核磁共振波谱仪是对经光源激发后产生荧光的物质或经化学处理后产生荧光的物质成份分析,可应用于生物化学、生物医学、环主要用途:1.可进行1H、13C等常规测量,并可检测31P,15N,29Sz等多换谱2.可进行各类如DEPT、HSQC、驰豫测量3.可进行活性肽,多肽类蛋白的溶液结构研究4.可进行
核磁共振波谱仪的一般操作主要包括:放置样品、氘代试剂锁场、匀场、探头调谐、设置参数、数据的采集以及处理,下面分别予以介绍:1.放置样品首先要有足够的样品量,一般300兆核磁共振测氢谱需2-10mg,500兆核磁共振测氢谱需0.5mg以上,碳谱需要的样品量更大。选择适当核磁共振的溶解,使
CT与核磁共振(MRI)是医院里重要的影像设备,给临床医生诊断疾病提供巨大的帮助。二者在临床使用中各有优势,大家可能对它们不太了解,CT与MRI的区别如下。1电离辐射不同CT是X线电子计算机断层扫描,有一定的辐射,不同的部位辐射不同,平扫、增强、CTA辐射也各不相同。而核磁共振是将人体
1.溶剂的用量多少为合适在仪器的定深量筒上都绘有相应线圈的位置及长度,一般只要保证样品的长度比线圈上下各多出3mm即可,过少会影响自动匀场效果,过多浪费溶剂而且由于稀释了样品,减少了处在线圈中的有效样品量。这种情况下要注意将样品液柱的中心与定深量筒上的线圈中心对齐。2.三氟化硼乙醚溶
具有核磁性质的原子核(或称磁性核或自旋核),在高强磁场的作用下,吸收射频辐射,引起核自旋能级的跃迁所产生的波谱,叫核磁共振波谱。利用核磁共振波谱进行分析的方法,叫做核磁共振波谱法(NMR)。从而可以看出,产生核磁共振波谱的必要条件有三条:1·原子核必须具有核磁性质,即必须是磁性核(或称自旋核),有
1、元素周期表中所有元素都可以测出核磁共振谱吗?不是。首先,被测的原子核的自旋量子数要不为零;其次,自旋量子数最好为1/2(自旋量子数大于1的原子核有电四极矩,峰很复杂);第三,被测的元素(或其同位素)的自然丰度比较高(自然丰度低,灵敏度太低,测不出信号)。2、怎么在H谱中更好的显示活泼氢?与O、S
连续波核磁共振仪的工作原理:射频是由照射频率发生器产生,通过照射线圈R作用于试样上。试样溶液装在样品管中插入磁场,样品管匀速旋转以保障所受磁场的均匀性。用扫场线圈调节外加磁场强度,若满足某种化学环境的原子核的共振条件时,则该核发生能级跃迁,核磁矩方向改变,在接收线圈D中产生感应电流(不共振
核磁共振价格差别很大。主要看电磁场场强,0.3T以下的很便宜,几百万;1T到1.5T就贵了,一千万左右。因为它的磁体类型分为永磁,常导,混合和超导几种,价格差异也很大。
核磁设备液氦与液氮都会用到只是液氦在里层,液氮在外层,一个是因为液氦相对贵,核磁不管用不用都是要消耗氮气与氦气的,所有把相对便宜的液氦放在外层与腔体接触,而且液氦对于超导体永磁体的冷却效果更好!超导磁共振需要液氦制冷,这是前提,是必须的,而磁体中的液氦会挥发也是必然,所以定期得添加(一般三年加两次)
一、核磁共振谱仪样品制备步骤以及方法样品的请求1)样品纯度普通应>95%,无铁屑、灰尘、滤纸毛等杂质。普通有机物须提供的样品量:1H谱>5mg,13C谱>15mg,对聚合物所需的样品量应恰当增加。2)普通请求,样品在某种氘代溶剂中有良好的溶解性能,送样者应提供样品的溶解度。常
核磁共振氢谱中有几个不同的峰,分子中就有几种H原子;利用等效氢原子判断氢原子的种类。分子中同一甲基上连接的氢原子等效;同一碳原子所连甲基上的氢原子等效,同一同一碳原子所连氢原子等效;处于镜面对称位置上的氢原子等效.核磁共振氢谱中只有一个吸收峰,说明该分子中的H原子都是等效的,只有1种H原子。根据每个
核磁共振波谱是一种分析聚合物化学结构、构象和弛豫现象的有效手段。NMR谱是由具有磁矩的原子核在磁场作用下发生跃迁形成的吸收光谱。不同单体形成的大分子碳氢化合物的核磁共振波谱是不同的,据此可以用高分辨率核磁共振技术分析鉴定聚合物的结构。聚合物核磁共振分析中常用的氢谱(1H-NMR)也称为质子核磁共振,
中间突起的像山峰一样的叫吸收峰,它的高低或面积代表这类氢的个数多少。核磁共振氢谱图可以显示该有机物含多少类氢原子,各类氢的个数比为多少核磁共振氢谱解析横坐标为化学位移值,代表谱峰位置;台阶状的积分曲线高度表示对应峰的面积。在1h谱中峰面积与相应的质子数目成正比;谱峰呈现出的多重峰形是自旋-自旋耦合
dd:双二重峰;dt:双三重峰;br.:宽峰;s:单峰;q:四重峰;t:三重峰。氢原子在分子中的化学环境不同,而显示出不同的吸收峰,峰与峰之间的差距被称作化学位移;化学位移的大小,可采用一个标准化合物为原点,测出峰与原点的距离,就是该峰的化学位移。裂分:由于相邻碳上质子之间的自旋耦合,因此能够引起吸
