空气中有微量的二氧化碳,约占0.039%。二氧化碳微溶于水中,形成碳酸,碳酸是一种弱酸。
二氧化碳平均约占大气体积的387ppm。大气中的二氧化碳含量随季节变化,这主要是由于植物生长的季节性变化而导致的。当春夏季来临时,植物由于光合作用消耗二氧化碳,其含量随之减少;反之,当秋冬季来临时,植物不但不进行光合作用,反而制造二氧化碳,其含量随之上升。二氧化碳常压下为无色、无臭、不助燃、不可燃的气体。二氧化碳是一种温室气体因为它发送可见光,但在强烈吸收红外线。二氧化碳的浓度于2009年增长了约二百万分之一。
气体状态气体密度:1.96g/L
液体状态表面张力:约3.0dyn/cm
密度:1.8kg/m3
粘度:比四氯乙烯粘度低得多,所以液体二氧化碳更能穿透纤维。
它沸点低(-78.5℃),常温常压下是气体。
特点:没有闪点,不可燃,不助燃(镁带在二氧化碳内燃烧生成碳与氧化镁,这是唯一的例外);无色无味,无毒性。
液体二氧化碳通过减压变成气体很容积和织物分离,完全省去了用传统溶剂带来的复杂后处理过程。液体CO和超临界CO均可作为溶剂,尽管超临界CO具有比液体CO更高的溶解性(具有与液体相近的密度和高溶解性,并兼备气体的低粘度和高渗透力)。但它对设备的要求比液体CO高。综合考虑机器成本与作CO为溶剂,温度控制在15℃左右,压力在5MPa左右。
二氧化碳的三种模型
液态二氧化碳蒸发时会吸收大量的热;当它放出大量的热量时,则会凝成固体二氧化碳,俗称干冰。
现国内外正在致力于发展一种新型二氧化碳利用技术──CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效。它适用于化工、医药、食品等工业。
二氧化碳在温度高于临界温度(Tc)31℃、压力高于临界压力(Pc)3MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力,用它可溶解多种物质,然后提取其中的有效成分,具有广泛应用。
传统提取有效成份的方法如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,但工艺复杂、纯度不高,而且易残留有害物质。而二氧化碳超临界萃取廉价、无毒、安全、高效,可以生产极高附加值的产品。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。除了用在化工、化工等工业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素、虾青素(英文称astaxanthin,简称ASTA)及银杏叶、紫杉中的有价值成分。以下举例简单介绍一下该技术的应用。
提取辣椒中的红色素
用超临界方法萃取的红色素没有一丝辣味,副产品主要是辣味素,只要加入90%的熟植物油即可制成辣椒油。一年能收回投资。1991年以来,在日本每年需要辣椒红色素30吨,每公斤价3万日元,年销售额9亿日元。中国化学方法生产的辣椒红色素每年60吨,但色价太低又有辣味,出口困难。中国色素应用也呈直线上升趋势,因此生产色素有极光明的前景。除辣椒色素外,设备还可使用于红花色素、虾青素等。
提取茶叶中的茶多酚
安徽、云南、四川、湖北等省盛产茶叶,可以将质次的碎茶叶未或次茶生产茶多酚及咖啡因。茶多酚是极优良的抗氧化剂,广泛用于食品和化妆品等方面,已发现茶多酚有抗龋杀菌作用,在医学方面茶多酚可以有降胆固醇、降血压、降血脂、延缓衰老作用,因此是一种优良的天然食品添加剂。用化学方法提取的茶多酚比不上用CO超临界萃取法生产的茶多酚纯净,因此在大量种植茶叶的地区上此项目,一定有较大的经济效益。此外咖啡因也是常用的药品,这将使过去认为无用的次品,转变成高附加值的产品。100吨茶叶末可以提取5吨茶多酚,产值近千万元。
提取银杏黄酮、内酯
用超临界萃取设备杏从银可粗提物中精提银杏黄酮、内酯。银杏叶粗提物成本年需2000万元,超临界萃取设备工艺投资300万元,产值就可达到2900万元。一年内可收回投资并有600万元收益,第二年可获毛利900万元。
