项目案例之决策树在保险行业的应用

中国是世界第二大保险市场,但在保险密度上与世界平均水平仍有明显差距

保险行业2018年保费规模为38万亿,同比增长不足4%,过去“短平快“的发展模式已经不能适应新时代的行业发展需求,行业及用户长期存在难以解决的痛点,限制了行业发展发展环境。

互联网经济的发展,为保险行业带来了增量市场,同时随着网民规模的扩大,用户的行为习惯已发生转变,这些都需要互联网的方式进行触达。

保险科技:当前沿科技不断应用于保险行业,互联网保险的概念将会与保险科技概念高度融合。

中国保险市场持续高速增长。根据银保监会数据,2011~2018年,全国保费收入从1.4万亿增长至3.8万亿,年复合增长率17.2%。2014年,中国保费收入突破2万亿,成为全球仅次于美国、日本的第三大新兴保险市场市场;2016年,中国整体保费收入突破3万亿,超过日本,成为全球第二大保险市场;2019年,中国保费收入有望突破4万亿。

发展现状

受保险行业结构转型时期影响,互联网保险整体发展受阻,2018年行业保费收入为1889亿元,较去年基本持平,不同险种发展呈现分化格局,其中健康险增长迅猛,2018年同比增长108%,主要由短期医疗险驱动

供给端专业互联网保险公司增长迅速,但过高的固定成本及渠道费用使得其盈利问题凸显,加发展现状强自营渠道建设及科技输出是未来的破局方法,渠道端形成第三方平台为主,官网为辅的格局,第三方平台逐渐发展出B2C、B2A、B2B2C等多种创新业务模式。

互联网保险不仅仅局限于渠道创新,其核心优势同样体现在产品设计的创新和服务体验的提升竟合格局:随着入局企业増增多,流量争夺更加激烈,最终保险公司与第三方平台深度合作将成为常态发展趋势

发展趋势

随着入局企业增多,流量争夺更加激烈,最终保险公司与第三方平台深度合作将成为常态。发展趋势

当前沿科技不断应用于保险行业,互联网保险的概念将会与保险科技概念高度融合。

衡量指标

业务目标

数据分析

分析流程框架

导入数据

df=pd.read_csv(r'data.csv',sep=',',header=0)

df.shape

(5000000,50)

数据探索性分析

描述性统计

在我们正式建模型之前,我们需要对我们的数据进行描述性统计,这样我们就能知道整个数据的大致分布是什么样的,做到心里有数,然后能够数据大致的全貌有一定的了解。

type_0=df.dtypes

type_0.to_excel('original.xlsx')

#将KBM_INDV_ID的int64转化为object

df['KBM_INDV_ID']=df['KBM_INDV_ID'].astype('object')

describe=df.describe().T

type(describe)

describe.to_excel('../output/describe_var.xlsx')

#引入画图模块

plt.subplot(1,2,1)

sns.countplot(x='N2NCY',hue='resp_flag',data=df);#设置x,y以及颜色控制的变量,以及画图的数据

plt.xlabel('N2NCY');

plt.ylabel('Frequency');

#了解因变量的分布

Resp_count=df['KBM_INDV_ID'].groupby(df['resp_flag']).count()

print(Resp_count)

str(round(Resp_count[1]/len(df)*100,2))+str('%')#查看购买了

从这个图片我们可以看到,买了保险的用户和未买保险的人所处县的情况。

NextStep:

#检查是否有缺失的行

df.shape[0]-df.dropna().shape[0]###

#检查是否有缺失的列

len(df.columns)-df.dropna(axis=1).shape[1]#626

NA=df.isnull().sum()

print('orginalNA=',NA)

NA=NA.reset_index()

NA.columns=['Var','NA_count']

NA=NA[NA.NA_count>0].reset_index(drop=True)

print(NA)

NA.to_excel('../output/var_incl_na.xls',index=False)

####处理缺失值

var_char_na=[]

