摘要:智能制造作为高阶制造业态和新型生产方式,已然成为新一轮工业革命的核心驱动力。当前,我国制造业处于转型升级和提质增效关键期,传统产业亟须通过新旧动能转换焕发新的生机,新兴技术产业和未来产业需要通过富有竞争力的制造模式抢占全球制高点,智能制造高质量发展成为我国制造业嵌入全球价值链高端的关键支撑。智能制造具有以智能工厂为载体、以生产制造关键环节和主要流程的智能化为核心、以工业互联网为关键支撑和以端到端数据流为基础的显著特征。推动智能制造高质量发展,要以关键核心技术攻关为核心,加快智能制造装备、工业软件和智能制造系统解决方案高端化智能化发展,推动智能工厂全面推广落地,打造传统制造业数字化转型样板,推动工业互联网标准体系建设。
关键词:智能制造;制造强国;高质量发展
基金:国家社会科学基金重大项目“智能制造关键核心技术国产替代战略与政策研究”(21&ZD132);国家社会科学基金重大项目“数字经济推动新兴产业创新的制度逻辑与系统构建研究”(ZZ&ZD099);中国社会科学院登峰战略企业管理优势学科建设项目。
智能制造承载着新一轮工业革命的核心技术,是智能时代各国科技竞争的核心场域。作为制造强国建设的主攻方向和推进新型工业化的重要着力点,智能制造关乎我国制造业发展的全球地位和制造业高质量发展水平。推动制造业向智能制造高阶水平迈进是我国发挥海量数据和丰富应用场景优势、实现制造业由大到强的必由之路,智能制造高质量发展是重塑中国制造新优势、强壮中国制造业筋骨的题中之义。近年来,美国通过技术封锁以及“回岸制造”“近岸制造”等方式对“中国制造”进行立体化阻遏,我国制造业在多重打压中进行供应链重构和技术突围。作为新一轮工业革命的动力引擎,智能制造正在驱动制造业发展理念、制造模式、底层机理发生重大而深刻的变革,通过重塑制造业的生产要素、核心技术体系、生产组织模式及价值链,推动以标准化批量复制为导向的工业经济向以大规模个性化定制为特征的数字经济转变,在更高维度、更深层次上赋能制造业高质量发展。
一、智能制造概念演化与内涵界定
智能制造是新一轮工业革命的增长引擎,其理论内涵具有多维复杂性。它突破了技术创新的范畴,代表着制造范式的深层次变革。一方面,智能技术从“辅助和支持”角色演变为“部分取代”[2],现在已然成为制造系统的“关键和核心”。智能技术与实时制造数据、业务运营充分结合,使得构建动态数据系统和推动工业软件应用成为可能。另一方面,智能制造已经成为制造业转型升级的战略方向,正在打破传统意义上的产业边界[3],工业机器人使用密度和智能制造能力成熟度等智能化指标越来越多地被用于衡量企业竞争力和发展质量。
(一)智能制造概念溯源与内涵演化
(二)智能制造概念再界定及其特征分析
概括而言,智能制造具有以下显著特征:其一,智能制造以智能工厂为载体。智能制造以制造为本,智能是实现制造的手段。智能工厂作为智能制造的载体,是构建高效、节能、绿色、环保、舒适的人机协同系统的主要组织单元。其二,智能制造以生产制造关键环节和主要流程的智能化为核心。生产制造关键环节包含产品、装备、生产过程、管理、服务等内容,主要流程涉及从原材料采购到最终产品交付的全过程,各环节和各流程的智能化协同推进、相互融合,保障整体生产过程的高效和智能运作。其三,智能制造以工业互联网为关键支撑。工业互联网将传统制造业与先进的信息技术相结合,实现生产过程的数字化、智能化和高度协同化,是智能制造实现社会化协同的主要通路。经由工业互联网,设备和工厂都成为广义智能制造系统中的不同层级数据节点。其四,智能制造以端到端数据流为基础。数据实时流通共享和集成转换是实现智能制造的重要条件,是制造过程智能化发展的具体体现。智能制造伴随着数据孪生过程,通过工业互联网和大数据分析系统,工业互联网平台可以进行深度的数据挖掘和加工,以更好地服务于智能制造系统中的各个生产单元。
二、智能制造体系及其多维解构
