芯片设计五部曲之四电磁玄学宗师——射频芯片时域信号元件电磁场

去年我们发布的《芯片设计五部曲》,还挺受欢迎的:

芯片设计五部曲之一|声光魔法师——模拟IC

不少人辗转问过我们下一集什么时候出。

放心,我们不鸽。

第四集这不就来了嘛,虽迟但到!

前几集我们已经分别深入了和的设计过程,展开了解了的四大特性,以及结合EDA工具特性和原理,如何利用计算机技术提高模拟与数字芯片的研发设计效率。

就像我们在模拟IC篇讲的:射频芯片作为模拟电路王冠上的明珠,一直被认为是芯片设计中的“华山之巅”。隐藏在其设计过程中的取舍与权衡,完全值得单开一篇。

射频芯片

不是你想象中的射频芯片

射频(RadioFrequency,简写RF),指用于无线电通信的频率范围,对应的电磁波频率范围在300kHz~300GHz之间。

射频芯片(RFIC),指能接收或发射射频信号并对其进行处理的集成电路,一般包括功率放大器(PA)、低噪声放大器(LNA)、滤波器(Filter)、双工器或多工器(Duplexer或Multiplexer)、开关(Switch)、天线调谐模块(ASM)等。

RFIC应用领域有:移动通信、卫星通信、雷达系统、射频识别(RFID)、传感器等。

射频电路,是一种特殊类型的模拟电路,是模拟电路在高频领域的分支。

最早的射频电路是通过昂贵的分立电路元件搭的,直到CMOS工艺实现了把所有器件集成在一片芯片上,提高了系统的集成度与性能,同时也降低了成本。

在低频电子线路或者直流电路中,元器件的特性很一致。

而在高频影响下,所有的器件都是电阻、电感和电容的组合,存在寄生参数。

射频电路中,理想的电阻、电容和电感在实际中并不存在。

电阻不是电阻、电容不是电容、电感不是电感、导线也不是导线。这些元器件都不是你想象中的元器件,不再只是一个简单、孤立的物理器件,还包括了自身的材料特性、工艺,以及与周围空间环境的交互。

频率越高,影响越大。

以一根导线为例:

同样一根导线,在射频领域,导线不能被识别成导线,存在趋肤效应,即在频率很高的时候,电流在导线内部不是均匀流动的,会集中在导线的表面,中心部分基本没有电流通过。

这是因为高频电流通过的时候,在导线内部会产生一个轴向的交变磁场,该交变磁场会再度产生一个环形的径向交变电场,该电场对导线外层电流进行加强,与内层电流相抵消,从而导致导线传输电流时,电流聚集在导线外层,而内层“空心化”使得整体效率减低,耗费金属资源。

这时候,需要根据不同的频率去考虑电流在导线里面的分布情况。

因此,射频芯片的设计不能仅仅针对元器件本身建立数学模型,还需要针对高频情况下的整个三维电磁环境做电磁学建模仿真。

随着电子技术的发展,电路的集成度和工作频率不断提高,如何利用更先进的电磁场仿真技术,精确预测和分析寄生参数对电路性能的影响,是射频设计工程师们的重要课题之一。

射频IC设计VS模拟IC设计

看起来只差一步,其实大不相同

一颗射频芯片的完整设计流程如下:

跟模拟芯片相比,主要是多了电磁仿真这一过程。

看起来只多了一小步,但却是芯片设计工程师们的一大步。

01

工程师知识与能力储备

射频工程师和模拟工程师,是从同一根技能树上生长出来的。

但是,大家都说,射频工程师做模拟没问题,反过来就不行。

为啥?

从知识储备角度

有人问过射频芯片界大神——UCLA的Asad.A.Abidi教授一个问题:“DearProfessor,whichclassesdoyouthinkareofthemostimportanceforRFICresearchasanundergrad”意思是,亲爱的教授,哪门课程对学习RFIC最重要呀?

教授说:“Allofthem.Believeme,allofthem.”答案是,每一门。

从经验能力来说

模拟芯片的设计已经非常吃经验了,射频芯片在这方面有过之而无不及。

射频IC设计与电子元器件关系紧密,设计匹配布局复杂,需要熟悉大部分的元器件特性及不同的生产制造封装工艺。因为射频电路可能会因附近的外部电路、电场/磁场、温度、电磁信号和其他环境因素的干扰而经历巨大的性能变化,对所有这些因素的建模与预测分析几乎可以上升为玄学。

对工程师来说,不同实际应用场景下的经验通用性不强,牵涉性能指标多,整体辅助工具少,往往需要挑战工艺极限。整个设计过程中存在对诸多指标的权衡与取舍,有很大的不确定性,对设计者的经验要求极高。

