万物生而有灵,生命的复杂与奥妙常常超乎我们的想象。生物中一些看似微小的异常与变化,或许就能被人们延展出一门枝叶繁茂的前沿学科。下面这几个生活中的现象,也许会引起你的兴趣:
三花猫携带黄色和黑色的毛色基因。根据中心法则,雌猫的两条X染色体分别携带黄色和黑色基因时,毛发应该呈现黑色和黄色的混合色,即棕色。为什么最终三花猫是黄黑相间,而不是棕色?
在蜂群中,工蜂和蜂王都是由雌性幼蜂发育而来。但蜂王只负责产卵繁衍后代,工蜂则只负责劳作。蜂王寿命有几年,而工蜂只能存活几个月。究竟是什么“神秘力量”,决定了它们截然不同的发育结果?
二战后期,荷兰人经历了一段“饥饿的冬天”(TheHungerWinter)。饥荒似乎被记录在了遗传物质当中。大饥荒时期怀孕的人生下的子女,往往体型更小。难道饥荒对人们的影响会遗传吗?
这些问题都可以用一个有些冷门的学科——表观遗传学的知识来解释,我们会在文中逐一展开分析。
提到“遗传”“基因”,也许多数人的第一反应,就是双螺旋结构的DNA长链,上面的碱基排列组合,承载着我们生命的“密码”。但是,在DNA序列之上,还有另外一套机制在发挥作用。它就像一个信息的筛选器,控制着DNA序列中的哪些部分可以得到表达,哪些部分则会变成沉默的“无效信息”。
在生物医药领域,表观遗传学研究有重要意义。它可以帮助我们攻破肿瘤治疗的难题,比如延缓肿瘤耐药性的形成,提升肿瘤对于药物的敏感性。它还有助于我们研究红斑狼疮、阿尔兹海默症、帕金森症等由表观修饰异常引发的复杂病种,理解它们的致病机制,寻找新的治疗药物。
你将在本文读到:
为什么DNA序列不能完全决定生物的表型特征?
“同种不同命”,为什么饮食也会影响基因的表达调控?
表观遗传学如何帮助我们攻克恶性肿瘤、阿尔兹海默等复杂疾病?
表观遗传学领域,会出现下一个“华大基因”吗?
表观遗传学在学术和产业领域的发展前景如何?
在表观遗传学领域,有哪些创业和投资机会?
希望能带来新的思考角度。如果你是表观遗传学领域的创业者或者从业者,欢迎与本文作者,峰瑞资本副总裁谢达联系(xie.da@freesvc.com)
互动福利
/01/
提到“表观遗传学”,许多人会感到十分陌生。但下面这几个生活中的现象,也许会引起你的兴趣。
第一个现象是三花猫。三花猫都是雌猫,身上有白、黄、黑三种颜色。有意思的是,造成黑色和黄色毛发的基因,是雌性猫X染色体上均为显性的等位基因。根据中心法则,雌猫的两条X染色体分别携带黄色和黑色基因时,毛发应该呈现黑色和黄色的混合色,即棕色。但我们看到的三花猫却是黄黑相间,也就是说毛发选择性地表达一种颜色。三花猫的特殊毛色是怎么形成的?
第二个现象是蜜蜂。在一个蜂群中,工蜂和蜂王都是雌性,但它们差异非常大。蜂王只负责产卵繁衍后代,而工蜂则丧失生育能力,负责采集食物、修筑蜂巢、哺育幼虫等蜂群内外的劳作。蜂王寿命有几年,而工蜂只能存活几个月。决定雌性蜂幼虫发育为工蜂还是蜂王的主要因素在于饮食:雌幼虫连续食用蜂王浆,就会发育成为蜂王;而如果前三天被喂食蜂王浆,之后被喂食蜂蜜和花粉,则会发育成为工蜂。为什么蜂王浆可以决定幼蜂的发育“命运”呢?
第三个现象是二战后期的“荷兰大饥荒”。二战后期的荷兰,流亡政府因为预判德国将要崩溃,组织人民举行罢工。作为报复,纳粹切断了1944年冬天至1945年4月份的荷兰食物供应,造成两万人死亡。这一时期被荷兰人称为“饥饿的冬天”(TheHungerWinter)。如今,“饥饿的冬天”已经过去近80年,但不幸的是,饥荒似乎被记录在了遗传物质当中,因为大饥荒时期怀孕的人生下的子女,往往体型更小。难道饥荒对人们的影响会遗传吗?