智能制造作为新型生产方式,改变了生产要素的投入结构和组合方式,将制造自动化的概念扩展到了柔性化、智能化和集成化的方向。为明确智能制造的标准化对象和范围,《国家智能制造标准体系建设指南(2021版)》从生命周期、系统层级和智能特征三个维度对智能制造体系架构进行划分。本文认为,基于不同情境和分析目的,智能制造系统有狭义与广义之分,狭义的智能制造系统是指以智能车间或智能工厂为载体的制造体系,而广义的智能制造系统则涵盖智能工厂及其支撑和服务体系。从构成来看,可以从三个维度来理解智能制造系统:技术维度、空间载体维度和产业链维度。从技术维度来看,智能制造技术体系分为基础共性技术和标准(数据标准、集成电路、移动通信等)、智能装备技术、工业软件技术和工业互联网技术(物联网、大数据、云计算、区块链、人工智能等);从空间载体来看,智能制造系统可以分为设备层、车间层、工厂层、企业层、网络协同层;从产业链体系来看,智能制造产业体系涵盖上游的智能制造装备、工业软件和智能制造系统解决方案、中游的智能工厂(行业应用)和下游的智能制造服务(智慧物流及仓储等)。
(一)技术体系
智能制造技术体系可以进一步分解为基础共性技术与标准、智能装备技术、工业软件技术和工业互联网技术。基础共性技术是指在多个领域发挥支撑作用,着力解决应用开发过程中的通用性、基础性问题的技术,具有可扩展性和互操作性的特征。《国家智能制造标准体系建设指南(2021版)》指出共性技术标准包括通用、安全、可靠性、检测、评价和人员能力六类,是关键技术和行业应用技术的底层支撑。智能装备技术是先进信息技术、传感技术、控制技术和自主决策算法在装备产品上的高度集成和创新融合,具有自主感知、协同决策和智能执行的技术特征。工业技术软件化是一种充分利用软件技术,实现工业技术/知识的持续积累、系统转化、集智应用、泛在部署的培育和发展过程。而工业软件技术是在制造和生产领域中应用软件解决方案以支持、优化智能化生产和管理活动的技术。工业互联网技术是一种在工业制造领域中应用于实现设备、系统和人员之间高度联结和信息共享的技术范畴,主要利用物联网、大数据分析、云计算、边缘计算、人工智能等智能技术,以实现设备、系统和人员之间的高度联结、数据共享和智能化决策。
(二)空间载体体系
“载体”是一种能够携带、传递或支持某种形式的事物的媒介、介质或实体,智能制造的载体扮演着连接物理世界和信息世界的角色,在智能制造中充当着实际的生产工具或平台。从载体来看,智能制造可以分为设备层、车间层、工厂层、企业层和网络协同层,每个层次都承载着特定的功能和任务。
(三)产业链体系
智能制造是制造业的高阶制造形态,天然具有产业属性。一方面,从理论层面来看,广义产业链将隐性技术与显性载体连接在一起,为深度认识智能制造提供了合适的研究视角,有助于从产业层面理解不同技术和载体如何发挥协同效应。另一方面,从实践统计层面来看,智能工厂是智能制造的生产载体,但由于智能制造的应用领域广泛,各智能工厂的智能化成熟度不一致,现实中难以统计智能工厂的产值规模,统计上通常将智能制造装备、工业软件和智能制造系统解决方案分开统计,以反映智能制造产业链发展情况。基于此,本文结合认识逻辑和统计范围,将智能制造产业链体系解构为智能制造装备、工业软件、智能制造系统解决方案和智能工厂(车间)。
智能制造装备是具有感知、分析、推理、决策、控制和执行功能的制造装备的统称,指用于生产和制造过程中的高级制造设备,是先进制造技术和智能技术在装备产品上的集成应用。从特征来看,区别于传统装备制造,智能制造装备综合了先进制造、数字控制、智能传感、人工智能技术等多种技术,从而具备了自我感知、自主决策、分析规划、纠错容错、自我学习、网络集成、诊断修复等多种智能特征,提高了制造过程敏捷性和适应性,极大提升了装备的加工质量和使用效率。从内涵来看,智能制造装备涵盖制造全流程的智能单机、自动化系统集成及生产线集成,将制造技术、信息技术和人工智能技术相结合,本质上涉及智能控制技术在制造业中的应用[16]。从效用来看,智能制造装备通过自动化、智能化和高度精确的制造过程,强化企业内部协同和上下游协同,显著提高生产率、制造精度和柔性制造水平。