这也是为什么很多射频IC设计公司都是IDM(IntegratedDesignandManufacture,垂直整合制造)模式,因为需要多种不同的生产工艺,与foundry厂的生产链各环节紧密关联,门槛相当高。

02

电路物理模型

从电路物理模型角度,射频芯片可以说是模拟芯片的高阶现实版,模拟芯片算是抽象简化版。

模拟芯片属于集总参数电路,是一种常用的简化电路模型。它将电路中的元件抽象为等效的电阻、电容和电感等参数,以简化的形式描述了复杂电路的行为,减少了繁琐的计算步骤。

欧姆定律和基尔霍夫定律是集总参数电路的两个基本定律,只跟电路的连接方式有关,与元件的位置无关。

适用于描述低频电路或电路中信号波长远大于电路尺寸的情况,是麦克斯韦尔方程在低频电路中的特解。

公式一般长这样,看着是能让人算出来的样子:

射频芯片属于分布参数电路,它将元件建模为具有空间分布的电阻、电容和电感。

分布参数电路考虑了电路中元件在电路中的位置因素,可以更准确地描述信号传输过程中的相位、功率损耗等因素;也考虑了电路中各个导线和元件之间的长度影响,即电流或信号在空间上的分布变化。

对应的算法和理论基础的是麦克斯韦尔方程组和电磁场、电动力学。

适用于描述高频电路或电路中信号波长大于等于电路尺寸、频率特性受传输线长度影响较为显著的情况。

公式一般长这样,人是算不出来的,要用计算机辅助:

总结一下,射频芯片与模拟芯片在电路物理模型上的差异:

03

仿真计算特性

关于模拟芯片设计的计算特性,我们在《》里重点介绍了两大常见数值计算场景:多corner和蒙特卡罗MonteCarlo,这两种方法的单个任务之间都相互独立,没有数据关联,很适合进行分布式并行计算。

单纯求微分方程数值解,数据量相对较小,主频敏感,计算并行受限较大。

在时域分析上,计算量大,在频域上计算量小。

常用工具Spectre,有针对AVX512指令集优化(以并行方式对大量整数或浮点数执行算术运算)。

射频芯片设计的计算特性,在模拟芯片的基础上,还是很不相同的。

射频电路对频率敏感,通常在频域中建模,在频域和时域分析上,计算量均较大。

常用FEM有限元分析法对目标电磁场空间进行切割,划分成大量四面体,再对每个较小的区域进行计算分析。

无论是对不同频域的取点,还是有限元法的切割,天然具备多线程与分布式优势,适用并行计算,存在大量SIMD指令(即单指令多数据运算,其目的就在于帮助CPU实现数据并行,提高运算效率)。

张量计算,数据量大,算力需求高。

常用工具ADS,有针对AVX512指令集优化。

因为是求解空间问题,所以部分工具可用GPU。

总结一下,射频芯片与模拟芯片在仿真计算特性上的差异:

三种电磁场仿真技术

FEM/MoM/FDTD

近些年,主要有三种电磁仿真技术:FEM有限元分析、MoM2.5D矩量法和FDTD有限时域差分法。

原则上,他们都能解决相同的问题,但却有各自更适合的场景。

FEM有限元分析

FEM(FiniteElementMethod)有限元分析法是真正的3D场求解器,可以分析求解任意形状的3D结构,是最灵活的电磁仿真分析方法,也可以说是一种暴力破解算法。

这种算法将整个几何模型划分为大量四面体,每一个四面体都是由四个等边三角形组成。也就是说,整个目标空间被划分为N个较小的区域,并用局部函数表示每个子区域中的场。

然后把一个个空间拿出来,对微分形式的Maxwell方程在频域进行求解,其求解的未知量是每一个小网格的电场与磁场。

对于几何复杂或电气大型结构,网格可能会变得非常复杂,形成具有许多四面体的网格单元,导致需要求解巨大的矩阵。

所有端口激励只需要一个矩阵求解。

通常用于复杂3D结构的求解,整体消耗仿真资源大,仿真速度慢。

MoM2.5D矩量法

FEM有限元分析是一个三元方程组,计算量很大。

而MoM(MethodofMoments)2.5D矩量法,是专门针对3D层状结构出的优化算法。它根据半导体平面工艺的结构,做了一定数学上的简化和等价,把三个未知数简化成两个未知数,加快了求解速度。

这种算法的关键在于:整个几何模型的背景结构信息都包含在了格林函数中,同一介质上的不同结构,只需要计算一次格林函数。所以只需要对需要求解的金属结构划分网格,通常由矩形、三角形和四边形网络单元组成。