#我们对连续型数据进行中位数填补,然后对离散型数据进行特殊值填补,我们这里利用的是N

foriinrange(len(NA)):

ifNA['NA_count'][i]/len(df)>0.75orlen(df[NA['Var'][i]].unique())<=2:

deldf[NA['Var'][i]]

elifdf[NA['Var'][i]].dtypes!="object":

#填充缺失值-中位数

for_na_value=df[NA['Var'][i]].quantile(0.5)

#for_na_value

df[NA['Var'][i]]=df[NA['Var'][i]].fillna(for_na_value)

elifdf[NA['Var'][i]].dtypes=="object"andlen(df[NA['Var'][i]].unique())<=3:

df[NA['Var'][i]]=df[NA['Var'][i]].fillna('N',inplace=True)

else:

var_char_na.append(NA['Var'][i])

var_char_na

处理分类型变量

#DropVariablesthatarenotnecessary

drop_list=['STATE_NAME','KBM_INDV_ID']

forvarindrop_list:

deldf[var]

##检查数据集中数值型变量和字符型变量

var_num=[]

var_char_uniq2=[]

var_char_mul=[]

forvarinlist(df):

ifdf[var].dtypes=="object"andlen(df[var].unique())>2:

var_char_mul.append(var)

elifdf[var].dtypes!="object":

var_num.append(var)

var_char_uniq2.append(var)

##处理多值型字符变量

forvarinvar_char_mul:

temp=pd.get_dummies(df[var],prefix=var,prefix_sep='_')

print(temp)

forvar2inlist(temp):

ifvar2in'_nan':

deltemp[var2]

df=pd.concat([df,temp],axis=1)

deltemp

len(df.columns)##88

df.head(5)

df.to_excel('../output/data.xls',index=False)

##处理二值型的字符变量

fromsklearn.preprocessingimportLabelEncoder

definteger_encode(var):

values=np.array(df[var])

label_encoder=LabelEncoder()

df[var]=label_encoder.fit_transform(values)

forvarinvar_char_uniq2:

iflen(df[var].unique())<2:

else:integer_encode(var)

建模

#引用sklearn模块

fromsklearnimporttree

fromsklearn.model_selectionimporttrain_test_split

fromsklearn.metricsimportclassification_report

#fromsklearnimportcross_validation,metrics

fromsklearnimportmetrics

fromsklearn.model_selectionimportcross_val_score

#fromsklearn.grid_searchimportGridSearchCV

fromsklearn.model_selectionimportGridSearchCV

rcParams['figure.figsize']=12,4

##在模型样本内将数据集7:3分,70%用来建模,30%用来测试

features=list(df.columns[1:])

X=df[features]

y=df['resp_flag']

#将数据集7:3分,70%用来建模,30%用来测试

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=.3)

clf=tree.DecisionTreeClassifier()

param_test={'min_samples_leaf':list(range(1000,6000,100)),'min_samples_split':list(range(4000,6000,100))}

gsearch=GridSearchCV(estimator=clf,

param_grid=param_test,scoring='roc_auc',n_jobs=1,iid=False,cv=5)

gsearch.fit(X_train,y_train)

#gsearch.grid_scores_,gsearch.best_params_,gsearch.best_score_

gsearch.cv_results_,gsearch.best_params_,gsearch.best_score_

验证输出结果

clf=tree.DecisionTreeClassifier(

class_weight=None,

criterion='gini',

max_features=None,

max_leaf_nodes=8,

min_samples_leaf=2000,

min_samples_split=5000,

min_weight_fraction_leaf=0.0,

splitter='best')

results=modelfit(clf,X_train,y_train,X_test,y_test)

importos

importpydotplus

fromIPython.displayimportImage

fromsklearn.externals.siximportStringIO

#os.environ["PATH"]+=os.pathsep+'C:/Users/yacao/Downloads/graphviz-2.38/release/bin'

dot_data=StringIO()

out_file=dot_data)

输出规则

if(df['meda'][i]<=56.5):

if(df['age'][i]<=70.5):

if(df['c210hva'][i]<=312.5):

if(df['ilor'][i]<=10.5):

temp=11

segment.append(temp)

temp=12

temp=8

if(df['tins'][i]<=5.5):

temp=9

temp=10

if(df['pdpe'][i]<=46.5):

if(df['MOBPLUS_M'][i]<=0.5):

temp=13

temp=14

temp=4

业务应用

第一类:

第二类:

这一类人群,是区域内常住的高端小区的用户。这些人群也同样是我们需要重点进行保险营销的对象。

除此之外,我们还可以做什么呢?