工业软件是工业技术、流程的程序化封装与复用[17],是智能制造的“神经中枢”。根据产品用途,工业软件可以分为研发设计类(如CAE、CAM)、生产控制类(如MES)、经营管理类(如ERP)、运维服务类(如APM)、嵌入式类(如DNC)等。根据工艺流程,工业软件可以分为工业管理学软件和工业物理学软件[18],后者以研发工具如计算机辅助设计(CAD)等为主,强调对工业内核的深度挖掘。从发展模式来看,国外形成纵向一体化、横向贯通和软硬结合的三种发展模式,工业软件既具有软件的性质,又具有明显的工业属性。进一步地,工业软件是智能制造系统的基石和支点,是工业知识沉淀的结晶,承载着制造业从研发设计到销售运用全生命周期的全部数据。研究表明,一辆新车高达40%的成本是由其电子和软件内容决定的[9],汽车行业70%以上的创新都是由软件驱动的[9,19]。而大型工业软件的研发周期一般是3—5年,被市场认可则需要10年左右,且很难被简单复制。
智能制造系统解决方案强调利用先进的信息和制造技术来实现灵活、智能和可重新配置的制造流程,实现纵向集成和横向集成的整体解决方案[20]。其中,纵向集成是把系统解决方案的不同层次和模块整合在一起,并根据需求对模块的拓扑结构进行重组;横向集成则是实现不同制造阶段的软件、数据库和装备之间端到端的协同,破除数据壁垒,以实现更高的效率和灵活性。智能制造系统解决方案主要由软件、硬件、系统服务等部分组成,此处的软件指嵌入于整体解决方案中的应用软件。在现实中,智能制造系统解决方案的提供商通常是工业互联网平台企业、云服务平台和数字化转型服务商,与工业软件不同,系统解决方案主要以无形产品形式交付。2016年,在工业和信息化部的指导下,我国成立智能制造系统解决方案供应商联盟,利用人工智能、大数据分析和机器学习等技术,以实现智能决策、自适应控制和预测性维护。作为智能制造典型应用场景,智能制造系统解决方案规模持续扩大,年平均增长率超过10%,形成一批高质量覆盖全生命周期的细分行业解决方案,从供给端改善市场生态,从需求端强化对症下药,涵盖工厂、产品、生产和管理四个过程的九大典型应用场景。
智能工厂旨在通过集成先进的数字化技术和自动化系统,实现制造生产的高度智能化和高效化。智能工厂借助物联网、大数据分析、人工智能等技术,将制造过程中的各个环节实现数字化连接和协同,以提高生产效率、灵活性和质量管理。在智能工厂中,传感器和嵌入式系统用于实时监测生产环境、设备状态和产品质量。通过实时数据采集和分析,智能工厂能够进行实时决策和优化生产过程。此外,人工智能技术被广泛应用于生产计划、调度和质量控制等方面,以提高整体的生产效能。智能工厂注重生产过程中的自动化和数字化集成,自动化系统涵盖了各个生产阶段,包括原材料处理、生产装配、物流管理等,数字化集成则通过整合各种信息系统,实现生产数据的实时共享和管理。这种高度集成的数字化环境有助于提高生产线的灵活性和适应性,使企业更好地应对市场需求的变化。
三、我国智能制造高质量发展的现实基础
(一)智能制造应用潜力巨大但关键核心技术面临“卡脖子”难题
智能制造是一个覆盖更宽泛领域和技术的系统工程,我国智能制造高质量发展蕴含着巨大的潜力,智能制造应用水平与规模经过近十年的发展已处于全球领先行列,应用规模持续增长。根据工业和信息化部的数据,智能制造装备行业市场规模由2017年的1.27万亿元增长至2022年的2.68万亿元,2023年上半年已经超过3.2万亿元。工业软件市场规模2022年度增至2407亿元,同比增长14.3%,高出全行业整体水平3.1个百分点。智能制造系统解决方案市场规模自2019年起以平均50%的速度增长,2022年增至0.8万亿元,主要分布在通用机械、石油化工、专用机械等重要行业;截至2023年3月,智能制造系统解决方案提供商超过6000家,其中主营业务收入超10亿元的达40余家,覆盖超过90%的制造业,优质供给能力不断提升。
(二)智能工厂走深向实但存在信息孤岛
然而,智能工厂建设涉及智能装备、智能传感器、工业软件和系统解决方案等供应商,集成难度较大,技术复杂度高,需要高昂的成本和大量资金,对于中小企业会造成较大的负担。实践中有些智能工厂只注重购买高端数控设备,而缺乏相应软件系统的支持,导致数据在各设备之间难以流畅共享和交互;有些企业数据自动化采集和车间联网程度较低,生产线之间还需要中转库转运,难以实现对设备状态的实时监测和预测性维护,可能导致生产中断和设备损耗增加。同时,从技术层面来看,我国还缺乏适合建设智能工厂数据中心的软件平台,更缺少能够“无需编码或少量编码”快速开发各类工业App的敏捷开发框架。