因此,“平面”MoM网格比FEM所需的等效“3D体积”网格更简单且更小。

而网格单元数量的减少可以减少未知数并实现极其高效的模拟,这使得MoM非常适合复杂分层堆叠结构的分析。

MoM矩量法对积分形式的Maxwell方程在频域求解,需要求解的未知量为金属的表层电流分布。得到电流分布之后,仿真器再根据格林函数进行数值积分,即可得到求解空间任何点的场分布。

理论上,对于任意结构或者非均匀介质,矩量法也可以求解。但需要对背景环境进行额外描述,导致未知量数目上升,求解效率下降,反而不如求解微分方程的FEM有限元分析法高效。

因此,MoM矩量法不适用于一般的三维结构,主要适用求解3D层状结构,常用于片上无源器件。

FDTD有限时域差分

FDTD(FiniteDifferenceTimeDomain)有限时域差分法,跟FEM一样,也是真正的3D场求解器,可以分析任何形状的3D结构。

FDTD通常使用六面体网格单元(也就是“Yee”单元),对微分形式的Maxwell方程在时域进行求解,当前时刻的电场磁场矢量值由结构中前一时刻的电场磁场值以及它们的变化情况直接计算得出。

相对于FEM和MoM的显著优势之一是FDTD技术不需要矩阵求解,对于时域上的问题,即便复杂结构的求解也仅使用少量内存,非常高效。FDTD还非常适合并行化,这意味着可以利用GPU处理能力来加快模拟速度。

必须为几何N端口设计上的每个端口运行一次仿真。

小结

MoM仿真速度会更快,但是FEM的应用范围更广更灵活。

如果待求解的结构是“平面”或者说层状结构,可以优先使用MoM仿真,提高设计效率。比如PCB互连、片上无源器件以及互连和平面天线。

当然,如果结构很简单,采用FEM分析也差别不大。

如果考虑几何形状的复杂性和问题大小,FEM为大量端口问题提供了最有效的解决方案。

FDTD在时域进行求解,这意味着它对于连接器接口和转换执行时域反射计(TDR)分析非常有用。

射频_电磁场仿真工具

HFSS/ADS/EMX

电磁场模拟已经越来越成为射频电路设计人的必备技能之一。尤其是专门为射频和微波电路分析而开发的计算机辅助工具的使用,让射频芯片工程师能够获得前所未有的仿真能力。

当然,这并不意味着有了工具就能解决电磁仿真问题,前面已经反复说了,RFIC设计对经验要求非常高。但通过使用更高效的电磁仿真工具,工程师可以相对低成本地验证设计概念,或在仿真中融入更完整更真实的数据,减少外部条件限制。

目前,业界主流仿真工具主要有HFSS/ADS/EMX。

在射频领域,TA们有不同层级的仿真对象:EMX是芯片级,ADS是板级,HFSS是模块级。虽然都叫电路,都是同一套物理规则出来的东西,但是制造工艺和尺寸不一样,所以适用不同的工具。

HFSS

HFSS,是世界上第一款商业化的3D电磁仿真软件,堪称电磁场仿真业界标杆,现在属于Ansys公司。

HFSS使用的是FEM有限元分析法,所以非常通用,适用于任意3D结构。

但通用也就意味着没有强针对性,HFSS把一套叫做有限元分析的数学方法应用在了电磁学领域,当然,也可以应用在其他工程领域。因为没有对芯片设计领域做专门优化,软件交互方面不够友好。

HFSS主要面向的是波导、传输线那种比较大的射频元件和模块设计,偏宏观的电磁仿真。

如果要界定领域的话,HFSS比较难评,既可以放到CAE领域,也可以放到EDA领域。一般而言,在智能制造/汽车制造场景下用HFSS进行电磁场仿真更多,当然,也可以用于部分芯片设计场景。

我们写过一篇实证,详情可戳:

ADS

ADS和EMX就不一样了,是纯粹的EDA领域工具,在处理芯片设计场景的电磁场仿真使用较为广泛。

这类电磁场仿真工具在算法上,通过Maxwell方程组求解元件的空间电场分布,将元件映射为特定的RLC电路,做到“化场为路”。这既能降低仿真分析难度,又能将元件的有限元物理模型,转换成对应的Spectre/HSPICE网表,供一般电路仿真工具使用。

ADS,属于Keysight是德科技,针对射频芯片电路有专门的优化和研发,既可以做三维电磁场仿真,也可以针对PCB布局和部分集成电路设计场景。Keysight跟各大元器件厂商都有广泛合作,可以提供最新的DesignKit供用户使用。

