用与大脑和认知健康之间的假定联系的示意图。

AD患者和/或患有轻度认知障碍(MCI)的受试者存在明显的微生物群模式。

全身性炎症的加剧促使免疫功能受损,使大脑中的β-淀粉样蛋白堆积。这表明,患者通常要到老年时发展为AD,即使在生命早期就存在存在危险因素,如基因突变。

西方饮食由低纤维、高脂肪和高蛋白食物组成,通常吃富含TMA和胆碱的高脂肪红肉和鸡蛋,从而增加TMAO的产生。这可能部分解释了西方国家AD发病率较高的原因。

炎症引发氧化应激,从而导致βpTau的积累;然而,在一个破坏性的循环中,反之亦然也是可能的。

此外,氧化应激可导致线粒体功能障碍,肠道微生物源性代谢产物影响线粒体功能。饮食可以调节氧化应激,如高果蔬饮食可以提高认知能力,这与老年人氧化应激的降低有关;而西方饮食不富含水果和蔬菜,这也可能解释了在西方国家AD患病率较高的原因。

肠道微生物群对我们的新陈代谢、免疫和大脑健康至关重要。在健康的稳态条件下,肠道微生物群与宿主保持共生关系,对宿主营养和代谢、对病原体的定植抗性、肠道屏障完整性和免疫调节发挥重要作用。

肠道微生物群对脑部疾病有影响,包括抑郁症、焦虑症、高血压和帕金森病。最近的研究也将肠道微生物群与AD联系起来;然而,值得注意的是,这些研究大多是横断面调查,因此,需要更多的纵向干预研究来确定微生物群和AD病理学之间的偶然联系。

美国北卡罗来纳州科学团队最近报道了MCI患者拟杆菌丰度较低,厚壁菌和变形杆菌(肠杆菌科)丰度较高,此外在属水平上也存在一些差异。其他研究也报道了AD受试者的多样性较低,厚壁菌与拟杆菌比率较低,痴呆患者的拟杆菌比率较低,而与MCI患者和正常受试者相比,AD患者的多样性较低,厚壁菌和变形杆菌比率较高。

一项研究表明,丁酸盐产生菌参与认知功能。有趣的是,该团队还发现MD生酮饮食改善了AD生物标志物,即。MCI患者脑脊液中的淀粉样蛋白和tau蛋白,其中这些变化与肠丁酸盐增加有关。

已经研究了Aβ积累与微生物群的关系。例如,APP-PS1小鼠是使用最广泛的AD模型,它以年龄依赖的方式展示了Aβ在大脑中的蓄积;然而,它的微生物群不同于野生型小鼠。此外,移植有AD微生物群的小鼠倾向于具有更高的Aβ积累。此外,Aβ聚集可以被微生物群衍生的戊酸酯和丁酸酯抑制。

鉴于AD患者与健康受试者之间微生物群差异的新数据,研究人员已经开始探索调节微生物群的方法,希望能够改善AD病理学。

尽管肠道微生物群可以通过多种方法进行调控,包括使用益生菌、益生元、合生元和抗生素或改变饮食,但饮食是肠道微生物群的最高级调节剂。

此外,炎症减少也是AD的主要症状。食用富含二十二碳六烯酸(一种n-3多不饱和脂肪酸)的鱼制品与降低AD风险有关。富含维生素D3的鱼和富含维生素D的奶制品促进神经生长因子蛋白的分泌,这种蛋白可以防止大脑发炎和衰老。

由于MD对AD的这些改善作用,一项人体试验研究了MD-DASH干预对神经退行性延迟(MIND)饮食的影响,该饮食是MD与DASH饮食(阻止高血压的饮食方法)的结合,富含水果,蔬菜,全谷类,低脂乳制品和瘦肉蛋白证明,MIND饮食比单独使用MD或DASH更为有效,尽管所有3种饮食均显示出降低AD病理学的益处。

除了某些饮食生活方式外,个别食物还可以带来抗AD病理学的益处。例如,在小鼠模型中,饮用红酒可防止Aβ肽生成并降低AD风险。具体而言,据报道,适度饮酒可减少轴突末端的GABA能发芽,这可能是AD中神经退行性变的部分原因。富含类黄酮的食物,例如黑加仑子,葡萄,柑橘和绿茶,已显示出抑制Aβ沉积并防止tau蛋白过度磷酸化的作用,同时改善了AD的其他生物标志物。

