信息流产品设计及流量变现

信息流产品,其本质是一个全新的“内容分发”渠道。信息流产品能根据用户的喜好,将内容进行精准分发推送。

信息流产品,本质是要解决三个问题:

1)内容创作

2)内容分发

3)如何获取用户的喜好

解决了这三个问题,才是一个完整的信息流产品

1.2内容创作

1)平台自创,由官方生产编辑

2)内容创造者,由用户生产,比如头条号、企鹅号、大鱼号、知乎Live等

内容分分发是连接内容与用户的桥梁,通过不同的分发渠道,让信息触达用户。常见的分发渠道有三种:

1)编辑分发

基于人工,运作成本高。排除技术发展的因素,追求对质量的把控。

2)订阅分发

3)算法分发

基于程序,技术壁垒高。通过分析用户画像匹配兴趣偏好,做个性化的精准投放。

1.4信息流产品架构

信息流产品的核心模块是信息和推荐算法。

信息架构

经典的信息流产品架构,一般都采用“一横一纵”模式。一横是从类的维度,将内容进行粗粒度分类;一纵是从对象的维度,将内容规律格式化呈现。

推荐算法框架

产品架构

一、推荐算法介绍

推荐算法是信息流产品的灵魂,没有算法,就无法实现精准推荐,信息也就做不到针对性流动。

2.1什么是算法?

算法是解决一个问题的进程,有不同的表达形式。算法有明确定义的计算过程,并产生某个或者某组值作为输出结果.

2.2推荐算法的逻辑

所谓推荐算法,即设计一套机器能理解的算法,通过自动计算得出结果并输出,将结果呈现给用户。

推荐算法的实现基于以下两个基础:

1)有足够的推荐数据。

如果没有足够的内容,那么推荐算法再精准,也没有内容推荐给用户。

2)有用户的行为数据

如果获取不到用户的行为数据,那么就没法给用户进行画像,进而无法获取用户的喜好,从而走不到精准推荐。

2.3常见的几种算法

1)协同过滤算法——基于用户

算法思路:将用户进行分类,评测用户之间的相似性,基于用户之间的相似性做出推荐。

假设抖音用户有5个维度

对美女的喜欢程度(1~5分),对搞笑的喜欢程度(1~5分),对民谣的喜欢程度(1~5分),对感情的喜欢程度(1~5分),对乡村的喜欢程度(1~5分)。

用户A:对美女的喜欢程度3,对搞笑的喜欢程度1,对民谣的喜欢程度4,对感情的喜欢程度5,对乡村的喜欢程度0,用户A可以用向量表示为r_A(3,1,4,5,0)

一个用户B:对美女的喜欢程度3,对搞笑的喜欢程度4,对民谣的喜欢程度5,对感情的喜欢程度0,对乡村士的喜欢程度2,用户B可以用向量表示为r_B(3,4,5,0,2)

对于向量A和B而言,他们的在多维空间的夹角可以用向量余弦公式计算:

余弦相似度取值在0到1之间,0代表完全正交,1代表完全一致。那么用户A和B的相似度计算:

即代表了两个用户音乐偏好的相似程度。

假如我们规定余弦值大于0.6即认为两个用户有相似性,那么此时A与B就是相似用户。如果系统发现A用户有一天喜欢了宠物题材,那么系统也会把宠物题材推荐给B用户

2)协同过滤算法——基于内容

协同过滤算法——基于内容

还是拿抖音举例子

A、B、C用户对感情、都市、搞笑、宠物类题材的视频都点赞过

则可认为这四种题材的视频有相似度

此时发现D用户对感情、都市、搞笑类题材的视频都点赞过

那么显然,应该把宠物类的视频推荐给D

3.3流变变现

对于信息流产品,依托于用户流量和推荐算法,一般有以下三种变现形式:

1)知识付费

信息流都是给用户推送感兴趣的内容,当用户粘性足够的时候,可以打造热点创作者IP或内容IP,推出付费的内容消费。

产品的内容要能撩拨用户的情绪,比如焦虑感,让用户产生共鸣,满足用户的诉求,进而推动用户主动进入知识消费的场景。一般来说,知识要满足用户以下两个诉求:

1.学习需求。用户有学习新知识的需求,但更多的时候,用户仅仅是为了学习而学习,知识付费知识为了满足学习这个动作的需要。

2.提升需求。有价值的内容能让用户短期和长期内有所提升,包括思想认识的提升还是实际技能的提升。

2)电商变现

电商是变现套路的常规选项,但模式和玩法多变。对于信息流产品,结合内容消费场景,将用户往电商消费场景引导,是一个不错的变现手段。

电商变现过程要注意以下几个问题:

1.产品场景转变到电商场景,场景的衔接融合、用户的购买习惯培养有一定难度;

2.基于产品本身,制作对转化更有效的内容;