了解客户需求

开发新的保险产品

数据分析咨询请扫描二维码

《Python数据分析极简入门》第2节8-1Pandas数据重塑-数据变形数据重塑(Reshaping)数据重塑,顾名思义就是给数据做各种变...

统计学基础-理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。数...

数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技...

数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数...

数据分析师:洞察力量的引擎数据分析师的兴起数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。...

数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将...

“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、...

一、引言背景介绍随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业...

《Python数据分析极简入门》第2节7Pandas分组聚合分组聚合(groupby)顾名思义就是分2步:先分组:根据某列数据的值进行...

数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容:数学和统计学...

数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力:统计...

数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需...

《Python数据分析极简入门》第2节6Pandas合并连接在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc...

《Python数据分析极简入门》第2节5Pandas数学计算importpandasaspdd=np.array([[81,&n...

数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面:基础知识:数据分析的基本概念...

数据分析适合在多个单位工作,包括但不限于以下领域:金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经...

数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面:数据收集与整理:数据分析师...

数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能:...

THE END
1.华农保险X神策数据OpenDay:详解险企数字化经营体系搭建方法论近期,华农保险与神策数据再次联合举办 OpenDay 活动,以“探析数字化经营体系搭建,赋能险企行业创新”为主题开展直播分享,神策数据保险事业部咨询专家李硕、资深保险产品专家顾晓君、华农保险科创中心产品经理安李滢等 3 位嘉宾分别针对保险业趋势洞察与产品分析、数字化经营体系搭建方法论、华农数字化创新实践成果等话题展开...https://news.pedaily.cn/20220613/36151.shtml
2.保险理赔数据分析报告根据最新的保险理赔数据分析报告显示,近年来保险理赔案件数量呈逐年增加的趋势。这主要是由于人们对保险的认知度提高,保险购买意识增强,以及社会风险因素的增加所致。在保险理赔案件中,车辆保险理赔占据了相当大的比例。由于交通事故频发,车辆保险理赔案件数量呈现稳定增长。此外,医疗保险理赔案件也在逐年增加。随着人们健康...https://www.xyz.cn/toptag/baoxianlipeishujufenxibaogao-77156.html
3.第二届金融数据治理论坛推荐优秀案例要闻案例名称:华夏银行数据开放服务平台 华夏银行数据开放服务平台是全行数据分析和数据服务体系的重要组成部分,平台以满足全行数据分析和数据服务需求为出发点,以实现服务运营与管理能力提升为立足点,充分发挥数据服务价值,为业务人员提供数据加工、数据展示、智能预测等功能。平台依托数据中台对数据进行整合,构建精准营销、智能...http://www.cnfinance.cn/articles/2023-09/11-32021.html
1.某A保险公司的数据图表和数据分析客户满意度调查:通过收集客户反馈数据,分析客户满意度和投诉情况,发现问题并及时解决,提高客户忠诚度和口碑。 预测建模:利用机器学习、人工智能等技术,构建预测模型来预测保险产品销售量、客户流失率、赔付金额等业务指标,指导业务决策和规划。 以上是保险数据分析中常见的一些方法和技术,通过这些分析可以帮助保险公司更好...https://blog.csdn.net/tomxjc/article/details/137085385