一般T数值越大,磁场强度就越大,产生的图像就越清晰。1、一般0.35T的磁共振用的磁体是常导磁体。2、通常情况下,3.0T磁共振主要被用于医院的科研,开展课题研究等方面,3.0T磁共振因其磁场强度过高,导致受检者限制更严,体内存在任何金属成分物质都不能行3.0T磁共振检查。人进入3.0T磁共振
低场核磁共振成像与分析系统是一种用于化学、物理学、药学领域的科学仪器,于2015年1月4日启用。技术指标1.磁体类型:永磁体(样品腔竖直放置);2.磁场强度:0.5±0.05T;3.磁场均匀度:≤30ppm(30mm×30mm×35mm);4.磁场稳定性:≤300Hz/Hour;5.磁体
上海大学生物工程系主任严壮志为专家组组长。验收会上首先介绍了项目的立项背景以及意义,并对现场测试提出了要求。项目负责人郁朋介绍了项目研制情况、验收指标以及技术测试大纲。测试大纲经过专家组评审通过后,专家组在苏州医工所影像楼电子学实验室按照测试大纲进行了逐项测试。专家组现场查看了研制仪
具有磁性的原子核,处在某个外加静磁场中,受到特定频率的电磁波的作用,在它的磁能级之间发生的共振跃迁现象,叫核磁共振现象。
基底核钙化症,迟发性运动障碍,投掷运动,书写痉挛,肌张力障碍综合征,副肿瘤性脊髓病,神经系统先天性疾病,克拉伯病,夏伊-德雷格综合征,纹状体黑质变性
石油领域:汽油调合柴油燃料混合燃料油混合石油裂解催化裂化装置饲料催化裂化装置馏分硫酸烷基化食品领域脂肪酸的含量测定:脂肪酸作为油类的重要指标,一直以来没有一种低成本,快速的检测方法来确定含量,我公司推出的台式核磁共振谱仪可以在几秒内检测此项指标。饮料的
橄榄油是一种具有迷人香气和丰富营养的油品,但是市面上经常出现掺了劣质油或有毒化学品的掺假油。常规的检测方法基于色谱质谱,这些方法不仅耗时比较长,还需要额外的样品处理和数据分析。核磁共振波谱仪(NMR)是利用不同元素原子核性质的差异分析物质的分析仪器。这种仪器广泛用于化合物的结构测定、定量分析和动物学
体外诊断(IVD,InVitroDiagnosis)是指将人体样本(例如血液、体液、组织等)从人体取出后,进行检测而获取临床诊断信息,进而判断疾病或机体功能的诊断方法。体外诊断的方式能在疾病早期快速准确地诊断,目前临床上80%以上的疾病诊断都依靠它,是保证人类健康的医疗体系中不可或缺的一环。
作为一个整体,食品行业存在对公平份额的大量争议,而尤以蜂蜜产品最为严重。每天有数百万人食用这种天然甜味物质,但其真实性却饱受质疑。例如,一些蜂蜜出口产品被认为存在掺假现象。很多这类“假冒”蜂蜜产品都是简单的糖基甜味剂,其化学成分与蜂蜜相似,但最终产品中几乎不含真正的蜂蜜。核磁共振能提供帮助吗?蜂
核磁共振适合于液体、固体。如今的高分辨技术,还将核磁用于了半固体及微量样品的研究。核磁谱图已经从过去的一维谱图(1D)发展到如今的二维(2D)、三维(3D)甚至四维(4D)谱图,陈旧的实验方法被放弃,新的实验方法迅速发展,它们将分子结构和分子间的关系表现得更加清晰。在世界的许多大学、研究机构和企业集
体外诊断(IVD,InVitroDiagnosis)是指将人体样本(例如血液、体液、组织等)从人体取出后,进行检测而获取临床诊断信息,进而判断疾病或机体功能的诊断方法。体外诊断的方式能在疾病早期快速准确地诊断,目前临床上80%以上的疾病诊断都依靠它,是保证人类健康的医疗体系中不可或缺的一环。N
台式核磁共振波谱仪种类繁多,目前在众多台式核磁共振波谱仪中,北京欧倍尔代理的牛津Pulsar台式核磁共振波谱仪技术比较突出。Pulsar台式核磁共振波谱仪是(Oxford)牛津仪器研发的高分辨永磁体NMR谱仪,采用特殊结构永磁体作为磁体,共振频率为60MHz,磁场强度为1.4T。台式核磁共振波谱仪的
台式核磁共振波谱成像(MRI)也称磁共振成像,是利用核磁共振原理,通过外加梯度磁场检测所发射出的电磁波,据此来绘制成物体内部的结构图像。将台式核磁共振成像技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具,现在台式核磁共振成像技术已在物理、化学、医疗、石油化工、考古等方面获得了广泛的应用。
它具有无电离辐射性(放射线)损害;无骨性伪影;能多方向(横断、冠状、矢状切面等)和多参数成像;高度的软组织分辨能力;无需使用对比剂即可显示血管结构等独特的优点,磁共振是核磁共振成像(mri)的简称检查介绍:核磁共振成像是近年来一种新型的高科技影像学检查方法是80年代初才应用于临床的医学影像诊断新技