上面几个例子,都可以用表观遗传学的知识来解释。
表观遗传学是指基因组之上、之外的调控机制,英文名称为Epigenetics,其中epi-有“之上,之外”的意思。顾名思义,表观遗传学既研究“表观”的调控规律,又研究这些调控规律如何遗传的。
例如,通过干预表观遗传靶点,可以增强肿瘤对于治疗药物的敏感性,克服肿瘤耐药性甚至肿瘤的转移,展现出药物联用的优势。另外,在基因治疗药物中,表观遗传元件的使用可以增强药物的精准性,使药物发挥功能向人体生理靠拢。未来,表观遗传研究在精准医学方面的价值和潜力将不断得到挖掘。
第三,表观遗传学发展仍处于早期,潜力可观。过去几十年,华人科学家在表观遗传领域做出了大量贡献,如哺乳动物DNA甲基化的建立和去甲基化,多种组蛋白去甲基化酶的发现,RNA的表观遗传学等等。未来,这一领域仍将不断取得进展,一系列新的表观遗传机制有待发现,成像和测序工具将向高效、低成本化迭代,临床端药物的种类和形式也将不断创新。
/02/
表观遗传学——
出牌顺序不同,
结果不同
相较于表观遗传,“遗传”和“中心法则”可能是人们更为熟知的概念。中心法则指的是遗传信息从DNA流动到RNA再流动到蛋白质。中心法则的存在,使得人们往往认为,基因组DNA序列决定着生物体所有表型。同时,由于DNA序列的稳定性,这些表型特征可以稳定、多代地遗传。应用基因编辑等技术,也有可能治疗诸如L-镰刀型红细胞贫血症、囊性纤维化这类因为单基因突变导致的遗传病。
而事实上,一些生物的性质,看似不遵循传统中心法则。在DNA序列没有发生改变、启动基因表达的生物学元件没有缺失的情况下,DNA表达的调控发生了改变,造成个体和个体细胞有着不同的表型。而且,某些差异还可以遗传至下一代或子细胞。好比玩扑克牌,打牌选手和牌没有变,如果出牌顺序变化了,就会带来不同的结果。
表观遗传地势图形象地解释了“表观”的概念。图中把基因的表达类比为一个铁球从山坡滚下的过程,不同的调控因素对应不同的山坡,这些山坡的走势影响了小球落到哪个山谷,也就是如何表达。
在微观层面,表观遗传学研究的中心是染色质,更确切一点,是不依赖DNA序列改变的染色质结构变化。
染色质包含着个体的遗传信息,由DNA和组蛋白形成。染色质的基本结构单元是核小体,是DNA缠绕两圈组蛋白形成的圆盘状结构。人的DNA展开长达2m,而细胞核直径仅仅6微米,相当于把40km长线放入一个网球。很显然,从核小体到染色质,中间经历了非常多而有序的折叠步骤。
/03/
三花猫、蜜蜂、“荷兰大饥荒”……
解密表观遗传的微观调控机制
在微观尺度,主要有三个因素来调控染色质结构,从而改变基因表达。它们分别是,DNA甲基化修饰、组蛋白修饰以及非编码RNA。这是表观遗传影响个体表型最为重要的三种机制。三者共同决定染色质的结构,进而影响基因的表达。
▎DNA甲基化修饰
DNA甲基化(DNAMethylation)修饰,是目前被人们研究得较为充分的表观遗传机制。
DNA甲基化是指,在DNA甲基转移酶作用下,DNA上的特定C碱基(胞嘧啶)的5’位置连接上-CH3(甲基)基团的过程,在哺乳动物体内主要出现在胞嘧啶-鸟嘌呤(CpG)二核苷酸位置上。甲基化通过一个简单的化学标记,提供特定的分子形态信息,和空间上的位置障碍,通常能够阻止转录因子结合,抑制基因的表达。
在蜜蜂发育的例子中,饮食不同造成的DNA甲基化修饰差异,可能是造成雌性幼虫发育结果不同的重要因素。实验观测到,工蜂与蜂王有超过550个基因呈现不同的甲基化状态。蜂王浆能降低雌性幼虫的甲基化水平,促进幼虫发育出完整的卵巢组织,最终成为蜂王。相比之下,幼虫在后期食用蜂蜜,甲基化水平维持在较高程度,最终发育成为工蜂。有趣的是,当人为操作,降低雌性幼虫DNA甲基化水平,也会促进蜂王样的表型。
造成这种表达差异的因素,在于父源和母源印记基因调控区域的甲基化状态不同,改变了基因表达。因而,父母只有一方会影响子代的性状。由此,人们可以通过印记基因在染色体的表达情况,推断染色体来自于父方或母方。印记基因目前也被应用于血缘分析和刑侦分析中。
胰岛素样生长因子Igf2是目前被研究得最为彻底的印记基因之一,为我们在上文提及的荷兰大饥荒灾民的子代发育不良问题,提供了一个解释。