ADS适合对片上的电路/元器件做分析仿真,适用小规模RF/MMIC设计,如果需要模拟一个大的模块,HFSS可能更合适。

ADS同时支持FEM有限元分析法与MoM2.5D矩量法,也可选FDTD有限时域差分。

MoM适用于层状结构,而使用FEM或FDTD方法时可以适用任意3D结构。

ADS与其他工具兼容良好,免去跨平台数据导入导出,对Virtuoso提供比HFSS更好的兼容性。

在电磁与射频的设计中,经常需要通过HFSS设计天线,然后通过ADS来验证电路,这个时候就需要两者的联合仿真,以S参数作为中继。

早期,ADS占据绝对主导地位,Foundry厂会提供基于ADS的PDK文件,现在逐渐也开始提供基于EMX的工艺文件。

EMX

EMX是专门针对射频集成电路设计开发的,作为EDA常用工具Cadence的插件存在,能与TA无缝集成,对工程师们极为友好。

芯片级的集成电路分析,属于微观尺度,一般使用EMX最为合适。

EMX只支持MoM2.5D矩量法,专门针对片上无源器件等层状结构分析,不适用bondingwire、BGA、PGA封装等非层状结构,横截面非直线金属结构。

HFSS17.2和19版之后的ADS支持GPU处理电磁场仿真任务,且通过并行化处理后,效率提升十分显著;EMX作为Cadence里的插件暂不支持GPU任务。

三种射频芯片电磁场仿真工具对比

关于我们在各种EDA应用上的表现,可以点击以下应用名称查看:

