植入式电子技术的最新进展为改进医疗实践中的诊断和治疗程序创造了独特的机会,而生物电子学则是可植入电子技术的关键方面之一。生物电子器件可在人体内运行,能以脑刺激器、心脏起搏器、人工耳蜗和视网膜植入物等形式传输电脉冲,以操纵器官功能和神经活动(图1)。目前研究人员正在进行广泛的研究,以设计灵活、无毒、生物相容且具有成本效益的小型生物电子器件,从神经信号中提取生理信息,以治疗各种疾病。尽管人们通常认为这些器件是植入物,但它们的可穿戴应用最近一直是人们感兴趣的话题。典型的多功能生物电子器件包括:①电源或电池;②天线系统;③控制电路;④用于携带药物制剂的机械稳定的微型容器;⑤超低功率电子器件。
图1.(a)用于器官特异性治疗和诊断的无线控制生物电子器件示意图。(b)体内发射天线与生物电子器件无线连接。无线连接可以实现多种功能,包括无线电能传输(WPT)和数据通信。WPT为器件供电,无需电池。双向数据通信则用于实时监测和控制器件性能。
本文强调了天线系统的最新进展,特别是那些为无线生物电子器件设计的天线系统。本文的重点在于生物相容性材料、封装、制造方法、工作频率和辐射特性背景下的天线设计。随后的章节则讨论了受益于诊断和治疗应用中潜在用途的不同身体器官。
胃肠道监测
可摄取器件包括传感器、电池单元、天线、摄像头和许多其他电子元件。文献中已经探讨了许多材料和制造方法,用于实现微型化。新兴的3D打印技术也被用于制造微型胃电子器件[图2(a)]。然而,以最佳效率集成天线,以实现与外部单元的可靠无线通信仍然是一项重大挑战。文献研究了一系列用于可摄取器件的天线设计,并使用柔性材料实现了这些设计在共形器件周围的无缝集成[图2(b)]。由于弯曲的结构能够在空间有限的情况下实现低频共振,因此,这种结构常被用于可摄取共形天线。除了共形结构外,很少有可摄取生物电子器件被制作用于WPT和通信的嵌入式天线[图2(c)]。一些研究报道了在纤维素纤维或可生物降解的复合薄膜上瞬时可生物降解的印刷天线,以改善可摄取天线的辐射特性。
图2.可摄取生物电子器件。(a)带有给药组件的3D打印胃部电子器件。插图显示了在2.4GHz的蓝牙射频(RF)下运行的天线的集成。(b)围绕胶囊形状的器件制作的环形天线,用于无线内窥镜检查。(c)在印制电路板(PCB)上集成部件[可编程负载电阻(数字控制电位器,DCP)、晶体(XTAL)、微控制器(μP)、RF匹配网络(MATCH)和天线(ANT)在正面,电池(BATT)和去耦电容器(CAP)在背面。该PCB被嵌入在一个胶囊状的可摄取器件中。(b)经IEEE许可,转载自参考文献,2019;(c)经SpringerNature许可,转载自参考文献,2017。
天线与其他电子电路部分的阻抗匹配是无线信号可靠发射和接收信号的主要设计标准。人体组织的介电特性随频率变化,因此会使天线的谐振频率失调。适应性强的宽频带阻抗匹配网络可以成为植入式和可摄取天线的有效替代方案,这些天线在有损耗的身体组织中会出现失谐现象。此外,可摄取电子器件在消化道中移动时可能会出现随机定向。在此背景下,文献中提出了圆极化和双极化全向天线,以减少与外部单元通信链路的损耗。为了跟踪器件在消化道中的位置,采用了聚焦于分析外部单元接收到的信号强度的定位技术。
视网膜假体
黄斑变性(MD)和视网膜色素变性(RP)等眼部疾病主要影响老年群体的视力,可导致完全失明或视觉功能障碍。人体视网膜中的空间有限,是治疗眼部疾病的主要瓶颈。此外,由于存在感染的风险,研究人员认为带连接线的视网膜植入物不可行。因此,用于视网膜假体的无线技术已被广泛报道,以实现对植入物功能的无线控制。
视网膜假体的典型系统包括眼外系统和眼内系统。视觉数据由眼外系统捕获,并通过天线系统无线传输,而眼内系统则由电极阵列、天线和信号处理单元组成。天线用于建立眼外系统和眼内系统之间的无线链路,以及进行功率传输。小型天线是视网膜植入物的首选,其尺寸的微型化技术已在文献中得到广泛讨论,如弯曲的微带线、导线、折叠的偶极子。尽管如此,对集成天线于眼内系统器件至关重要的微型化技术,往往会导致窄带宽和低收益。参考文献报道了一种三角形的微带贴片天线,以提高无线视网膜假体的植入与外部子系统的带宽。
参考文献报道了用于电刺激视网膜神经元的视网膜前膜植入物。该器件与接收(Rx)线圈、电子器件和电极阵列相结合,通过手术植入眼睛周围。传输(Tx)线圈被整合到外部眼镜中,外部眼镜还包括视频处理单元(VPU)、摄像机和线圈。Tx线圈将处理后的视频图像数据传输到安装在眼睛周围的Rx线圈。3.156MHz的振幅调制用于Tx和Rx线圈之间的数据通信以及WPT。另一项研究表明,在视网膜前部放置基于线圈的天线可以提高与主线圈的电感耦合效率[图3(a)]。这主要是因为眼睛的前部比颞侧有更多的空间。因此,可以植入一个相对较大的线圈,从而有可能改善辐射特性。为了减轻眼部周围组织的感染,将线圈缠绕在一个类似于眼睛曲率的球形芯轴上。如图3(b)所示,使用由金铸成的线圈,并将其制作成与眼睛弧度相匹配的球形。
在宽带宽条件下,人们研究了工作频率为1.45GHz和2.45GHz的双单元视网膜假体的小型微带天线。对于眼外单元,在一副眼镜上设计了一个平面倒F天线(PIFA),而正三角形的微带眼内天线被集成在眼睛的紧凑睫状肌内。在有人类头部模型存在的情况下,对无线链路的耦合性能进行评估,而用眼睛模型进行测量。
如果您在医疗电子行业深耕,有独家/特殊的解决方案?不妨速速加入MedtecChina解决客户相应技术需求,为您拓展更多商机!
