2016年10月的阿里云栖大会上,阿里巴巴马云在演讲中第一次提出了新零售,"未来的十年、二十年,没有电子商务这一说,只有新零售"。
当时的大背景是:线上电商零售流量红利见底,新中产阶级和对应的消费升级观念崛起,移动支付等技术普及,整个传统零售行业急需向欧美地区企业学习数字化谋求更好的发展,加上国家政策推动,因此新零售风口正式来临。
1.2新零售与智能货柜
如何理解新零售,我们把新零售拆为"新"和"零售","新"在于更高效率、更好的服务,"零售"的本质链接是"人"与"货"的"场"。
《新零售:低价高效的数据赋能之路》-一张图了解新零售
在智能货柜这个产品中:
最终,利用AI数据、用户画像、商品推荐等技术实现智能货柜"人"、"货"、"场"的消费生态闭环,这便是智能货柜在新零售时代的运营思路(也可以称作轨迹)。
对于企业来说,理解产品处于什么位置是及其重要的,"当前位置"决定了发展方向和目标的确立,是增长路上的重要前提条件。智能货柜在零售生态下作为获取线下流量入口,在技术方案趋向成熟和数字化明确的背景下,是许多零售商和技术服务商值得投入资源去做的一个点。
市面上最好的点位营业额日超四位数,假设一个零售商有1000台货柜布点,那么一天的仅靠货柜营业额可达到1,000x1,000=¥1,000,000,一个庞大的数字。
二、智能货柜发展路线和市场分析
2.1智能货柜发展路线
智能货柜目前一共经历了三个阶段。
2.2智能货柜技术解决方案
2.3智能货柜市场分析
目前智能货柜市场的公司分类主要有以下三种:
#部分智能货柜公司列表
#智能货柜核心指标对比
2.4瓶颈与机会
智能货柜的发展瓶颈主要是技术瓶颈:经过2018~2019的快速发展,智能货柜的发展到一定阶段,市面上的智能货柜技术服务商统称自家的识别准确率在99%以上,则100单最多只会识别错1单,但是距离真正成熟阶段还差一定距离,识别技术瓶颈在未来会一直存在。
做到"千柜千面",多场景全渠道售卖,兼容各类商家和商品,会出现各种各样的复杂场景,对图像识别的精准度和覆盖度要求更高。如商品遭遮盖、倒放、推倒、叠放等问题,都需要通过优化算法以及配合其他方案解决。目前解决方案是使用动态识别和重力感应,但这也会增加成本。除了识别精度,还有许多待解决优化的技术挑战。
#商品识别已知的工程挑战问题
从智能货柜的普及率来看市场机会:在美国,平均35人拥有一台自动贩卖机,在日本则是平均23人就拥有一台,而在中国是4500人。自动贩卖机大国日本目前的自助贩卖机数量是250万台,而国内自助贩卖机总量也不足20万台,并且售卖的商品种类单一,分布不均衡,市场远未达到饱和。总的来说,智能货柜瓶颈与机会并存。
三、智能货柜技术核心
介绍完宏观层面,接下来,我们从微观技术层面的角度让大家更深入的了解智能货柜。涉及到的技术核心主要是AI算法、数据源、硬件。
3.1AI算法
1、卷积层提取图片初步特征
2、池化层提取图片主要特征
3、全连接层将各部分特征汇总
4、产生分类器,进行预测识别
现在算法发展十分快速,作为AIPM,可以学习经典算法的发展历史和运算原理,与算法工程师为产品选择最合适的能力(算法),甚至有新算法开源,PM先下载跑一遍模型,不仅提高了工作效率,也加强了自身的技术能力。
#图像识别算法发展历史
3.2商品数据源和标注
有了算法和模型,就需要喂数据,标注流程规范和数据源质量是两大相辅相成的关键。智能货柜售卖的商品最常见的是饮料和盒装零食。
#数据标注-投放训练流程图
3.3关键硬件