提取桂花精和米糖油
如用超临界萃取技术提取桂花精油,每千克油在国际市场上售价可达3000美元。一瓶25mL装的香水只需桂花精油5~6滴,可卖几十法朗,经济效益十分可观。
由超临界流体浸制的米糠油是一种相当纯的天然高品质油。米糠油中所含的甾醇(高达0.75%)可化学合成甾醇激素,其产品包括:雄性荷尔蒙、雌性荷尔蒙、避孕药、利尿剂、抗癌剂。这些产品在医药工业中占有重要的地位和极高的经济价值。甾族药物的生产,在世界范围内是一个40亿美元的产业,而米糠油是合成甾醇药的最佳原料。
国外在生产香精和啤酒花方面已采用了CO2超临界萃取技术。中国有丰富的自然资源,超临界萃取技术有极大的推广价值。有些交通不发达的山区,特产资源十分丰富,尤其盛产中草药材。处理这些药材,要用相当大的装置,且运输不便,如能在这些山区建立CO2超临界萃取设备,可用以提取中药中最为有用的精华部分,这不仅减少了大量的运输成本,而且极大地增加了中药的附加值,可开发生产出更多的医药新产品。五超临界CO2流体提取虾青素的工艺研究
【关键词】:超临界CO2流体萃取虾青素纯化
【分类号】:TS202.3
【DOI】:CNKI:SUN:SPFX.0.2004-12-020
药理
低浓度时为生理性呼吸兴奋药。当空气中该品含量超过正常(0.03%)时,能使呼吸加深加快;如含量为1%时,能使正常人呼吸量增加25%;含量为3%时,使呼吸量增加2倍。但当含量为25%时,则可使呼吸中枢麻痹,并引起酸中毒,故吸入浓度不宜超过10%。
适应症
用法用量
遵医嘱。25%高浓度吸入可使呼吸中枢麻痹,引起酸中毒。吸入浓度不超过10%。
不良反应
25%高浓度吸入可使呼吸中枢麻痹引起酸中毒.吸入浓度不超过10%。
二氧化碳导致呼吸性中毒
⑴低浓度的二氧化碳可以兴奋呼吸中枢,便呼吸加深加快。高浓度二氧化碳可以抑制和麻痹呼吸中枢。
⑵由于二氧化碳的弥散能力比氧强25倍,故二氧化碳很容易从肺泡弥散到血液造成呼吸性酸中毒。
临床上很少见单纯的二氧化碳中毒,由于空气中二氧化碳增多,常伴随氧浓度降低。比如:地窖中储存的蔬菜、水果呼吸时产生二氧化碳,同时消耗了氧气。无防护措施进入地窖所发生之中毒,是高浓度二氧化碳和缺氧造成的。试验证明氧充足的空气中二氧化碳浓度为5%时对人尚无害;但是,氧浓度为17%以下的空气中含4%二氧化碳,即可使人中毒。缺氧可造成肺水肿、脑水肿、代谢性酸中毒、电解质紊乱、休克、缺氧性脑病等。
1、范围
本标准规定了公共场所空气中二氧化碳浓度的测定方法。
本标准适用于公共场所空气中二氧化碳浓度的测定。
第一法不分光红外线气体分析法
2、原理
二氧化碳对红外线具有选择性的吸收。在一定范围内,吸收值与二氧化碳浓度呈线性关系。根据吸
收值确定样品中二氧化碳的浓度。
3、试剂和材料
3.1变色硅胶:于12℃干燥2h
3.2无水氯化钙D分析纯。
3.3高纯氮气D纯度99.99%。
3.4烧碱石棉D分析纯。
3.5塑料铝箔复合薄膜采气袋0.5L或1.0L。
3.6二氧化碳标准气体(0.5%)贮于铝合金钢瓶中。
4、仪器和设备
4.1二氧化碳不分光红外线气体分析仪
4.2仪器主要性能指标如下:
测量范围0-0.5%;0-1.5%两档。
重现性≦±1%满刻度
零点漂移:≦±3%满刻度/4h
跨度漂移:≦±3%满刻度/4h
温度附加误差(在10-80℃)≦±2%满刻度/10℃
一氧化碳干扰:1000ml/m3(1000ppm)co≤±2%满刻度。
供电电压变化时附加误差:220v±10%≤±2%满刻度。
抽氧流量:>0.5L/min
碳氧化物之一,是一种无机物,常温下是一种无色无味气体,密度比空气略大,能溶于水,并生成碳酸。(碳酸饮料基本原理)使紫色石蕊溶液变红,可以使澄清的石灰水(Ca(OH))变浑浊,做关于呼吸作用的产物等产生二氧化碳的实验都可以用到。还可以支持镁带燃烧。