扫描下方二维码立刻参展报名MedtecChina高端医疗设备设计与制造专区,雨菲电子、佛山市程业五金电器、日臻尚勤、海康慧影等医疗电子厂商将带来当家技术、惊喜新品。品类覆盖专用集成电路、电池、电缆与电缆组件、电容、接插件、晶体/振荡器/压电体等。
Medtec
报名参展
扫描左侧二维码立即加入我们!
用于刺激听觉神经的人工耳蜗
听力损失与影响人们生活方式的感觉-神经障碍有关。在过去的几十年中,植入式助听器已成功实现商业化,并改变了人工耳蜗治疗方式。这些器件能够通过用电信号刺激听觉神经来恢复听力。
无线人工耳蜗的特点在于具有通过线圈耦合的外部和内部单元(图4)。外部单元用于处理声音信号,然后在听力损失的频率范围内产生刺激信号。这些信号通过低频信号从外部单元无线传输到植入体(图4)。收到的信号经过解调和处理,通过电极阵列产生电流,并穿入耳蜗以刺激听觉神经。外部单元和植入单元之间的双向通信对于刺激模式的有效传输以及WPT至关重要。
通常会给人工耳蜗配置线圈,因为线圈能够通过近场通信(NFC)中的磁场进行有效通信。然而,这些线圈经常会受到各种电磁干扰的影响。为了克服这一局限性,研究人员研制出一种屏蔽线圈,用作人工耳蜗的发射线圈。
已有参考文献讨论了其他几种类型的天线。如报道了在ISM波段运行的环形天线设计。此外,为了实现高数据速率的通信,有研究报道了一个超宽带收发器。由于超宽带收发器的特性,整个系统的功耗很低。
图4.人工耳蜗的原理图和组件及其与外部单元的无线连接。DSP:数字信号处理器;LSK:负载调制键控;BPSK:二进制相移键控;POPA:可编程输出功率放大器;DAC:数模转换器;CDR:充电数据记录。经IEEE许可,转载自参考文献,2019。
高温热疗
高温热疗技术通过利用人体组织的热反应限制热量,并用电流引起的焦耳热来切除肿瘤。在临床实践中,该技术偶尔与化疗或放疗联合应用。最近,有报道称无线控制支架用于热疗治疗。这些支架被当作加热器,只有当外部射频(RF)与其自身的共振相匹配时才会发生共振。在最近的报道中,一种镀金支架以电感的形式出现,并与电容器微芯片集成在一起。整个支架用40μm厚的聚对二氯甲苯薄膜封装,并用外部全向天线系统进行刺激。体外实验证实了支架在外部RF功率下产生热量的能力。
图5.一种用于无线内热治疗再狭窄的活性支架器件。经Elsevier许可,转载自参考文献,2015。
心血管医疗
心血管疾病(CVD)与心脏和血管有关,在全球范围内影响人类的预期寿命。因此,近年来人们广泛考虑利用生物电子器件心脏功能进行实时监测,以进行早期CVD检测。柔性和弹性材料已被用于制造心脏持续监测器件,如心脏起搏器、机器人套筒和电子支架。其中许多器件都配备了无线控制单元,用于将心律传输到外部器件;这对心脏监测来说很方便,不像传统的可穿戴心电图(ECG)器件,需要多根导线将传感器与身体配对。
无线心脏监测器的上述优势为该器件能够进行双向数据通信和WPT]的天线设计提供了巨大的机会。文献中经常讨论用于心脏起搏器的线圈形、环形、单极、贴片和周向天线设计,而最常见的数据通信方法是基于NFC和RF识别(RFID)。
报道了一种灵活的天线设计,用于柔性心脏可穿戴传感器,可以将数据传输到外部智能手机上[图6(a)]。在另一项研究中,研究人员提出了一种用于人工心脏起搏器的PIFA,工作频率为403MHz。天线表现出宽阻抗带宽特性,并采用共面波导供电。天线的谐振频率由一个L形隔板控制。整个起搏器配置尺寸为30mm×35mm×7mm。在人体等效组织模型中对该天线性能进行评估,显示在403MHz时的峰值增益为-24.61dBi。
在植入式可编程控制器中设计一种433MHz的无线电收发器。为了克服电池寿命有限的挑战,研究人员提议为心脏起搏器设计一个工作频率为954MHz的植入式整流天线[图6(b)]。整流天线由六边形分形构建的平面偶极子天线实现,并与阻抗匹配和整流电路同化。为了实现小型化,矩形条与高介电常数介质基板(r=9.8)一起构成天线结构。为了展示系统的WPT能力,研究人员使用导电条制作了一个可穿戴发射天线阵列(1×2)[图6(c)]。该结构的地线被截断以实现定向波束和良好的阻抗匹配。衬底厚度较薄(0.254mm),有助于将天线阵列整合到测试主体身上。起搏器的体内测试是通过使用多塞特羊模型(Dorsetbreedmodel)进行的[图7(a)]。可穿戴发射阵列被置于胸部上方,向植入器件发射21dBm的RF功率。图7(b)显示了由整流天线测量的整流直流电压(DC)与输入RF功率的关系。
