Matplotlib是一个基于python的2D画图库,能够用python脚本方便的画出折线图,直方图,功率谱图,散点图等常用图表,而且语法简单。具体介绍见matplot官网。
Numpy(NumericPython)是一个模仿matlab的对python数值运算进行的扩展,提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生,而且据说自从他出现了以后,NASA就把很多原来用fortran和matlab做的工作交给了numpy来做了,可见其强大。。。他的官网在这里,具体的资料都在里面。
安装
使用
matplotlib可以在脚本中使用,不过如果在ipython中使用则会更加炫(直接添加–pylab参数可以免去导包的过程),而且能得到类似Matlab/Mathematica一样的功能,即时输入,即时输出。个人觉得说白了他就是模仿Matlab/Mathematica的,但是的确比前者更加方便编程。
很多情况下matplot需要配合numpy包一起用,关于numpy包我不打算分开来说,用到的时候提一下就行。有一点需要注意的是,numpy包通常是这样导入的:
第一个图像
需要导入的包:
2、然后用np.cos()和np.sin()方法作用在X数组上,对于X中的每一个元素进行计算,生成结果数组。(免去了迭代的过程)。
3、接着调用pylab的plot方法,第一个参数是横坐标数组,第二个参数是纵坐标数组,其他参数暂且不谈。这样他会生成一个默认的图表了。(不会立刻显示)
4、当然,最后还要调用show方法来显示图表。
5、结果:
图表布局和坐标分布
每一个图表都是在一个figure里面,我们可以通过如下命令生成一个空的figure:
输出命令之后会立刻出现一个窗口,接下来所有的plot命令都会立刻显示在这个窗口上而不用再输入show命令了。
一个figure里也能显示多个图表,我们可以用如下函数来分割一个figure:
除此之外,如果我们对图表显示的范围不满意,我们还可以直接调整图表的坐标范围:
如果对坐标显示的密度啊什么的不满意,我们也可以调节他的标注点:
当然,我们也可以给标注点进行任意的命名,像下面这样:
这里也有个小窍门,就是如果想不显示标注的话,我们就可以直接给xticks赋一个空的数组。
更改色彩和线宽
我们可以在画plot的时候用如下方法指定他的颜色和线宽:
color参数可以指定RGB的色相,也可以用一些默认的名字,比如redblue之类的。
linestyle参数则指定了线的样式,具体参照以下样式:
linewidth参数指定折线的宽度,是个浮点数。
marker参数指定散点的样式,具体参照以下样式:
markerfacecolor参数指定marker的颜色
markersize参数指定marker的大小
这样就基本上能够自定义任何的折线图、散点图的样式了。
移动轴线
这段有点小复杂,暂时不想具体了解奇奇怪怪的函数调用,姑且先记录下用法和原理:
比如下面这段官方的代码:
图例和注解
图例十分简单,下述代码就可以解决:
注解就有点麻烦了,要用到annotate命令,挺复杂的,暂时是在不想看,姑且贴一段完整的代码和效果图吧:
还是十分高能的。。。
总结
python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!