(三)工业互联网已迈出实质性步伐但根基不稳
2工业互联网核心产业包括工业互联网网络、平台、安全三大功能体系,以及应用解决方案等,具体包括工业互联网网络、工业互联网平台与工业软件、工业互联网安全、工业数字化装备、工业互联自动化等五大产业。
3工业互联网产业增加值规模是指工业互联网带动一、二、三产的增加值规模。
国内外按照驱动不同将工业互联网平台分为三种类型,分别是软件驱动类、制造经验驱动类以及技术驱动类。软件驱动类工业互联网平台(如ThingWorx和用友精智)具有多样化的客户群体,SaaS服务能力突出,行业聚焦和纵深不足,生态合力仍有提升空间;制造经验驱动类工业互联网平台(如MindSphere和卡奥斯COSMOPlat)工业机理理解透彻,行业Know-How积淀深厚,基于工业生产逻辑打通“产品—项目—生态”的发展路径,未来需要继续深耕行业和场景,持续拓宽走深向实;技术驱动类工业互联网平台(如IBMWatsonIoT和OceanConnectIoT平台)具有较强的数据整合能力和行业号召力,以生态链“链主”身份参与竞争,软硬一体的组合仍需强化联结效应。
从实践来看,我国工业互联网进入发展快车道,应用场景不断拓宽,已从概念普及进入实践的生根阶段。然而,与国外相比,我国工业互联网行业属性明显,标准化程度低,体现为工业互联网落地生根过程中存在IT(信息技术)和OT(运营技术)融合深度不足的“下不来”和“工具陷阱”难题,根源在于工业互联网是工业发展工具,并非工业本身,解决不了工业本身存在的问题。面对工业企业的海量数据和碎片化应用场景,工业互联网在模式、体系、技术和思路上与消费互联网存在较大差异,工业互联网生态发展难以简单复制消费互联网的构建和应用路径。因此,现有工业互联网发展存在落地适配性问题,难以通过搭建起庞大的“神经系统”来收集分析海量信息、解决问题以及预判问题的源头,也就难以实现“对症下药”,从而为智能制造高质量发展提供解决方案。同时,工业互联网涉及底层技术的深入应用和行业数据要素的全过程渗透,由于跨行业可复用性差,工业互联网平台企业缺乏普遍接受的标准和协议,可能导致不同设备和系统之间的操作干扰问题,增加了部署的复杂性和难度。
(四)智能技术为传统制造“按下加速键”但仍面临数字化转型难题
数字化转型是一个多层次、多维度的概念,本质是新一代信息技术驱动下的,以技术为支点、以业务为内核的管理、业务和商业模式的深层次变革与重构。数字化转型不仅需要优化流程降低成本、创新产品服务提供方式,而且需要进行组织结构和核心能力重组优化。智能技术的广泛应用,一方面使得传统制造企业在智能技术的驱动下,聚焦价值生成和价值驱动,以业务价值为导向,重新审视业务流程中的增值环节,助推智能技术在企业内部全面渗透;另一方面改变了单一流程化的传统制造模式,通过多环节的技术赋能促进传统制造转型升级,使其在附加值更高的微笑曲线两端获得更高利润。从智能制造赋能过程来看,在研发设计环节,创建虚拟模型,进行仿真测试,加宽企业的技术“护城河”;在生产制造环节,利用自动化生产线和机器人提高生产效率,通过物联网IoT和传感器技术监测生产参数,提高大规模定制水平;在销售环节,通过高度协同的智能制造降低企业的供应链成本,并利用柔性化生产无缝衔接生产与需求,帮助企业强化品牌和服务优势。
四、智能制造高质量发展的推进策略
在百年未有之大变局加速演进的当下,智能制造高质量发展成为大国博弈和全球价值体系重构的焦点。如何在新一轮全球产业变革中抓住智能制造这一时代机遇,实现从“跟跑”到“领跑”的跨越,是建设制造强国的重要议题。作为全球唯一一个拥有联合国产业分类中全部工业门类的国家,我国智能制造高质量发展具有坚实的产业体系基础。然而,我国智能制造水平与发达国家相比仍存在一定差距。基于现实基础分析和智能制造体系解构,本文提出“一个核心、三个加快、三个推动”的智能制造高质量发展思路,即以关键核心技术攻关与国产替代为核心,加快智能制造装备、工业软件和智能制造系统解决方案高端化智能化发展,推动智能工厂全面推广落地、打造传统制造业数字化转型样板、建设工业互联网标准体系,培育推广智能制造新型制造模式,加快形成新质生产力,发展立足我国制造优势的智能制造新范式。