Igf2是一个父系表达的印记基因。如下图所示,在正常的人体生理状况下,母本Igf2的印记基因调控区(ICR)没有被甲基化,调控蛋白(CTCF)能够结合ICR区域,从而阻挡下游增强子接近Igf2基因,Igf2基因无法表达。相反,父本的调控区被甲基化,甲基的空间阻碍使得调控蛋白无法结合ICR区域。因而,下游增强子可以接近Igf2基因,并启动促进生长发育必要的生长因子的表达。简单来说,Igf2的父本印记基因表达,而母本印记基因不表达。
2008年,学者研究对比了大饥荒阶段生育的子女,与他们兄弟姐妹的Igf2调控区甲基化水平。结果显示,大饥荒阶段生育的子女的甲基化水平,显著低于未经历大饥荒的兄弟姐妹。
子女印记基因调控区甲基化不足,造成生长因子表达不足,表现为身材矮小(减少能量摄入)、容易发胖(储存更多能量),似乎是在“适应”父辈面临的饥饿环境。这也反映出表观遗传的一个重要功能,那就是增加子代的适应能力,虽然这种能力可能是相邻两代间的。
▎组蛋白修饰
组蛋白修饰(histonemodificaiton),指的是组蛋白尾链上的侧链基团(如氨基)发生翻译后修饰,主要包括甲基化、乙酰化、磷酸化和泛素化等。
组蛋白和DNA之间可被理解为依靠静电吸附连接在一起。组蛋白修饰通过调节组蛋白电荷、削弱核小体与外在蛋白相互作用、招募蛋白形成复合物等方式,在其尾部发生修饰,影响染色体的三维结构,调控基因表达。
▎非编码RNA与染色质相互作用
非编码RNA是一类不具有编码功能性蛋白或多肽能力的RNA,在DNA和mRNA两个层次,具有调控基因表达的效果。
与DNA甲基化修饰和组蛋白修饰相比,非编码RNA种类很多,但由于碱基互补配对,使之能识别特定的DNA序列,使得非编码RNA能够进行特异性的调控。同时,不同于DNA甲基化和组蛋白修饰一般针对一个或少数基因位点,非编码RNA不仅能对单个基因进行活性调节,也可以对整个染色体活性进行调节。目前,我们对非编码RNA的研究程度,尚不及DNA甲基化和组蛋白修饰。
非编码RNA一般分为三类:管家非编码RNA,如组装蛋白质中负责搬运氨基酸的tRNA;小RNA,如环状RNA、miRNA等;以及研究相对较少的长非编码RNA。
三花猫的毛色就是由一段名为Xist的长非编码RNA调控造成,Xist也是人类发现的第二个长非编码RNA。这条RNA在女性体内,能通过结合在一条染色体上,反复缠绕,诱导一条X染色体的大部分基因发生转录沉默。这一现象的生理意义在于,男性只含有1条X染色体,而女性含有2条。失活其中一条造成基因转录沉默,能够达到两性之间基因表达剂量平衡。
为什么有的三花猫毛发表达黑色基因,有的表达黄色,而非黑黄混在一起的棕色?因为两条分别编码黑色和黄色基因的X染色体,有一条染色体失活。这种失活是随机的。而三花猫的黑色和黄色毛发看起来是一簇一簇的,这可能是由于X染色体失活发生在发育早期,并且这种失活状态可以稳定遗传。因而,分裂后的细胞仍然维持同一个毛发颜色的表型。
/04/
表观遗传学的发展脉络
1942年,生物学家Waddington提出“表观遗传学”的概念。之后,表观遗传学在关键物种和机制、测序和成像技术、分子调控工具、临床检测与药物研发应用等细分方向不断取得进展,经历了从观测、测量,到操控与制造的发展过程。
这些“测量端”的进步,为表观遗传学积累了大量数据。一方面率先转化为临床应用,出现了包括荧光原位杂交基因检测、肿瘤基因DNA甲基化检测等临床诊断产品,以及组蛋白去乙酰化酶抑制剂(如西达本胺)等治疗药物。
另一方面,测量端的进步也推动了表观遗传修饰(DNA甲基化修饰、组蛋白修饰、非编码RNA与染色质相互作用)与细胞表型之间因果关系的研究。比如,在分子水平,Crispr技术成为精确进行表观遗传修饰的有效“操控”工具之一。这些分子调控工具积累的研究数据,有望推动新一代表观遗传学药物和临床检测技术的出现。
总体而言,表观遗传学的发展有两大基础。在需求端,人们对于复杂发育调控规律的探索,对于肿瘤、神经系统疾病、免疫疾病等复杂病种有强烈的诊疗诉求。在技术端,关键物种解析、高通量测序、高分辨影像学、分子工具等不断进展。未来,需求端与技术端将继续推动表观遗传学的发展。
/05/
如何研究表观遗传学?