二氧化碳在常温常压下为无色无嗅的气体。CO2分子有16个价电子,基态为线性分子,属D∞h点群。CO2分子中碳氧键键长为116pm,介于碳氧双键(乙醛中C=O键长为124pm)和碳氧三键(CO分子中C≡O键长为112.8pm)之间,说明它已具有一定程度的叁键特性。因此,有人认为在CO2分子中可能存在着离域的大π键,即碳原子除了与氧原子形成两个键外,还形成两个三中心四电子的大π键。
17世纪初,比利时化学家范·海尔蒙特(J.B.Van.Helmont1577~1644)在检测木炭燃烧和发酵过程的副产气时,发现二氧化碳。1757年,J.Black第一个应用定量的方法研究这种气体。1773年,拉瓦锡(A.L.Lavoisier)把碳放在氧气中加热,得到被他称为“碳酸”的二氧化碳气体,测出质量组成为碳23.5~28.9%,氧71.1~76.5%。1823年,迈克尔·法拉第(M.Faraday)发现,加压可以使二氧化碳气体液化。1835年,M.Thilorier制得固态二氧化碳(干冰)。1884年,在德国建成第一家生产液态二氧化碳的工厂。
因为二氧化碳比空气重,所以在低漥处的浓度较高。以人工凿井或挖孔桩时,若通风不良则会造成井底的人员窒息。CO的正常含量是0.03%,当CO的浓度达1%会使人感到气闷、头昏、心悸,达到4%~5%时人会感到气喘、头痛、眩晕,而达到10%的时候,会使人体机能严重混乱,使人丧失知觉、神志不清、呼吸停止而死亡。应避免之物质:
各种金属粉尘(例如镁、锆、钛、铝、锰):当悬浮在二氧化碳中易点燃而爆炸。
水:会形成碳酸。
二氧化碳中毒
二氧化碳中毒是人吸入高浓度的二氧化碳所出现的昏迷及脑缺氧情况,一般大气中二氧化碳含量超过1%时,人即有轻度中毒反应;当超过3%时,开始出现呼吸困难;超过6%时,就会重度中毒甚至死亡。
征状
中毒主要征状有:头痛、头愫晕、耳鸣、气急、胸闷、乏力、心跳加快,面颊发绀、烦躁、谵妄、呼吸困难,如情况持续,就会出现嗜睡、淡漠、昏迷、反射消失、瞳孔散大、大小便失禁、血压下降甚至死亡。
补救
打开门窗、通风孔,抢救者才可进入。将病人救出后,在空气新鲜处进行人工呼吸,心脏按摩,吸氧(避免高压、高流量、高浓度给氧,以免呼吸中枢更为抑制),开始1~2L/分,随病人呼吸好转逐渐增大给氧量(4--5L/分),以至采用高压氧治疗。(最好是纯氧)
吸入兴奋剂:多种兴奋剂交替、联合使用,如洛贝林、山梗菜碱等。
防止脑和肺水肿:应用脱水剂、激素,限制液量和速度,吸入钠的份量亦应限制。
对症治疗:给予多种维生素、细胞色素C、能量合剂、高渗糖,以防感染。
抢救同时要留意有没有其他有毒气体存在,如一氧化碳等。
由于碳酸很不稳定,容易分解:
H2CO3====H2O+CO2↑
所以,2HCl+CaCO3====CaCl2+H2O+CO2↑
二氧化碳能与水反应形成碳酸:
CO2+H2O====H2CO3
向澄清的石灰水加入二氧化碳,会使澄清的石灰水变浑浊,生成碳酸钙沉淀:
CO2+Ca(OH)2====CaCO3↓+H2O
如果二氧化碳过量会有:
CaCO3+CO2+H2O====Ca(HCO3)2
二氧化碳会使烧碱变质:
2NaOH+CO2====Na2CO3+H2O
如果二氧化碳过量:
Na2CO3+CO2+H2O====2NaHCO3
即:
NaOH+CO2====NaHCO3
二氧化碳和金属镁反应:
2Mg+CO2(过量)==点燃==2MgO+C
Mg+CO2(少量)==点燃==MgO+CO
工业制法:高温煅烧石灰石:
CaCO3==高温==CaO+CO2↑
实验室制法:
CaCO3+2HCI=CaCl2+H2O+CO2↑
C+O2==点燃==CO2
二氧化碳的固定:
CO2+C5→(酶)2C3
在光合作用中的暗反应阶段,一分子的CO2和一分子的五碳化合物反应生成两分子的三碳化合物。
二氧化碳与一氧化碳的互相转化:
CO2+C==高温==2CO
2CO+O2==点燃==2CO2
⑴凡是有机物(包括动植物)在分解、发酵、腐烂、变质的过程中都可释放出CO2。
⑵石油、石腊、煤炭、天然气燃烧过程中,也要释放出CO2。
⑶石油、煤炭在生产化工产品过程中,也会释放出CO2。
⑷所有粪便、腐植酸在发酵,熟化的过程中也能释放出CO2。