THE END
1.毫米波器件电路与系统毫米波器件、电路与系统 当前位置:首页科学研究研究方向毫米波器件、电路与系统https://mmw.seu.edu.cn/hmbjs/list.htm
2.毫米波器件发展现状及石墨烯毫米波器件优势毫米波器件发展现状及石墨烯毫米波器件优势 通常,把30~300GHZ的频域称为近毫米波,把100~1000GHZ的频域称为远毫米波,把300~3000GHZ的频域称为亚毫米波。这段电磁频谱与微波相比具有以下特点:频带极宽、波束窄、方向性好,有极高的分辨率;有较宽的多普勒带宽,可提高测量精度。它与激光和红外波段相比,具有穿透烟雾、...https://www.mwrf.net/news/marketwatch/2013/12919.html
3.毫米波/太赫兹器件产品中心瑞贝斯毫米波/太赫兹器件 太赫兹器件 V,E,W,D波段器件汇集 毫米波放大器 毫米波混频器 毫米波天线 毫米波转接器 毫米波衰减器 毫米波振荡器 毫米波倍频器 毫米波检波器 毫米波开关 毫米波环形器/隔离器 毫米波无源器件 毫米波测试 毫米波二极管 卫通产品毫米波/太赫兹器件...https://www.rebes.net/product.php?pid=13
4.毫米波及太赫兹器件光学太赫兹 毫米波及太赫兹器件 太赫兹源 倍频设备 其它 关于泰灵思 新闻与资讯 公司信息 工作机会 材料表征 谐振法 传输反射法 电导率测量 液体测量 器件与设备 光电器件 测试仪器 测试电缆 高频开关矩阵 系统集成 裸线测试 高速线缆测试 插损测试 高频器件测试 泰灵思总部 深圳市龙华区观乐路5号多彩科创园...http://www.teralinks.com/cn/terahertz/mmw&thzdevices
5.微波毫米波太赫兹器件?包括有源和无源器件、宽带IMA模块,覆盖微波、毫米波和太赫兹频段,尤其是在毫米波/太赫兹器件方面(HPA,LNA,IQ混频器, 上下变频器,LO,双工器,合路器,耦合器,环形器,OMT,滤波器,宽带高效馈源,差模跟踪网络,数字移相器,阵列天线,高速连接组件等)走在前面,提供从MMIC到部件的解决方案;亦可提供用于测试测量的部件!http://bolicom.cn/productinfo/1540158.html
6.毫米波与太赫兹技术随着对电磁波谱的不断探索, 人类对电子学和光学获得了充分的认识, 并且通过对电子学和光学的研究, 研发了各种器件, 形成了两大较为成熟的研究和应用技术. 一是微波毫米波技术,另一个是光学技术。http://www.yach.com/industry-details.html?article_id=2428
7.毫米波雷达芯片通讯器件产品中心北京汇芯通电子科技有限公司专注于物联网应用开发,主营产品有蓝牙模块、nb-iot模块、cat.1模组、无线通信模块、wifi模块、can总线、毫米波雷达模块、卫星接收模块、低噪声放大器、射频开关、数控衰减器、增益放大器、mosfet、MCU、FPGA、电源管理、二极管、三极管、电解电http://www.linkchip.net/cpzs/txqj/hmbldxp/
1.间隙波导GW,会不会成为毫米波时代的超级英雄?!间隙波导的宽带、非接触电磁屏蔽特性在构建新型传输线、提升或改善电路系统性能及实现更加灵活的集成等方面显示出极大的优势和潜力,为微波毫米波器件、电路、天线等提供了新的思路和技术途径,相关研究在近年来得到了快速发展,引起了广泛关注。 通过上面表格可以看出,基于间隙波导的天线的损耗比微带线小 10 倍以上,损耗比...https://www.eefocus.com/article/1702524.html
2.2021年中国毫米波有源相控阵微系统行业市场运行现状分析及未来...(2)器件、组件、微系统: 毫米波器件:指工作在毫米波频段、由多个电路元件构成、具备独立封装结构的电路单元的集合,用于实现对电磁波能量和信号的处理和变换等功能,如对电磁波信号的定向传输、衰减、隔离、滤波、相位控制、波形及极化变换、阻抗变换等,按其功能可分为微波振荡器(微波源)、功率放大器、混频器、检波器...https://www.bjzjqx.com/IndustryInner/498704.html
3.探索新概念6毫米波雷达三大核心元器件MMIC芯片和雷达专用处理器是毫米波雷达工作流程中最核心的两大元器件。MMIC芯片负责将中频信号转化为数字信号,数字信号再传输到毫米波雷达专用处理器上,除这两大元器件外,天线高频PCB板也是毫米波雷达的重要材料。 (1)MMIC射频芯片 毫米波雷达的测速和测距性能主要取决于MMIC芯片的性能。MMIC射频芯片全称单片微波集成电...https://toujiao.sfccn.com/newsdetail?id=1611
4.5G常用术语和缩略语5G 中使用的空中接口 (OTA) 测试方法,被测器件 (DUT) 安装在按方位角和仰角旋转的定位器上。通过这一方式,可以对整个 3D 球面上任意角度的被测器件进行测量。DFF 方法可以执行非常全面的测试,测量多个信号,但是在测量毫米波器件时需要更大的测试暗室。 https://www.fanyedu.com/content/113588.html
5.铜川市人民政府办公室关于印发《铜川市光电子产业高质量发展三年...行动方略:(1)开展商用毫米波芯片研发工作,攻克毫米波SIP集成封装、毫米波器件、毫米波模块设计等关键技术,实现我国自主可控、成本超低的毫米波芯片的商业化生产。(2)依托铜川九方迅达微波系统有限公司拓展上下游产业链,大力支持、招引相关高科技企业来铜发展。 http://www.tongchuan.gov.cn/resources/site/1/html/zcwj/zfgb/2021ndsq/szfbgswj/202111/632729.html
6.毫米波收发组件射频、微波及毫米波器件、组件及子系统及相关数字化产品的研制、生产与技术服务为主营业务的原始研发、制造商 关键词: 滤波器 微波器 微波器件 微波组 所属分类: 产品中心 产品咨询: 0551-65321339 产品询价 返回列表 产品描述 描述:工作于Ka波段,完成三路接收、一路上变频、功率放大及信号调制,内置捷变频频率综合...https://www.star-wave.com/product/82.html
7.毫米波人体扫描仪市场:过去现在和未来AnalogDevices如之前的图所示,ADI公司可以为毫米波人体扫描仪提供从比特到天线和从天线到比特的完整信号链解决方案。借助广泛的射频、微波和毫米波器件产品系列,集成商一定可以找到满足其性能和价格预期的合适器件。要提供从比特到天线的完整天线解决方案,需要具备必要的产品系列、经验和技术支持,而ADI是业内仅有家满足这一条件的公...https://www.analog.com/cn/thought-leadership/millimeter-wave-body-scanners-market-past-present-and-future.html
8.我国毫米波芯片刷新世界纪录!探测距离38.5米GaN具有高电子迁移率和击穿场强等优点,器件功率密度是GaAs功率密度的5?倍以上,可显著地提升输出功率、减小体积和成本。随着GaN材料制备技术的逐渐成熟,GaN器件和电路已成为化合物半导体电路研制领域的热点方向,美国、日本、欧洲等国家将GaN作为微波毫米波器件和电路的发展重点。近十年来,GaN的低成本衬底材料碳化硅(SiC)也...https://ee.ofweek.com/2021-02/ART-11000-2807-30485861.html