具体而言,据报道,适量饮酒可减少轴突终末的GABA能发芽,这可能是AD中发现的神经退行性变的部分原因。富含类黄酮的食物,如黑加仑、葡萄、柑橘和绿茶,已被证明能抑制β沉积和阻止tau蛋白的过度磷酸化,同时改善AD的其他生物标志物。

虽然大多数研究都在研究健康饮食对改善AD病理的影响,几项研究探讨了直接针对AD肠道细菌的补充剂的使用。

一项随机双盲对照人体试验,研究了12周食用嗜酸乳杆菌(Lactobacillusacidophilus)、干酪乳杆菌(Lactobacilluscasei)、双歧杆菌(Bifidobacteriumbifidum)和发酵乳杆菌(Lactobacillusfermentum),的益生菌组合的效果,据报道,对认知功能有显著的积极影响,但对氧化应激或炎症没有影响。

一项小鼠实验研究了生物素丁酸钠对早期AD小鼠Aβ水平和行为症状的影响,发现补充丁酸钠12周后Aβ水平显着降低,行为反应增加。

益生菌和益生元的组合合生元也显示出对AD的益处。一项人类研究观察到,AD患者食用开菲尔谷物发酵的牛奶(形成共生物质)90天后,精神能力得到改善,炎症和氧化应激减少。

综上所述,目前有关饮食和补充剂影响肠道微生物群和改善AD是有希望的,但更多的研究是也非常需要。

目前的证据表明,饮食成分的促炎和抗炎能力都可能在AD管理中发挥作用。

富含单糖,饱和/反式脂肪,高级糖基化终产物和加工肉的饮食可能对AD患者的大脑产生促炎性影响,同时可能加速肥胖症,高血压,血脂异常,动脉粥样硬化和2型糖尿病。

相反,富含蔬菜,水果,沙拉,坚果,豆类,浆果,多不饱和脂肪酸,维生素,类黄酮,多酚,益生菌/益生元和全谷物的复杂饮食模式(例如,MD,DASH和MIND)可能有助于预防或减缓认知能力下降和AD进展。

虽然该疾病目前无法得到根治,也无法逆转,但如果在早期就介入治疗,是可以有效延缓疾病的进程。

音乐

对于许多患有阿尔茨海默氏症的人来说,正确的音乐疗法可以在恐惧和孤独的时候提供安慰、快乐。

“以某种方式、形式对音乐做出反应,无论是身体反应、情感反应、社会反应,还是认知反应”,来自伯克利音乐学院音乐治疗系主任乔伊认为,“我们知道痴呆患者的大脑受损,但对音乐作出反应的那部分似乎是最后消失的部分。”

音乐的镇静作用可以减少日常生活中产生焦虑的事件中的躁动,并使阿尔茨海默症患者及其护理者的过渡不那么令人焦虑。

精油

梅奥诊所称,当吸入精油时,它会刺激嗅觉感受器,嗅觉感受器通过中枢神经系统向边缘系统传递正(或负)信息。边缘系统是大脑控制情绪的部分。

梅奥诊所的从业者不会将精油涂抹在患者身上,而是用于供阿尔茨海默患者吸入。

当然吸入太多也不好。如果周围有太多的气味,就像用扩散器一样,使嗅觉系统饱和,甚至再也认不出这种气味了。所以不能过量使用。

几项小型研究表明,薰衣草精油可帮助改善痴呆症患者的行为并改善睡眠。柠檬香脂可以按摩到皮肤或吸入,在减轻压力和焦虑方面显示出优势。生姜精油缓解恶心症状。

但不推荐使用薄荷精油,较刺激,许多人会对它产生不良反应。

瑜伽

关于瑜伽及其对阿尔茨海默氏病的影响的研究在某种程度上是有限的,还远没有定论,但在阿尔茨海默氏症的护理中加入诸如瑜伽之类的补充方法,可能会有助于缓解该疾病的某些症状。