⑸所有动物在呼吸过程中,都要吸氧气吐出CO2。
⑺一切工业生产,城市运转,交通等都离不开排放二氧化碳。
碳在充足的氧气中燃烧:C+O2===点燃===CO2
煤气工作原理:2CO+O2===点燃===2CO2
天然气工作原理:CH4+2O2===点燃===CO2+2H2O
实验室用大理石和盐酸制取二氧化碳:CaCO3+2HCl===CaCl2+H2O+CO2↑
碳还原氧化铜:C+2CuO===高温===2Cu+CO2↑
熟石灰检验二氧化碳:Ca(OH)2+CO2===CaCO3↓+H2O
氢氧化钠与二氧化碳反应:2NaOH+CO2===Na2CO3+H2O
与水反应:CO2+H2O===H2CO3
化学诗歌
实验室制二氧碳,大理石与稀盐酸。两种苏打皆不用,速度太快控制难。
不用硫酸代盐酸,镁盐不如钙盐廉。硝酸见光易分解,鉴别火柴不能燃。
反应式:CaCO3+2HCl=CaCl2+H2O+CO2↑
解释:
1、实验室制二氧碳,大理石与稀盐酸:“二氧碳”指二氧化碳。意思是说在实验室中是用大理石(CaCO3)和稀盐酸反应来制取二氧化碳。
2、两种苏打皆不用,速度太快控制难:“两种苏打”特指苏打(Na2CO3)和小苏打(NaHCO3)。这两句的意思是说不能用Na2CO3和NaHCO3代替CaCO3跟盐酸反应来制取CO2,是因为Na2CO3和NaHCO3跟盐酸反应的速度太快,产生的CO2很快逸出,不易控制,也不便于操作。
3、不用硫酸代盐酸:意思是说不能用稀硫酸代替盐酸。因为稀硫酸跟大理石(CaCO3)反应,则生成了微溶入水的硫酸钙(CaSO4)沉淀覆盖在大理石的表面上,阻碍了反应的继续进行,而使反应非常缓慢。
5、硝酸见光易分解:意思是说不能用硝酸代替盐酸,因为硝酸见光易分解(4HNO3=4NO2↑+O2↑+2H2O),若用硝酸代替盐酸,则制得的CO2中就会有少量的NO2和O2.此外,硝酸的价格较盐酸贵,故通常不用硝酸代替盐酸。
6、鉴别火柴不能燃:意思是说因为CO2能灭火,故可以将燃着的火柴置于集气瓶口检验,若火焰熄灭,则证明CO2已经充满了集气瓶。
1、可由碳在过量的空气中燃烧(注:碳在氧不足的情况下会和CO2反应成有毒的CO气体,所以空气要过量),即碳与氧产生化合反应:C+O=(条件:点燃)=CO
2、将大理石、石灰石、白云石(主要成分均为CaCO3)煅烧或者将碳酸盐与酸的作用而得。是石灰、发酵等工业的副产品。
工业副产品:CaCO3=高温=CaO+CO↑
实验中常见制取CO,是将碳酸钙与稀盐酸进行复分解反应(注:浓盐酸有挥发性,会使收集到的二氧化碳不纯,所以要用稀盐酸)化学方程式:CaCO3+2HCl==CaCl+H2O+CO↑
高温煅烧石灰石
小苏打(碳酸氢钠)和白醋反应
NaHCO3+CH3COOH====CH3COONa+H2O+CO2↑
液态二氧化碳蒸发时会吸收大量的热;当它放出大量的热量时,则会凝成固体二氧化碳,俗称干冰,干冰的使用范围广泛,在食品、卫生、工业、餐饮中、人工降雨有大量应用。主要有:
1.干冰在工业模具的应用范围
轮胎模具、橡胶模具、聚氨酯模、聚乙烯模、PET模具、泡沫模具、注塑模具、合金压铸模、铸造用热芯盒、冷芯盒,可清除余树脂、失效脱膜层、炭化膜剂、油污、打通排气孔,清洗后模具光亮如新。
干冰清洗益处:干冰清洗可以降低停工工时;减少设备损坏;极有效的清洗高温的设备;减少或降低溶剂的使用;改善工作人员的安全;增进保养效率;减少生产停工期、降低成本、提高生产效率。
2.干冰在石油化工的应用范围
清洗主风机、气压机、烟机、汽轮机、鼓风机等设备及各式加热炉、反应器等结焦结炭的清除。清洗换热器上的聚氯乙烯树脂;清除压缩机、储罐、锅炉等各类压力容器上的油污、锈污、烃类及其表面污垢;清理反应釜、冷凝器;复杂机体除污;炉管清灰等。
3.干冰在食品制药的应用范围
可以成功去除烤箱中烘烤的残渣、胶状物质和油污以及未烘烤前的生鲜制品混合物。有效清结烤箱、混合搅拌设备、输送带、模制品、包装设备、炉架、炉盘、容器、辊轴、冷冻机内壁、饼干炉条等。