智能货柜像厂商定制硬件能力,同时需要有专门的LOT后台对硬件的健康状态进行监控、硬件管理小程序或者APP为一线运营人员提供硬件管理支持。其中关键硬件有主板、摄像头、门锁、物联卡。由于涉及内容较多,暂不做详细介绍。
四、系统结构与核心流程
4.1系统结构
系统结构主要分为用户端、货柜硬件端、识别服务端、逻辑服务端。
4.2核心流程
五、货柜运营核心与用户体验
综合历史经验,笔者认为在智能货柜发展前期与用户体验和商业标准最贴合的两个维度是:
零售的本质不会变化,智能货柜只是一个新型交易行为的媒介。商家的需求永远是卖的更多赚的更多,用户的需求永远是买到性价比高的商品。
5.1构建货柜运营稳定性指标
订单准确率是衡量一次购物健康程度的核心指标。订单的准确率对销售客单价、用户复购率等核心购买指标都有极大的影响。不过因拍摄环境影响、模型迭代、算法受限种种原因,对订单商品的识别很难达到100%的准确率。但致力达到99。9%应该是所有智能货柜公司的目标。提高订单准确率的方向有先处理和后处理:
5.2常见识别异常场景介绍
识别异常场景通常有漏识别商品、识别多余商品、识别错误商品。
1.漏识别场景
该种情况是商品存在于货柜中,但是却没有被识别模型定位分类到。通常是因为数据集样本缺失导致模型训练不足欠拟合或者因摄像头起雾、阳光直射等拍摄环境问题,导致图片质量差。
2.识别多余商品场景
该种情况是商品并没有存在于货柜中,但是被识别模型定位分类到。识别出多余商品,相对于漏识别场景,通常是因为训练数据集样本质量差或者模型训练过拟合,或者某一些商品瓶身反光,包装复杂导致的。
3.识别错误场景
该种情况是商品存在于货柜中,但是被识别模型定位分类为错误商品分类。频发在模型存在两个以上外形相近的商品。单个模型商品label越多,即便同个模型在训练测试时得出的指标无太大差异,但因为有大量的相近商品交错,可能实际运稳定性差异很大,SKU数量与运营稳定性非线性关系(至少在一般没有对模型优化的情况下)。
若在识别异常发生的时候有顾客购物,会出现几种异常情况:
六、复盘总结
智能货柜产品基本介绍完毕,该段主要分为智能货柜产品发展方向、AIPM的工作内容、AI产品设计思考,是笔者近一年以来的简单复盘总结。
6.1智能货柜产品发展方向
6.2AIPM工作内容与流程
该部分主要复盘笔者作为AIPM的工作内容,希望能给其他PM一个认识。
智能货柜项目分为技术定型、试运营、稳定迭代三个阶段。在不同阶段,PM的工作流程和所需关键能力都不同。以AI算法流程"输入-训练-输出"为思考基础,每个阶段的工作流程也各自分为三步曲。
为什么存在技术选型流程:
6.3AI产品设计思考
笔者之所以选择往AI+零售发展,除了"这是个趋势"外,还因为自身对未来智能有强烈的好奇心与兴奋。
PM这个职业的所有输出基于PM自身的底层能力结构,结构包含两部分内容:第一部分是专业化知识,如用户体验、战略规划、商业模型、技术架构等专业知识和技能,主要在工作中体现。第二部分则是个人的人文修养、灵魂素养、情绪、驱动力、潜意识等。而不论是什么产品,最终目标都是希望能让使用者变得越来越好,仅此而已。
个人认为即便在AI产品时代,PM岗位所需的底层能力没有变化,只是岗位难度与竞争力的提高。所以,认识到产品的本质不变,保持产品初心不变,把AI技术当作更高效率的技能工具运用在产品上,是我当前阶段的认知也是对PM读者的建议。
转自:五百桶户|皇帝的新衣
__________________________________________________________________________________
若有帮助到您,欢迎捐赠支持,您的支持是对我坚持最好的肯定(*^_^*)