2018年2月发表在《神经生物学的压力》杂志上的一项研究综述指出,越来越多的证据表明,压力可能会对像阿尔茨海默氏症这样的神经退行性疾病的发展产生有害影响。

瑜伽具有潜在的好处,可以帮助减轻压力,平息躁动并改善整体情绪。

游戏

大多数专家似乎都同意游戏本身并不能真正改变疾病的生物学或阻止阿尔茨海默氏症对大脑的破坏性作用。

但有研究人员认为,这使他们增加了进行更多社交互动的机会,这比游戏本身更重要,可以提高生活质量,并可能减少认知能力下降。

研究发现,在中老年人参加社交活动,例如去看电影或与朋友外出,或玩填字游戏或纸牌游戏等游戏,发展轻度认知障碍的风险降低了20%。

当然也可能是因为有轻度认知障碍的人没有能力经常降低参加这些活动的机会,因此,需要进一步的研究来调查这些发现。

不同人喜欢玩不同游戏,同一款游戏多次重复也会无聊,以下多款游戏可供参考:

填字、拼图、数独、西蒙、Risk、Azul、Lumosity等。

肠道菌群检测

定期进行肠道菌群健康检测,可以了解该疾病风险,如果能在非常早期的时候及时发现,结合肠道菌群进行多种方式针对性干预(如饮食,益生菌,生活方式的调整等),可能会大大延缓病程。

PrinceM,BryceR,AlbaneseE,WimoA,RibeiroW,FerriCP.Theglobalprevalenceofdementia:asystematicreviewandmetaanalysis.AlzheimersDement.2013Jan;9(1):63–e2.

AlonsoR,PisaD,Fernández-FernándezAM,CarrascoL.InfectionoffungiandbacteriainbraintissuefromelderlypersonsandpatientswithAlzheimer’sdisease.FrontAgingNeurosci.2018;10:159.

SzczechowiakK,DinizBS,LeszekJ.DietandAlzheimer’sdementia:nutritionalapproachtomodulateinflammation.PharmacolBiochemBehav.2019Sep;184:172743.

BlumS,AviramM,Ben-AmotzA,LevyY.Effectofamediterraneanmealonpostprandialcarotenoids,paraoxonaseactivityandC-reactiveproteinlevels.AnnNutrMetab.2006;50(1):20–4.

MosconiL,MurrayJ,TsuiWH,LiY,DaviesM,WilliamsS,etal.Mediterraneandietandmagneticresonanceimaging-assessedbrainatrophyincognitivelynormalindividualsatriskforAlzheimer’sdisease.JPrevAlzheimersDis.2014Jun;1(1):23–32.

MorrisMC,TangneyCC,WangY,SacksFM,BennettDA,AggarwalNT.MINDdietassociatedwithreducedincidenceofAlzheimer’sdisease.AlzheimersDement.2015Sep;11(9):1007–14.

NagpalR,NethBJ,WangS,CraftS,YadavH.Modifiedmediterranean-ketogenicdietmodulatesgutmicrobiomeandshort-chainfattyacidsinassociationwithAlzheimer’sdiseasemarkersinsubjectswithmildcognitiveimpairment.EBioMedicine.2019Sep;47:529–42.

BhattacharjeeS,LukiwWJ.Alzheimer’sdiseaseandthemicrobiome.FrontCellNeurosci.2013;7:153.