2.新保险案例分析10篇(全文)新保险案例分析 第1篇 新保险法案例分析: 案例: 高女士为自己向保险公司投保了重大疾病险,保险公司予以承保,高在保险期限内患病,经三家医院诊断,一致认为其患有急性心肌梗塞。高女士心想自己刚好有保险,算是不幸中的万幸,随即向保险公司提出理赔,要求保险公司给付保险金。 https://www.99xueshu.com/w/file95l994xf.html
3.如何读懂财政数据?在这一篇里我们将带领大家去解读中国的财政数据。 1、看懂财政“四本账” 在我国当下的财政预算体系下,我国政府预算包括一般公共预算、政府性基金预算、国有资本经营预算和社会保险基金预算四类。一般我们称之为“财政四本账”。 其中,一般公共预算(第一本账)规模最大,2020年收入占比达到了51.8%,主要来源于各类税...https://wallstreetcn.com/articles/3623749
4.保险业数据合规系列解读之一——保险业数据合规典型案例分析近年来,保险业进入数字化转型的关键时期,又适逢《个人信息保护法》等法律规定出台实施,既需要发展数字化业务,又亟需提升数据合规水平。实践表明,保险业属于个人信息保护合规风险较高的领域,主管部门对数据合规的执法力度不断加大,保险企业被处罚的案例屡见不鲜,包括直接对从业人员和高管个人的处罚,甚至追究...https://www.kwm.com/cn/zh/insights/latest-thinking/data-compliance-in-insurance-industry-analysis-of-typical-cases.html
5.银行信息治理工作总结(通用20篇)总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,因此我们要做好归纳,写好总结。我们该怎么去写总结呢?以下是小编为大家收集的银行信息治理工作总结,希望对大家有所帮助。 https://www.yuwenmi.com/fanwen/gongzuo/3650587.html
6.全国2007年1月高等教育自学考试国际贸易理论与实务试题自考六、案例分析题(本大题10分) 1.北京某外贸公司按“CFR马尼拉”术语出口一批仪器,买方投保的险别为一切险,“仓至仓”条款。我方将仪器用卡车由北京运到天津港发货,但在运输途中,卡车翻车,致使车上部分仪器损坏。 请问:(1)该项损失应由卖方还是买方负责?为什么? (2)保险公司是否应该赔偿?为什么?https://www.educity.cn/zikao/61183.html
7.中国大地保险数据管理应用中心大数据应用平台案例分析Cloudera是Hadoop生态系统中领先的大数据解决方案供应商,也是全球知名的企业级数据管理和数据分析平台提供商。Cloudera的CDH是成熟、稳定的Hadoop商业发布版本之一,拥有大量企业级大数据部署案例,并且能够提供专业、全面的技术支持服务。 因此,经过多个方面的综合考量,大地保险数据管理应用中心决定使用Hadoop平台作为整体架构,选择...https://bigdata.51cto.com/art/201902/592367.htm
8.案例SPSS商业应用系列第2篇:线性回归模型保险公司希望根据经验数据分析影响理赔金额的因素,以及影响程度的定量关系,并使其服务中心能够在处理客户理赔案例的电话交流中,在得到相关保单信息和索赔要求之后立刻预估出理赔金额,缩短理赔处理时间,从而提高其服务质量。并且通过进一步分析,为公司降低运营风险提供决策支持。https://cloud.tencent.com/developer/article/1056278
9.《保险大数据报告——货拉拉车辆遭受保险拒赔情形及应对指南》编者团队围绕保险拒赔原因,对检索到的2018年2月13日至2022年10月30日期间全国各地法院有关“货拉拉”机动车交通事故责任纠纷、保险人代位求偿权纠纷、保险合同纠纷的172件案件,进行数据分析和裁判观点整合,并进一步分析其中涉及的法律问题,再提出针对性的应对建议,以期对当前面临或将来可能面临相关纠纷的个人、企业及律师...https://www.yoojia.com/article/8772655385307565783.html
10.安全事件周报(07.1807.24)安全分析 分析俄乌战争期间针对乌克兰实体的恶意样本 其他事件 T-Mobile因数据泄露向客户支付3.5亿美元 微软遭遇严重服务中断 俄罗斯如何宣传乌克兰转售法国榴弹炮以牟利的说法 军情六处:俄罗斯间谍在乌克兰“收效甚微” 美国参议员提出立法,激励抗量子密码技术 ...https://cert.360.cn/warning/detail?id=7f3650949f8888e0745f1b90a1af90f3