4.干冰在印刷工业的应用范围
清除油墨很困难,齿轮和导轨上的积墨会导致低劣的印刷质量。干冰清洗可去除各种油基、水基墨水和清漆,清理齿轮、导轨及喷嘴上的油污、积墨和染料,避免危险废物和溶液的排放,以及危险溶剂造成的人员伤害。
5.干冰在电力行业的应用范围
可对电力锅炉、凝汽器、各类换热器进行清洗;可直接对室内外变压器、绝缘器、配电柜及电线、电缆进行带电载负荷(37KV以下)清洗;发电机、电动机、转子、定子等部件无破损清洗;汽轮机、透平上叶轮、叶片等部件锈垢、烃类和粘着粉末清洗,不需拆下桨叶,省去重新调校桨叶的动平衡。
干冰清洗的益处:使被清洗的污染物有效地分解;由于这些污染物被清除减少了电力损失;减少了外部设备及其基础设备的维修成本;提高电力系统的可靠性;非研磨清洗,保持绝缘体的完整;更适合预防性的维护保养。
6.干冰在汽车工业的应用范围
7.干冰在电子工业的应用范围
清洁机器人、自动化设备的内部油脂、污垢;集成电路板、焊后焊药、污染涂层、树脂、溶剂性涂覆、保护层以及印刷电路板上光敏抗腐蚀剂等清除。
9.干冰在船舶业的应用范围
船壳体;海水吸入阀;海水冷凝器和换热器;机房、机械及电器设备等,比一般用高压水射流清洗更干净。
10.干冰在核工业的应用范围
11.干冰在美容行业的应用范围
有的皮肤科医生用干冰来治疗青春痘,这种治疗就是所谓的冷冻治疗。因为它会轻微的把皮肤冷冻。
12.干冰在食品行业的应用范围
a在葡萄酒、鸡尾酒或饮料中加入干冰块,饮用时凉爽可口,杯中烟雾缭绕,十分怡人。
b制作冰淇淋时加入干冰,冰淇淋不易融化。干冰特别适合外卖冰淇淋的冷藏。
c星级宾馆、酒楼制作的海鲜特色菜肴,在上桌时加入干冰,可以产生白色烟雾景观,提高宴会档次如制作龙虾刺身。
d龙虾、蟹、鱼翅等海产品冷冻冷藏。干冰不会化水,较水、冰冷藏更清洁、干净,在欧、美、日本等国得到广泛应用。
13.干冰在冷藏运输领域的应用范围
a低温冷冻医疗用途以及血浆、疫苗等特殊药品的低温运输。
b电子低温材料,精密元器件的长短途运输。
c高档食品的保鲜运输如高档牛羊肉等。
14、干冰在娱乐领域的应用范围
广泛用于舞台、剧场、影视、婚庆、庆典、晚会效果等制作放烟,如国家剧院的部分节目就是用干冰来制作效果的。
15.干冰在消防行业的应用范围
干冰用来作消防灭火,如部分低温灭火器,但干冰在这一块的应用较少,也即市场程度较低。
干冰使用注意事项:
1.切勿让小朋友单独接触干冰!
2.干冰温度极低,请勿至于口中,严防冻伤!
3.拿取干冰一定要使用厚绵手套、夹子等阻隔物(塑胶手套不具阻隔效果!)
4.使用干冰请于通风良好处,切忌与干冰同处于密闭空间!
5.干冰不能与液体混装。
二氧化碳可注入饮料中,增加压力,使饮料中带有气泡,增加饮用时的口感,像汽水、啤酒均为此类的例子。
插图固态的二氧化碳(或干冰)在常温下会气化,吸收大量的热,因此可用在急速的食品冷冻。
二氧化碳的重量比空气重,不助燃,因此许多灭火器都通过产生二氧化碳,利用其特性灭火。而二氧化碳灭火器是直接用液化的二氧化碳灭火,除上述特性外,更有灭火后不会留下固体残留物的优点。
二氧化碳也可用作焊接用的保护气体,其保护效果不如其他惰性气体(如氩),但价格相对便宜许多。
二氧化碳是植物光合作用的主要碳源,可以用作植物温室的气体肥料和水草缸水族箱的肥料。
二氧化碳可用来酿酒,二氧化碳气体创造一个缺氧的环境,有助于防止细菌在葡萄生长。
二氧化碳可控制pH值,游泳池加入二氧化碳以控制pH值,加入二氧化碳从而保持pH值不上升。
二氧化碳可用于制碱工业和制糖工业。
二氧化碳可用于塑料行业的发泡剂。
干冰可以用于人造雨、舞台的烟雾效果、食品行业、美食的特殊效果等。
干冰可以用于清理核工业设备及印刷工业的版辊等。
干冰可以用于汽车、轮船、航空、太空与电子工业。
气体二氧化碳用于制碱工业、制糖工业,并用于钢铸件的淬火和铅白的制造等。
二氧化碳在焊接领域应用广泛。
如:二氧化碳气体保护焊,是目前生产中应用最多的方法
