Gorse推荐系统指南:制定推荐策略1推荐算法介绍:最新推荐最热推荐基于物品相似推荐基于用户相似推荐协同过滤推

Gorse推荐系统实现了很多类型的推荐算法,既包括了非个性化推荐算法,也包括了个性化推荐算法。实际上,没有一个推荐算法是万能的,只有将它们组合利用才能实现最好的推荐效果。

首先,本文介绍一下Gorse中的各类推荐算法,每一类推荐算法都有各种的优缺点。

某些场景下,用户会喜欢特定类型的物品,例子某游戏平台用户钟爱解谜类游戏、某视频平台用户喜欢看小姐姐跳舞。根据用户的历史记录和物品之间的相似度,就可以完成相似物品推荐。所以,相似物品推荐的关键在于计算物品之间的相似度。

Gorse计算物品相似度由三种模式,可以在配置文件中设置:

相似的用户之间也通常存在共同的喜好,例如计算机专业的学生一般会购买计算机类书籍、长辈喜欢购买保健品。

Gorse计算用户之间相似度同样有三种模式,同样在配置文件中制定:

基于相似物品和相似用户的推荐算法要求被推荐的物品需要通过其他用户或者其他物品和被推荐用户之间建立联系,这就局限了筛选推荐内容的范围。Gorse中的协同过滤推荐使用矩阵分解算法来推荐物品,训练算法将用户和物品映射为一个高维空间中的向量,用户对物品的喜好程度就是用户向量和物品向量的乘积。然而,协同过滤推荐的缺点就是无法利用用户和物品的标签信息,也无法处理新用户和新物品。

是否有一种算法可以结合相似推荐和协同过滤推荐各自的有点?那么就是Gorse推荐系统中的点击率预测模型。Gorse中的点击率预测模型为因子分解机,除了为每个用户和物品生成向量之外,还会给每个用户标签和物品标签生成向量,虽然因子分解机的效果不错,但是一般不会把它作为粗排的推荐算法。和协同过滤推荐、相似推荐相比,因子分解机预测时的计算复杂度非常高。Gorse的点击率预测模型的功能就是对上述推荐算法的结果进行融合排序。

单独的推荐算法无法很好地完成推荐任务,需要将多个推荐算法进行组合。Gorse提供了一个生成推荐结果的流程,我们可以在流程下制定适合于具体场景的推荐策略。推荐流程由两大部分构成:离线推荐和在线推荐。离线推荐主要从全体物品中为每个用户挑选推荐物品,缓存到Redis中。而在线推荐主要从拉取缓存的推荐结果,接着从推荐结果中删除已读内容,如果缓存的推荐结果已经用完,那么使用备用推荐算法实时生成推荐内容。

离线推荐由三阶段构成:

由于目前Gorse还未提供A/B测试功能,因此需要通过预览功能感性地制定推荐策略。

在线推荐有两个任务:

#Thefallbackrecommendationmethodforcold-startusers:#item_based:Recommendsimilaritemstocold-startusers.#popular:Recommendpopularitemstocold-startusers.#latest:Recommendlatestitemstocold-startusers.#Thedefaultvaluesis["latest"].fallback_recommend=["item_based","latest"]通过简单的配置,就可以得到一个支持多路召回、兼顾探索利用、能够服务降级的推荐系统了。

THE END
1.融合隐语义模型的聚类协同过滤AET摘要:协同过滤算法是推荐系统中应用最广泛的算法,随着用户数量和物品数量的不断增加,传统的协同过滤算法不能满足推荐系统的实时需求。本文提出了一种融合隐语义模型的聚类协同过滤算法。首先利用隐语义模型分解评分矩阵,然后在分解后的矩阵上利用传统的聚类算法聚合相同类别的物品,最后在相同类别的物品之间进行基于项目的协...http://www.chinaaet.com/article/3000014841
2.推荐算法协同过滤协同过滤推荐(Collaborative Filtering recommendation)是在信息过滤和信息系统中正迅速成为一项很受欢迎的技术。与传统的基于内容过滤直接分析内容进行推荐不同,协同过滤分析用户兴趣,在用户群中找到指定用户的相似(兴趣)用户,综合这些相似用户对某一信息的评价,形成系统对该指定用户对此信息的喜好程度预测。 https://www.jianshu.com/p/5463ab162a58
1.协同过滤算法在电商推荐系统中的应用:原理与实践协同过滤算法通过分析用户和商品之间的关系,找出用户之间的相似性和商品之间的相似性,从而实现推荐。具体来说,协同过滤算法的核心思想是: 利用用户的浏览历史、购买记录、评分等行为数据,建立用户画像。 利用商品的销售数据、用户评分、标签等数据,建立物品画像。 https://blog.csdn.net/2405_88636357/article/details/143904879
2.协同过滤推荐算法总结腾讯云开发者社区协同过滤推荐算法总结 推荐算法具有非常多的应用场景和商业价值,因此对推荐算法值得好好研究。推荐算法种类很多,但是目前应用最广泛的应该是协同过滤类别的推荐算法,本文就对协同过滤类别的推荐算法做一个概括总结,后续也会对一些典型的协同过滤推荐算法做原理总结。https://cloud.tencent.com/developer/article/1184600
3.推荐系统之协同过滤概述51CTO博客协同过滤(Collaborative Filtering)是现今推荐系统中应用最为成熟的一个推荐算法系类,它利用兴趣相投、拥有共同经验之群体的喜好来推荐使用者感兴趣的资讯,个人透过合作的机制给予资讯相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选资讯(参考wiki,文字有点生硬,不过却很好的描述了协同过滤的一个互动...https://blog.51cto.com/u_16088628/6258396