14.(北京海淀区)白云商场购进某种商品的进价是每件8元,销售价是每件10元(销售价与进价的差价2元就是卖出一件商品所获得的利润).现为了扩大销售量,把每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x应等于().
A.1B.1.8C.2D.10
答案
1.
[分析]通过列表分析已知条件,找到等量关系式
2.
[分析]探究题目中隐含的条件是关键,可直接设出成本为X元
答:进价是125元。
3.B
答:至多打7折出售.
5.解:设每台彩电的原售价为x元,根据题意,有10[x(1+40%)×80%-x]=2700,x=2250
答:每台彩电的原售价为2250元.
6.解:方案一:获利140×4500=630000(元)
方案二:获利15×6×7500+(140-15×6)×1000=725000(元)
方案三:设精加工x吨,则粗加工(140-x)吨.
获利60×7500+(140-60)×4500=810000(元)
因为第三种获利最多,所以应选择方案三.
7.解:(1)y1=0.2x+50,y2=0.4x.
(2)由y1=y2得0.2x+50=0.4x,解得x=250.
即当一个月内通话250分钟时,两种通话方式的费用相同.
因为350>300故第一种通话方式比较合算.
8.解:(1)由题意,得0.4a+(84-a)×0.40×70%=30.72解得a=60
(2)设九月份共用电x千瓦时,则0.40×60+(x-60)×0.40×70%=0.36x解得x=90
所以0.36×90=32.40(元)
答:九月份共用电90千瓦时,应交电费32.40元.
9.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,
设购A种电视机x台,则B种电视机y台.
(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程
1500x+2100(50-x)=90000即5x+7(50-x)=3002x=50x=2550-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台,
可得方程1500x+2500(50-x)=900003x+5(50-x)=1800x=3550-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台.
可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.
(2)若选择(1)中的方案①,可获利150×25+250×15=8750(元)
若选择(1)中的方案②,可获利150×35+250×15=9000(元)
9000>8750故为了获利最多,选择第二种方案.
10.答案:0.005x+492000
11.[分析]等量关系:本息和=本金×(1+利率)
解:设半年期的实际利率为X,依题意得方程250(1+X)=252.7,解得X=0.0108
所以年利率为0.0108×2=0.0216
答:银行的年利率是21.6%
12.[分析]这种比较几种方案哪种合理的题目,我们可以分别计算出每种教育储蓄的本金是多少,再进行比较。
解:(1)设存入一个6年的本金是X元,依题意得方程X(1+6×2.88%)=20000,解得X=17053
(2)设存入两个三年期开始的本金为Y元,Y(1+2.7%×3)(1+2.7%×3)=20000,X=17115
(3)设存入一年期本金为Z元,Z(1+2.25%)6=20000,Z=17894
所以存入一个6年期的本金最少。
13.解:设这种债券的年利率是x,根据题意有
4500+4500×2×x×(1-20%)=4700,解得x=0.03
答:这种债券的年利率为0.03.
14.C[点拨:根据题意列方程,得(10-8)×90%=10(1-x%)-8,解得x=2,故选C]
15.22000元
17.[分析]设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。
解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,
18.[分析]等量关系为:甲注水量+乙注水量-丙排水量=1。
解:设打开丙管后x小时可注满水池,
19.解:设甲、乙一起做还需x小时才能完成工作.
答:甲、乙一起做还需2小时12分才能完成工作.
20.解:设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个.根据题意,得16×5x+24×4(16-x)=1440解得x=6
答:这一天有6名工人加工甲种零件.
21.设还需x天。
答:圆柱形水桶的高约为229.3毫米.
25.(1)分析:相遇问题,画图表示为:
等量关系是:慢车走的路程+快车走的路程=480公里。
解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480解这个方程,230x=390
分析:相背而行,画图表示为:
等量关系是:两车所走的路程和+480公里=600公里。
解:设x小时后两车相距600公里,
(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。
解:设x小时后两车相距600公里,由题意得,(140-90)x+480=60050x=120∴x=2.4
分析:追及问题,画图表示为:
等量关系为:快车的路程=慢车走的路程+480公里。
解:设x小时后快车追上慢车。
由题意得,140x=90x+480解这个方程,50x=480∴x=9.6
答:9.6小时后快车追上慢车。
分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。
解:设快车开出x小时后追上慢车。由题意得,140x=90(x+1)+48050x=570∴x=11.4
答:快车开出11.4小时后追上慢车。
解:设甲用X小时追上乙,根据题意列方程
5X=3X+5解得X=2.5,狗的总路程:15×2.5=37.5
答:狗的总路程是37.5千米。
27.[分析]这属于行船问题,这类问题中要弄清:
(1)顺水速度=船在静水中的速度+水流速度;
解:设A、B两码头之间的航程为x千米,则B、C间的航程为(x-10)千米,
答:A、B两地之间的路程为32.5千米。
∴2x-50=2×100-50=150
答:第一铁桥长100米,第二铁桥长150米.
33.[分析]由已知条件给出了百位和个位上的数的关系,若设十位上的数为x,则百位上的数为x+7,个位上的数是3x,等量关系为三个数位上的数字和为17。
解:设这个三位数十位上的数为X,则百位上的数为x+7,个位上的数是3x
x+x+7+3x=17解得x=2
x+7=9,3x=6答:这个三位数是926
34.等量关系:原两位数+36=对调后新两位数
解:设十位上的数字X,则个位上的数是2X,
10×2X+X=(10X+2X)+36解得X=4,2X=8,答:原来的两位数是48。