(一)以关键核心技术攻关与国产替代为核心
关键核心技术是包含多点位、多形态和多种知识基础的技术体系[24],是关乎智能制造高质量发展的突破口。只有把关键核心技术掌握在自己手里,推进关键核心技术攻关和国产替代研发,才能从根本上解决“卡脖子”难题,实现后发技术赶超。聚焦高端装备、高端材料、高端机床、科学仪器和核心基础件等智能制造产业,瞄准基础研究,举全国和全产业之力攻关基础技术和共性技术,突破一批关键核心零部件和元器件。加大研发力度,努力啃“硬骨头”,选择突破口进行重点突破,力争在具有非对称竞争优势环节和关键核心技术上率先突破,随后借助外溢效应,推动智能制造全产业变革。采取“单点突破+集成攻关”的推进思路,单点突破智能制造产业的“卡脖子”技术,深耕关键核心技术链[25],聚焦细分场景进行突破性创新,重构核心技术国产替代路径,把握关键核心技术开发和共享的控制权,实现关键核心技术自主可控;集成攻关涉及全产业链基础原理的共性技术,创新产业链协同模式,推动上下游同频共振,搭建工业互联网平台,采用多种攻关模式相结合,加快制造设备和工业软件的关键核心技术突破,实现上游高端供给和下游有效需求的精准匹配以及各个环节的实时决策和资源高效配置。
(二)加快智能制造装备高端化集群化发展
智能制造装备是机电系统与人工智能系统的高度融合,与传统制造装备相比,具有自主感知、自主学习和自我适应等智能化特征,并对智能技术提出了较高要求。从智能制造高质量发展来看,亟须加快智能制造装备高端化和集群化发展。一方面,推动智能制造装备高端化发展。基于模块化设计理念,运用高强度合金、复合材料等提高装备的性能和轻量化水平,采用先进制造工艺(如3D打印、激光切割)提高设备精度。重点推动工业机器人的高端化发展,在减速器、控制器、伺服系统等关键零部件和结构设计、加工与装配等关键工艺技术取得持续突破的基础上,往减速机、电机、编码器以及驱动控制一体化集成方向持续深耕。另一方面,智能制造装备不仅仅是单一的装备,更是一个制造系统,产业集群是推动智能制造装备高质量发展的关键路径。推动工业机器人和增材制造等新兴产业的集群化发展,引导资源和创新要素向产业基础好、发展潜力大的地区集聚,建设一批主导产品特色鲜明、创新要素高度集聚、产业生态体系完善的智能制造装备产业集群,形成智能制造发展的关键支撑。同时,积极推动和引领智能制造装备的国际标准制定,抢占国际制高点。
(三)加快工业软件自主研发和国产化替代
工业软件是国家科技软实力的重要体现。相对于一般软件,工业软件专业集成性高、研发难度大、体系设计复杂烦琐、技术门槛高、研发周期长、研发迭代速度慢。CAD、CAE、EDA等研发设计类工业软件,应用场景和范围广泛,但国产化率仅为5%左右。为此,应通过发展工业软件领军企业和搭建创新性开源社区平台来推进工业软件自主研发和国产替代,特别是研发设计类工业软件的攻关。具体而言,可采用“揭榜挂帅”的方式,以工业软件领军企业为核心,聚焦工业软件的关键核心技术,协同产业上下游企业,整合资源集智攻关,形成以领军企业为核心的战略研发格局,强化集成创新和研发设计类工业软件研发,摆脱工业软件“卡脖子”困境。搭建工业软件开源社区和平台,围绕工艺模型、知识组件、算法工具等的开放共享,重点发展建模、仿真、模拟和分析的高性能计算领域的工业软件,鼓励更多创新主体参与。构建智能制造工业软件专业技术人才信息系统和培养体系,促进高端人才在区域内合理配置,实现人才供需精准匹配和动态流动,为推动工业软件国产替代提供坚实的人才基础。
(四)加快培育优质专业可复制的智能制造系统解决方案
(五)推动引领示范性智能工厂全面推广落地
(六)推动打造传统制造业数字化转型样板
(七)推动工业互联网标准体系建设
参考文献
[1]龙飞扬,施贞怀,殷凤.制造业嵌入双重价值链:演进逻辑、现实依据与路径选择[J].改革,2023(10):146-155.