固态二氧化碳俗称干冰,升华时可吸收大量热,因而用作制冷剂,如人工降雨,也常在舞台中用于制造烟雾。二氧化碳一般不燃烧也不支持燃烧,常温下密度比空气略大,受热膨胀后则会聚集于上方。也常被用作灭火剂但Mg、Na、K等燃烧时不能用CO2来灭火,因为:2Mg+CO==点燃==2MgO+C、4Na+CO==点燃==2NaO+C、4K+CO==点燃==2KO+C。
二氧化碳是绿色植物光合作用不可缺少的原料,温室中常用二氧化碳作肥料。光合作用总反应:CO+HO—叶绿体、光照→C6H12O6+O注意:光合作用释放的氧气全部来自水,光合作用的产物不仅是糖类,还有氨基酸(无蛋白质)、脂肪,因此光合作用产物应当是有机物。
各步分反应:2HO—光照→2H↑+O↑(水的光解)NADP++2e-+H+→NADPH(递氢)ADP+Pi—→ATP(递能)CO+C5化合物→C6化合物(二氧化碳的固定)C6化合物—ATP、NADPH→(CHO)n+C5化合物(有机物的生成)
二氧化碳还可用于制取金刚石,反应的化学方程式为4Na+CO=2NaO+C,反应的条件为440℃及800个大气压,在这样的条件下,二氧化碳会形成超流体,能够吸附在钠的表面,加速电子从钠传递至二氧化碳的过程。当温度降低至400℃时,就没有金刚石的产生了,当压力下降时,生成物也主要以石墨为主。
一定范围内,二氧化碳的浓度越高,植物的光合作用也越强,因此二氧化碳是最好的气肥。美国科学家在新泽西州的一家农场里,利用二氧化碳对不同作物的不同生长期进行了大量的试验研究,他们发现二氧化碳在农作物的生长旺盛期和成熟期使用,效果最显著。在这两个时期中,如果每周喷射两次二氧化碳气体,喷上4~5次后,蔬菜可增产90%,水稻增产70%,大豆增产60%,高粱甚至可以增产200%。
气肥发展前途很大,但目前科学家还难以确定每种作物究竟吸收多少二氧化碳后效果最好。除了二氧化碳外,是否还有其他气体可作气体肥料?
德国地质学家埃伦斯特发现,凡是在有地下天然气冒出来的地方,植物都生长得特别茂盛。于是他将液化天然气通过专门管道送入土壤,结果在两年之中这种特殊的气体肥料都一直有效。原来是天然气中的主要成分甲烷燃气起的作用,甲烷用于帮助土壤微生物的繁殖,而这些微生物可以改善土壤结构,帮助植物充分地吸收营养物质。
目前最普遍的干洗技术是采用烃类(石油类)、氯代烃(如四氯乙烯)作为溶剂。但石油溶剂闪点低,易爆易燃,干燥慢;氯代烃气味刺鼻,毒性较高(一般在空气中的含量限制在50ppm以下)。干洗行业特别是欧美一些国家一直在寻找一种既清洁卫生安全高效的洗涤溶剂,目前推出的有绿色大地(Greenearth)、RYNEX、以及液体二氧化碳等新型清洗剂。Greenearth是一种清澈无味的液体,KB值(洗净率)与石油溶剂接近,但低于四氯乙烯,而且价格昂贵;RYNEX的KB值与四氯乙烯差不多,但含水量较高,而且蒸发太慢,不容易再生和回收,干洗周期长;液体二氧化碳KB值比石油溶剂高,略低于四氯乙烯,但在渗色、防污物再凝集等方面比四氯乙烯更好。
临床多以该品5~7%与93~95%的氧混合吸入,用于急救溺毙、吗啡或一氧化碳中毒者、新生儿窒息等。乙醚麻醉时,如加用含有3~5%该品的氧气吸入,可使麻醉效率增加,并减少呼吸道的刺激。
血清(血浆)中检测CO2的含量是代谢性酸碱中度的指标之一,基本上代表了血浆中酸碱碱储备的情况。
二氧化碳灭火器的使用方法
灭火器灭火时只要将灭火器提到或扛到火场,在距燃烧物5米左右,放下灭火器拔出保险销,一手握住喇叭筒根部的手柄,另一只手紧握启闭阀的压把。对没有喷射软管的二氧化碳灭火器,应把喇叭筒往上板70-90度。使用时,不能直接用手抓住喇叭筒外壁或金属连线管,防止手被冻伤。灭火时,当可燃液体呈流淌状燃烧时,使用者将二氧化碳灭火剂的喷流由近而远向火焰喷射。如果可燃液体在容器内燃烧时,使用者应将喇叭筒提起。从容器的一侧上部向燃烧的容器中喷射。但不能将二氧化碳射流直接冲击可燃液面,以防止将可燃液体冲出容器而扩大火势,造成灭火困难。