THE END
1.海参牡蛎压片糖果对人体有危害吗?海参牡蛎压片糖果只要不过量服用对人体是没有危害的,需严格按照用法用量来吃,海参牡蛎压片糖果它是一种...https://www.ziyimall.com/ask/7981269/
2.吃黄精一个月对身体有没有危害?中医问题描述:吃黄精一个月对身体有没有危害? 医生回答(1) 刘磊 副主任医师 河南中医学院一附院 指导意见:长期食用黄精对身体是有害的。黄精的营养很强,而且比较油腻,长期服用黄精,可能导致体内积湿,对身体受潮重或脾胃虚寒者不宜服用黄精。黄精主要是健脾和滋补肾阴,通过补益脾肾改善人体的体质,可以调理脾胃功能...https://m.bohe.cn/iask/mip/tzofmy9fkk6enfr.html
3.金江春露对男性的危害金江春露是一款膳食补充剂,采用上好的益智仁、甘草、人参、蛹虫草以及黄精等多种名贵药材,精心制作出来的,很适合s虚、乏力、的男性朋友使用,能很好的对人体进行滋补调理,有效起到z阳、提高x功能等功效。 金江春露的功效与作用 1、补s壮y——金江春露可以帮助补s壮y,金江春露的主要成分是人参、蛹虫草以及黄精...http://meipian.cn/57280c67
4.长生露的危害有哪些长生露的危害是有可能出现过敏性反应,如皮肤瘙痒、丘疹等,或者出现人体阴阳失和等,具体危害因人而异,不能一概而论。 长生露是口服液形式的保健品,作为保健性药品,在临床上合理性规范化的选用,一般危害性极小。 长生露是属于补品,不合理不规范化使用是会对人体产生危害的。比如对于过敏性体质者,在服用之后有可能...https://www.chaonei.com/news_14206677
1.?黄精牛蒡煮水泡水喝的功效与作用好处是什么,有什么功效作用与...黄精牛蒡煮水泡水喝的副作用和禁忌有哪些,对人体有没有危害?一般黄精牛蒡煮水泡水喝的副作用与危害有以下几方面。 适量食用并没有影响。 1、人体适量的食用牛蒡根,对肝脏并没有伤害,而且牛蒡根中富含牛蒡甙、纤维素等营养成分,可以增加肠道蠕动速度,稳定血压,对保护肝脏有一定的作用,另外,牛蒡泡茶饮用,具有润肠通便...http://www.dolanarch.com/index.php?m=home&c=View&a=index&aid=7174
2.根据生物战剂对人体的危害程度,生物战剂可分为失能性生物战剂和...【简答题】根据放射源、射线装置对人体健康和环境的潜在危害程度,从高到低将放射源分为___,将射线装置分为Ⅰ类、Ⅱ类、Ⅲ类。 查看完整题目与答案 【判断题】化学武器是以生物战剂杀伤有生力量和毁坏植物的各种武器、器材的总称,旧称细菌武器。 A. 正确 B. 错误 查看完整题目与答案 【单选题】...https://www.shuashuati.com/ti/88a7492c96f7402aa697b56d0e1880be.html?fm=bd06b11908962dfc8c38cd7bf99b1d7e99
3.90%疾病源于肠道毒素!喝“天美仕黄精蛋白肽”排毒,让你“肠通无阻...肠毒的8大危害 1.肠毒被血液吸收并渗透至全身后,会对五脏六腑形成严重的损伤,进而影响身体的健康和容颜的美丽。 2.肠毒会降低肺部对灰尘,金属微粒的过滤功能,易出现暗疮、皮肤枯黄、口涩散发异味的问题。 3.肠毒加重了肝脏的解毒负担,从而使肝火上升,面色黑黄、生长色斑,并使人体抵抗力下降。 http://gexiaocloud.com/website/a/10530059/5.html
4.经常喝人参酒的好处与坏处,喝人参酒有什么副作用4,人参酒功效人参酒合适什么人群喝对人体有哪些功效 一、人参酒的功效与作用人参:味甘微苦;生者性平,熟者偏温。功在补五脏,益六腑,安精神,健脾补肺,益气生津,大补人体之元气,能增强大脑皮质兴奋过程的强度和灵活性,有强壮作用,使身体对多种致病因子的抗病力增强,改善食欲和睡眠,增强性功能,并能降低血糖、抗毒...https://www.meijiu.com/cs/2692919.html
5.血糖高的症状有哪些如何治疗高血糖血糖高吃什么好→MAIGOO知识治疗高血糖需要适当运动、合理饮食,日常生活中做好血糖监测,病情严重的需要服用药物治疗。血糖高的人在饮食方面要格外注意,因为许多食物中含糖量高,会对人体造成危害,血糖高的人应该多吃葛根、山药、黄精、中药茶、石榴等食物。下面来了解一下血糖高的症状吧!https://www.maigoo.com/goomai/192698.html
6.超高压提取黄精多糖的工艺及应用黄精为百合科黄精属多年生草本植物,含有多糖、皂苷、黄酮、木脂素、氨基酸、醌类化合物、维生素、生物碱及多种微量元素等对人体有益的成分,是具有较高药用价值和营养价值的药食同源的植物。多糖是黄精中起主要作用的活性成分,具有抗氧化、抗肿瘤、降血糖、免疫调节、抗菌抗炎、抗病毒等功效。天然活性成分的理想提取技...https://wap.cnki.net/lunwen-1021061378.nh.html