3.从零搭建电商体系,如何避免简单粗暴,陷入高成本低转化的深坑,找到符合的类目和营销策略。

THE END
1.基于协同过滤算法图书推荐系统的设计与实现.pdf2.算法设计 在众多算法中分析算法的优缺点,根据具体情况选择合适的协同过滤算法,设计高 效的计算方案,解决数据稀疏性的问题。 3.前后端开发 前端设计需要注重用户体验和交互设计,使用户可以方便、快速、直观地操作应用 程序。在开发过程中,需要合理设计页面布局、色彩搭配、响应式设计、无障碍设计等, ...https://max.book118.com/html/2024/0217/7053136045006042.shtm
1.协同过滤算法要点和难点具体应用协同过滤优缺点此外,还有一些研究工作致力于通过深度学习等技术来改进协同过滤算法的性能和准确性。 协同过滤算法是推荐系统中常用的一种方法,其基本原理是通过用户或物品之间的相似性来产生推荐。以下是协同过滤算法的优缺点: 优点:https://blog.csdn.net/2401_84235249/article/details/138963287
2.协同过滤算法的优缺点学术指导常用经验分享协同过滤是一种常用的推荐算法,通过分析用户的行为和兴趣,发现相似的用户群体,并基于这些群体推荐相应的物品或服务。协同过滤算法可以分为基于用户的协同过滤、基于物品的协同过滤和基于模型的协同过滤等几种类型。以下是对协同过滤算法的优缺点分析:优点:1. 用户为中心:协同过滤算法以用户行为和兴趣为基础,通过分析用户...http://m.editoressay.com/news/849021/
3.协同过滤是不是深度学习协同过滤算法的缺点协同过滤是不是深度学习 协同过滤算法的缺点 1 前言 众所周知,协同过滤算法是完全没有利用到物品本身或者是用户自身的属性, 仅仅利用了用户与物品的交互信息就可以实现推荐,是一个可解释性很强, 非常直观的模型, 但是也存在一些问题。但是协同过滤当中依旧存在着很多问题。https://blog.51cto.com/u_16099243/10409184
4.协同过滤算法腾讯云开发者社区混合型协同过滤结合了基于用户和基于物品的协同过滤算法,充分利用它们的优点,以提高推荐系统的准确性和鲁棒性。 3.2 算法步骤 通过用户-物品矩阵,同时计算用户相似度矩阵和物品相似度矩阵。 综合两个矩阵的信息,生成最终的推荐列表。 3.3 优缺点 优点:综合了基于用户和基于物品的优势,提高了推荐系统的性能。 https://cloud.tencent.com/developer/article/2389581
5.协同过滤数据稀疏性问题研究1.2 协同过滤的优缺点 基于协同过滤算法的推荐系统主要有以下优点: (1)协同过滤算法的数据源是用户对项目的评价信息,不用考虑项目是否属于同一类别,所以协同过滤算法可以从属性不同的项目中提取有用的信息。 (2)协同过滤算法同时考虑了当前用户和其他用户的评价信息,这样能够增加产生推荐可利用的信息量,从而提高推荐的...https://www.jianshu.com/p/d7de774c5e05
6.基于受限玻尔兹曼机的协同过滤算法研究与应用具体内容如下:(1)从推荐算法的基本研究入手,分析了经典的协同过滤算法,包含了基于模型的协同过滤和基于邻域的协同过滤,并对比多种基于模型推荐算法的优缺点。分析了RBM的结构和RBM的训练算法-对比散度算法,通过构建RBM和协同过滤算法的联系,指出基于RBM的协同过滤算法中的不足。(2)基于RBM的协同过滤只考虑用户的评分...https://cdmd.cnki.com.cn/Article/CDMD-10700-1017732533.htm
7.基于协同过滤算法的安规考核系统试题推荐方法研究本文主要完成了以下内容:1.研究了基于用户的协同过滤算法和基于物品的协同过滤算法,比较两者在不同推荐系统中的应用情况,比较其优缺点。结合安规考核系统的实际情况采用基于物品的协同过滤算法实现本课题的研究,根据需求在数据库中设计用于保存用户-物品评分矩阵和物品-物品相似度矩阵的数据表。2.学习中文分词技术,收集...https://wap.cnki.net/touch/web/Dissertation/Article/10079-1019233359.nh.html
8.八股2024春招八股复习笔记1(搜索推荐AIGC)1、推荐系统 1.1 推荐系统流程 1.2 协同过滤 、 矩阵分解 1.3 逻辑回归 2、算法常识(应用算法) 2.1 重点复习 xgboost 2.2 大模型 transform 2.3 torch等 3、理论算法(ICPC复健) 3.1 基础力扣(部分面试题) 3.2 其他 4、面经专项 4.1 蚂蚁算法岗 4.2 其他算法岗 5、项目准备 项目1:算法研究、TF-IDF、倒排索引...https://www.skycaiji.com/aigc/ai13693.html
9.推荐系统推荐系统简介分类以及长尾问题推荐算法:基于物品的协同过滤算法 参考《推荐系统实践》项亮 概念:基于物品的协同过滤算法,优化算法 对比:用户协同过滤的优缺点 python编码实现 1,算法定义基于用户的协同过滤算法基于商品的协同过滤算法 适用场景 时效性较强,用户个性化兴趣不太明显的领域长尾物品丰富,用户个性化需求强烈的领域用户较少的场合:新闻推荐物...https://www.pianshen.com/article/85642112599/
10.平台算法的概述与原理.pptx各类平台算法特点与优势不同类型的平台算法各有优缺点,例如推荐算法在提高用户体验方面表现较好,但可能存在推荐结果不准确的问题;排序算法在提高查找效率方面表现较好,但可能存在排序结果不公正的问题;匹配算法在提高匹配准确度方面表现较好,但可能存在计算复杂度高的问题。比较在选择平台算法时,需要根据具体的应用场景和...https://m.renrendoc.com/paper/302579979.html