【题目】某超市在“元旦”期间对顾客实行优惠,规定一次性购物优惠办法:
少于200元,不予优惠;高于200元但低于500元时,九折优惠;消费500元或超过500元时,其中500元部分给予九折优惠,超过500元部分给予八折优惠.根据优惠条件完成下列任务:
(1)王老师一次性购物600元,他实际付款多少元?
(2)若顾客在该超市一次性购物x元,当x小于500但不小于200时,他实际付款0.9x,当x大于或等于500元时,他实际付款多少元?(用含x的代数式表示)
(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的式子表示王老师两次购物实际付款多少元?
【答案】(1)530元;(2)0.8x+50;(3)0.1a+706
【解析】
(1)根据题干,600元处于第三档,所以让500元部分按9折付款,剩下的100按8折付款即可;
(2)根据题意,其中500元部分给予九折优惠,超过500元部分给予八折优惠即可得出答案;
(3)根据题意可知,第一次购物实际付款为0.9a,第二次购物的货款为(820-a)元,处于第三档,然后按照“其中500元部分给予九折优惠,超过500元部分给予八折优惠”计算,然后把两次的付款额相加即可得出答案.
解:(1)由题意可得:500×0.9+(600﹣500)×0.8=530(元),
答:他实际付款530元;
(2)由题意可得,他实际付款:500×0.9+(x﹣500)×0.8=(0.8x+50)元;
(3)由题意可得,老师第一次购物实际付款为0.9a,
则第二次购物的货款为(820-a)元,
∵200<a<300,
∴老师两次购物实际付款:0.9a+706-0.8a=0.1a+706.
【题目】如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°.
(1)操作发现:如图2,若∠B=∠DEC=30°,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB上时,填空:
①线段DE与AC的位置关系是;
②设△BDC的面积为S1,△AEC的面积为S2,S1与S2的数量关系是;
(2)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,请你证明小明的猜想;
(3)拓展探究
如图4,若BC=3,AC=2,当△DEC绕点C旋转的过程中,四边形ABDE的面积是否存在最大值?若存在,请求出来;若不存在,请说明理由.
A.1个B.2个C.3个D.4个
【题目】为了更好治理西太湖水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格,月处理污水量如下表:
经调查:购买-台A型设备比购买一-台B型设备多2万元,购买2台A型设备比购买4台B型设备少4万元.
(1)求a、b的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过47万元,并且该月要求处理西太湖的污水量不低于1860吨,则有哪几种购买方案请指出最省钱的一种购买方案,并指出相应的费用.
【题目】甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.
(1)正常情况下,甲、乙两人能否履行该合同?为什么?
(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?
请根据以上信息,解答下列问题:
(1)该汽车交易市场去年共交易二手轿车辆.
(2)把这幅条形统计图补充完整.(画图后请标注相应的数据)
(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为度.