推车式二氧化碳灭火器一般由两人操作,使用时两人一起将灭火器推或拉到燃烧处,在离燃烧物10米左右停下,一人快速取下喇叭筒并展开喷射软管后,握住喇叭筒根部的手柄,另一人快速按逆时针方向旋动手轮,并开到最大位置。灭火方法与手提式的方法一样。
使用二氧化碳灭火器时,在室外使用的,应选择在上风方向喷射。在室外内窄小空间使用的,灭火后操作者应迅速离开,以防窒息。
灭火原理及适用火灾类型
适用于扑救一般B类火灾,如油制品、油脂等火灾,也可适用于A类火灾,但不能扑救B类火灾中的水溶性可燃、易燃液体的火灾,如醇、酯、醚、酮等物质火灾;也不能扑救C类和D类火灾(其主要依靠窒息作用和部分冷却作用灭火)。
17世纪初,比利时化学家范·海尔蒙特(J.B.Van.Helmont1577~1644)在检测木炭燃烧和发酵过程的副产气时,发现二氧化碳。
1757年,J.Black第一个应用定量的方法研究这种气体。
1773年,拉瓦锡(A.L.Lavoisier)把碳放在氧气中加热,得到被他称为“碳酸”的二氧化碳气体,测出质量组成为碳23.5~28.9%,氧71.1~76.5%。
1823年,迈克尔·法拉第(M.Faraday)发现,加压可以使二氧化碳气体液化。1835年,M.Thilorier制得固态二氧化碳(干冰)。
1884年,在德国建成第一家生产液态二氧化碳的工厂。
方法名称:
二氧化碳—挥发油的测定—挥发油测定法。
应用范围:
该方法采用挥发油测定法测定二氧化碳中挥发油的含量。
该方法适用于姜科植物温郁金CurcumawenyujinY.H.ChenetC.Ling的干燥根茎。
方法原理:
供试品于挥发油测定器中加水适量,加热至沸并保持微沸至5小时后,读取测定器中挥发油的量,计算其含量。
试剂:
无特殊试剂
仪器设备:
二氧化碳吸收器:1000mL(或500mL、2000mL)的硬质圆底烧瓶,上接挥发油测定器,挥发油测定器的上端连接回流冷凝管。以上各部均用玻璃磨口连接。测定器应具有0.1mL的刻度。全部仪器应充分洗净,并检查接合部分是否严密,以防挥发油逸出。
注:装置中挥发油测定器的支管分岔处应与基准线平行。
试样制备:
操作步骤:
称取供试品粉末(过二~三号筛,24—50目)适量(约相当于含挥发油0.5~1.0mL)(准确至0.01g)置烧瓶中,加水300~500mL与玻璃珠数粒,振摇混合后,连接挥发油测定器与回流冷凝管。自冷凝管上端加水使充满挥发油测定器的刻度部分,并溢流入烧瓶时为止。置电热套中或用其他适宜方法缓缓加热至沸,并保持微沸约5小时,至测定器中油量不再增加,停止加热,放置片刻,开启测定器下端的活塞,将水缓缓放出,至油层上端到达刻度0线上面5mm处为止。放置1小时以上,再开启活塞使油层下降至其上端恰与刻度0线平齐,读取挥发油量,并计算供试品中挥发油的含量(%)。
参考文献:
2014年年4月北半球大气中月均二氧化碳浓度首次超过400ppm(1ppm为百万分之一)。
这一现象可视为温室气体水平不断升高的另一警告,必须采取紧急行动遏制新增温室气体排放。
自2012年以来,加拿大、美国、挪威和芬兰位于北极圈内观测站的记录显示春季月平均二氧化碳浓度已超400ppm,但北半球更低纬度的观测站记录也显示出该趋势。
世界气象组织位于佛得角、德国、爱尔兰、日本、西班牙与瑞士的观测站均报告说,2012年3月至4月记录的月均二氧化碳浓度超过400ppm。
2014年年4月,世界气象组织全球大气观测网中,所有位于北半球的观测站监测到的二氧化碳浓度均创当地春季最高值。2012年全球年均大气二氧化碳浓度为393.1ppm,而工业化以前是278ppm。
截至2013年5月,地球大气层中的二氧化碳浓度已超过400ppm(百万分之400)。2000至2009年间的浓度增长率为每年2.0ppm,且逐年加速。目前的浓度比工业化之前的280ppm浓度高得多,而人为因素是导致二氧化碳浓度急剧上升的主要原因。释放出的二氧化碳中,57%进入大气层,其余的则进入海洋,造成海洋酸化。