[2]LIB,HOUB,YUW,etal.Applicationsofartificialintelligenceinintelligentmanufacturing:Areview[J].FrontiersofInformationTechnology&ElectronicEngineering,2017,18:86-96.
[3]DAVISJ,EDGART,GRAYBILLR,etal.Smartmanufacturing[J].AnnualReviewofChemicalandBiomolecularEngineering,2015,6:141-160.
[4]KUSIAKA.Smartmanufacturing[M]//Springerhandbookofautomation.Cham:SpringerInternationalPublishing,2023:973-985.
[5]WRIGHTPK,BOURNEDA.Manufacturingintelligence[M].Massachusetts:Addison-WesleyLongmanPublishingCo.,Inc.,1988:31-33.
[6]CHENB,WANJ,SHUL,etal.Smartfactoryofindustry4.0:Keytechnologies,applicationcase,andchallenges[J].IeeeAccess,2017,6:6505-6519.
[7]WANJ,ZHANGD,SUNY,etal.VCMIA:Anovelarchitectureforintegratingvehicularcyber-physicalsystemsandmobilecloudcomputing[J].MobileNetworksandApplications,2014,19:153-160.
[8]YANH,YANGJ,WANJ.KnowIME:Asystemtoconstructaknowledgegraphforintelligentmanufacturingequipment[J].IeeeAccess,2020,8:41805-41813.
[9]SHOREYR.Emergingtrendsinvehicularcommunications[J].IEEENewYorkPresentation,June,2014,8.
[11]HUANGQ.Intelligentmanufacturing[M]//UnderstandingChina'smanufacturingindustry.Singapore:SpringerNatureSingapore,2022:111-127.
[12]KANGHS,LEEJY,CHOISS,etal.Smartmanufacturing:Pastresearch,presentfindings,andfuturedirections[J].InternationalJournalofPrecisionEngineeringandManufacturing-GreenTechnology,2016,3:111-128.
[13]ZHOUJ,LIP,ZHOUY,etal.Towardnewgenerationintelligentmanufacturing[J].Engineering,2018,4(1):11-20.
[14]TRENTESAUXD,MILLOTP.Ahuman-centreddesigntobreakthemythofthe"magichuman"inintelligentmanufacturingsystems[J].ServiceOrientationinHolonicandMultiagentManufacturing,2016:103-113.
[15]OZTEMELE.Intelligentmanufacturingsystems[M]//Artificialintelligencetechniquesfornetworkedmanufacturingenterprisesmanagement.London:SpringerLondon,2010:1-41.
[16]LIF,LIUW,BIK.Exploringandvisualizingspatial-temporalevolutionofpatentcollaborationnetworks:AcaseofChina'sintelligentmanufacturingequipmentindustry[J].TechnologyinSociety,2021,64:101483.
[18]林雪萍.工业软件简史[M].上海:上海社会科学院出版社,2021:4-10.
[19]GRIMMK.Softwaretechnologyinanautomotivecompany-majorchallenges[C]//25thinternationalconferenceonsoftwareengineering,2003.Proceedings.IEEE,2003:498-503.
[20]ZHONGRY,XUX,KOLTZE,etal.Intelligentmanufacturinginthecontextofindustry4.0:Areview[J].Engineering,2017,3(5):616-630.
[21]田秋生.高质量发展的理论内涵和实践要求[J].山东大学学报(哲学社会科学版),2018(6):1-8.
[22]成琼文,郭波武,张延平,等.后发企业智能制造技术标准竞争的动态过程机制———基于三一重工的纵向案例研究[J].管理世界,2023(4):119-139.
[23]张伯旭,等.智能制造:助推高精尖产业发展[M].北京:机械工业出版社,2018:25-30.
[24]刘建丽.“凹凸世界”背景下的关键核心技术突破路径选择———基于集成电路产业技术特质的分析[J].求索,2023(3):118-126.
[25]胡登峰,黄紫微,冯楠,等.关键核心技术突破与国产替代路径及机制———科大讯飞智能语音技术纵向案例研究[J].管理世界,2022(5):188-209.
李娇,中国社会科学院大学博士研究生。
刘建丽,李娇.智能制造:概念演化、体系解构与高质量发展[J].改革,2024,(02):75-88.