我们在上文提到,DNA修饰、组蛋白修饰和非编码RNA三种主要的分子调控机制,从微观层面影响表观遗传。那么,在中观层面,人们主要通过染色质及其核小体单元,对表观遗传进行观测和操纵。
在表观遗传学领域,研究方法是目前还在不断迭代的热点领域。表观遗传学以染色质为研究对象,解析染色质的方法主要分为两类,一是以显微镜为基础,直接观察染色质的空间结构,二是结合高通量测序,直接或间接确定染色质的序列、修饰和形态。
近十年来,在经典方法基础上,发展了一系列测序手段和显微观测手段,推动了研究的进步。在科研端,呈现三大发展趋势,一是开发更好的分子工具,从原理上提高精确度;二是向单细胞/少细胞、高通量、高信噪比发展;三是成像和测序相结合,同时提供序列和细胞空间定位等多维度信息。比如,我们观察到DNA甲基化测序工具(如BS-seq、DM-seq等)、组蛋白修饰测序工具(如CUT&Tag)、染色质可及性测序工具(如ATAC-see)在不断迭代和普及。
/06/
表观遗传学如何为治疗疑难病症
提供新视角?
表观修饰异常引起的疾病可分为两类,一类由基因突变引起,另一类由表观突变引起,而基因没有发生突变。
根据公开数据,截至2023年8月,已有2款针对DNA甲基转移酶的药物、5款针对组蛋白去乙酰化酶的药物、1款针对组蛋白甲基转移酶的药物获批上市。根据FDA(FoodandDrugAdministration,美国食品药品监督管理局)和中国国家药品监督管理局发布的药物说明书总结,针对组蛋白修饰酶靶点的药物,在非联用给药的注册性临床试验中客观缓解率一般在30%-35%,完全缓解率一般不足10%。以DNA甲基转移酶为靶点的药物,疗效相对更弱一些。
针对表观遗传靶点开发药物的一个主要挑战是,虽然靶点蛋白在表观修饰中的生化机制相对清晰,不过在细胞生物学和疾病生理方面可能存在其它机制,使得药物脱靶作用相对难以避免,药物优化需要建立在进一步生物/生理学研究基础上。
值得一提的是,西达本胺是我国批准上市的首个化学原创新药,主要适应症为外周T细胞淋巴瘤,后扩展至乳腺癌。西达本胺针对的是调控基因表达的关键酶HDAC,能够抑制肿瘤细胞分裂、诱导细胞凋亡,同时能减轻耐药性产生。根据《西达本胺治疗外周T细胞淋巴瘤中国专家共识(2018年版)》发布的临床研究数据,接受西达本胺单药治疗的患者客观缓解率为47%;联合治疗较单药疗效存在优势,研究显示各种西达本胺的联合方案的客观缓解率在60%以上。
第二类是表观突变,一般指发育的重编程过程中,特定基因表观修饰出现异常,而无基因序列突变,比如自身免疫疾病和神经退行性疾病。多数此类疾病致病因素复杂,涉及到年龄,自然环境甚至社会环境等与人体的交互作用等。而表观遗传研究为理解疾病机制、研发新的治疗药物,提供了新的视角。
/07/
表观遗传领域,
会出现下一个“华大基因”吗?
在生物医药领域,基因组学是能够和表观遗传学作比较的学科之一。基因组学领域诞生了Illumina、华大基因等等成功的公司。对比来看,我们相信,表观遗传学也同样有发展潜力。
第三,表观遗传学的检测手段更加丰富。除了测序,表观遗传学还能通过影像学方法,提供更多维度的信息,提高临床应用转化的可能性。
/08/
表观遗传学领域,
有哪些创业投资机会?
未来,表观遗传学会有怎样的发展前景?
首先,表观遗传修饰提供了细胞的可塑性,即个体对于环境的适应能力和适应速度。从这个意义上,表观遗传学在肿瘤、神经系统疾病、免疫系统疾病等关乎代谢、分化障碍的疾病上会有不错的发展前景。
在科研端,新的测试工具和方法仍将不断涌现,向单细胞、高通量方向发展。这些新方法、新工具可能将显著降低成本。表观遗传学是一种“组”学,但不仅只有一维序列,也包含二维染色体联结频率和三维的空间构象与细胞内定位,在更高、更多的维度上发现规律,可能将成为研究趋势。
药物研发上,基于表观遗传学靶点开发药物仍然存在机会。目前的挑战在于,我们对靶点关联疾病的特异性的研究相对不足。人们相对清晰地了解了表观修饰的生化作用,但还未充分阐释靶点的细胞学作用和疾病病理。在临床上,我们仍然很难优化既有表观遗传靶点药物的有效性和安全性,很有必要继续探索背后的细胞生物学机制。