多达四成的地面二氧化碳排放是由于火山爆发。据估计,每年火山爆发释放约130-230万公吨(145-255万吨)二氧化碳到大气中。温泉等也产生大量二氧化碳。在意大利的一个城市,当地的二氧化碳浓度一夜之间上升到75%以上,足以杀死昆虫和小动物,但在白天当阳光照射因为升温相当快,导致气体对流而分散。人类排放的二氧化碳超过火山爆发排放量130倍以上:一年270亿公吨。
主要是温室效应。因为二氧化碳具有保温的作用,会逐渐使地球表面温度升高。近100年,全球气温升高0.6℃,照这样下去,预计到21世纪中叶,全球气温将升高1.5——4.5℃。由温室效应所引起的海平面升高,也会对人类的生存环境产生巨大的影响。两极海洋的冰块也将全部融化。所有这些变化对野生动物而言无异于灭顶之灾。
大家要共同爱护环境,保护人类赖以生存的地球母亲。
地球危害
二氧化碳排放现在地球上气温越来越高,是因为二氧化碳增多造成的。因为二氧化碳具有保温的作用,现在这一群体的成员越来越多,使温度升高,近100年,全球气温升高0.6℃,照这样下去,预计到21世纪中叶,全球气温将升高1.5——4.5℃。
海平面升高,也是二氧化碳增多造成的,近100年,海平面上升14厘米,到21世纪中叶,海平面将会上升25——140厘米,海平面的上升,亚马逊雨林将会消失,两极海洋的冰块也将大部分融化。所有这些变化对野生动植物而言无异于灭顶之灾。
空气中一般含有约0.03%二氧化碳,但由于人类活动(如化石燃料燃烧)影响,近年来二氧化碳含量猛增,导致温室效应、全球气候变暖、冰川融化、海平面升高……旨在遏制二氧化碳过量排放的《京都议定书》已经生效,有望通过国际合作遏制温室效应。
二氧化碳的浓度达到1%以上,就会使人头晕目眩。达到4~5%,人便会恶心呕吐,呼吸不畅。超过10%,人便会死亡。
人体危害
二氧化碳浓度含量会影响人类的生活作息,整理出二氧化碳浓度含量与人体生理反应如下:
·350~450ppm:同一般室外环境
·350~1000ppm:空气清新,呼吸顺畅。
·1000~2000ppm:感觉空气浑浊,并开始觉得昏昏欲睡。
·2000~5000ppm:感觉头痛、嗜睡、呆滞、注意力无法集中、心跳加速、轻度恶心。
·大于5000ppm:可能导致严重缺氧,造成永久性脑损伤、昏迷、甚至死亡。
二氧化碳
二氧化碳中文别名:碳酸气;碳酸酐;碳酐;干冰
英文名称:Carbonicacidgas;carbondioxide;carbondioxide;dryice
别名:碳酸气
EINECS:204-696-9
相对密度:1.101(-37℃)
沸点(摄氏度):-56.6(0.52MPa)
熔点(摄氏度):-78.5(升华)
CAS号:124-38-9
EINECS204-696-9
共有3个原子核,22个质子。
收集方法:因其密度比空气大,且与水反应生成碳酸,所以通常用向上排空气法收集二氧化碳。
临界温度31.1℃临界压力7.382MPa
安全术语:
S9Keepcontainerinawell-ventilatedplace.
保持容器置于良好通风处。
因为国际间碳排放政策的影响,各个国家间的CO交易会涉及到非常复杂的碳排放税和国际间政治问题,故CO的全球性贸易极度萧条。并且由于CO的储存运输成本较高,不适宜远距离运输,故进出口量均较少,出口量不到国内总产量的1%,所以二氧化碳进出口贸易情况对国内市场供需平衡影响很小。因CO的运输方式与国际碳排放政策环境在可预测的未来若干年内不会发生大的变化,因而进出口格局在也不会发生大的改变。从2012年数据来看,主要进口地为中国台湾省、韩国、日本等周边国家和地区,主要出口目的地为菲律宾、中国香港、新加坡、印尼、中国澳门等地,此外东北地区企业每年有少量出口到俄罗斯。表3为2006~2012年的年海关统计数据。
近日,浙江省初中科学教师实验技能大赛在杭州落下帷幕。本次比赛由浙江省教育技术中心、浙江省教育厅教研室、浙江省科技馆、浙江教育出版社联合主办。经过学校、县...
■桐乡三中:爱绿护绿从我做起一年之计在于春。3月12日,当这大好的绿化季节来临的时候,桐乡三中学生在老师的带领下,开展了主题为“我和树木一起成长”的...