图7.(a)用于在多塞特羊模型中测试起搏器的体内实验器件示意图。发射阵列连接功率放大器和信号发生器。(b)无电池、植入式无线异步起搏系统原型。展示了系统的不同制造组件,尺寸(单位:mm)为W=12、L=10、P=15、B=12.4、C=4.5和D=14.4。(a)经IEEE许可,转载自参考文献,2019;(b)经IEEE许可,转载自参考文献,2019。
给药器件
图8.无线控制给药器件。(a)具有电触发机制的无线可植入生物可吸收给药系统示意图。(b)该器件的无线功率收集器由一个带有Mg线圈、SiNM二极管和Mg/SiO2/Mg电容器的RF能量采集器组成。(c)采集器模拟散射参数与实测散射参数(S11)的比较。采集器的谐振频率约为5MHz。(d)具有三个独立储层和无线刺激器件的系统示意图。(e)比较以不同频率工作的三个采集器的模拟电压和实验测量电压,以证明最小的串扰。(f)在PCB上制作的集成部件。(g)当给药贴片贴在关节上时,智能手机界面的演示。(h)由柔性电路板、给药电极、NFC天线和铜线组成的贴片示意图。天线是用PI涂层包裹在器件中的。PBTPA:聚丁二硫醇1,3,5-三烯丙基-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮戊酸酐;PLGA:聚乳酸羟基乙酸。(f)经SpringerNature许可,转载自参考文献,2006;(g)、(h)经SpringerNature许可,转载自参考文献,2020。
另一项研究报道了一种基于微芯片的多储层器件,用于在人体内输送多肽。每个微芯片的尺寸为15mm×15mm×1mm,包含100个可单独寻址的300nL储层。在器件周围形成一个环形天线,通过电热溶解过程接收目标储层和药物释放的信息[图8(f)]。
透皮给药器件可以自行给药,并使药物浓度水平波动最小。这类器件的贴片上通常包含一组微针,每一根微针都与贴片下的药物储层相连。将贴片贴在皮肤上,然后按压,使药物进入体循环。参考文献中提出了一种有趣的方法,用于无线控制药物输送。该贴片无电池,包括柔性电路板、温度传感器和NFC模块[图8(g)]。局部皮肤温度通过NFC天线传输到具有NFC功能的智能手机上[图8(h)]。人体皮肤的温度分布有助于控制药物的释放量。研究还表明,在14.2MHz和14.6MHz之间的频率范围内,贴片可以在不同的弯曲条件下从用户的智能手机上采集电能。贴片顺利运行所需的电压对应于贴片和智能手机之间小于10mm的距离。
上述给药器件并不是严格意义上的生物电子器件,很少有研究讨论将潜在的有机和导电材料用于生物电子给药。这些研究主要集中在新型材料及其与身体组织的接口上。
拓宽这一领域的研究范围可以引领未来无线生物电子器件的发展,这些器件不仅可以提供个性化的药物,还可以增强体内药物吸收。
结论
尽管生物电子学有潜力应对医疗保健方面的新挑战,但需要与柔性和生物相容性材料、低功率电子学、天线、信号处理等领域相互配合、共同发展,以扩大其应用范围。本研究认为,无线生物电子学主要被用于脑部植入,很少有研究讨论无线生物电子学在给药、GI监测和心血管治疗方面的潜在用途。因此,仍有许多利用无线控制技术来增强生物电能力的开放机会,以发展针对不同器官的创新治疗方案。
如涉及侵权,请立刻联系删除
—“MedtecChina官方视频号持续升温—
企业推广新方式!更生动、更多触点助您把握目标客户,目前已有通快、帝目、龙海化工、摩方精密、甬星、上海汉洁、贝斯特、科德宝、MicroCare、首肯包装、百赛飞、马波斯等多家展商物料公布,快快了解更多展商&展品信息设计细节与制造难点~