厌氧消化的主要粪源为项目所在地周边的养殖场的猪粪、秸秆、餐厨垃圾和园区及周边的蔬菜残余,猪粪有干清猪粪和水冲猪粪。干清猪粪、秸秆和蔬菜残余这三种原料采用固体进料系统进料,水冲猪粪和餐厨垃圾采用液体进料系统进料。
秸秆经过X-Ripper破碎机破碎后,通过铲车输送至预混池中,预混池中装有潜水搅拌机,可将破碎的秸秆和水充分混匀(TS为7.5%),混匀后的物料采用螺杆进料泵泵送至生物预处理发酵罐,生物预处理后的秸秆溢流至出料池后用螺杆泵泵送至快速混合系统。
蔬菜残余经X-Ripper破碎机破碎后,用铲车输送至固体进料系统,干清猪粪也被加到固体进料系统中,然后通过无轴螺旋输送机输送至快速混合系统,从厌氧反应器泵出的出料也被输送到快速混合系统。经预处理的秸秆、破碎的蔬菜残余、猪粪、工艺水和反应罐的出料在快速混合系统中混合并最终被输送到厌氧反应罐中。
水冲猪粪、破碎后的餐厨垃圾在混料池中混合均匀后经螺杆泵泵入厌氧反应罐中。
厌氧反应罐内设中轴搅拌装置,罐内物料呈全混状态,在适宜的碱度、温度条件下确保厌氧反应充分进行。厌氧反应产生的沼气经净化系统净化后部分供居民用气,其余部分经由净化提纯、高压储气柜储存后运送至加气站;消化罐内出来的残渣由螺杆泵输送至换热器经热交换后流入缓冲池,再由污泥泵输送入卧螺式离心分离机进行固液分离,分离后的沼渣沼液作为有机肥厂的原料,根据市场需求生产有机肥。出于安全因素的考虑,需要在变压吸附系统前设置一个沼气火炬。
设置换热器回收出料热量,进行余热利用,减少外加热量,进而减少能源消耗。设置燃煤锅炉以补充余热回收热量的不足,在厌氧消化罐内设置加热盘管,维持厌氧反应稳定运行的温度。
1、预处理工艺
秸秆单独收集,收集后先进行粉碎,然后采用生物预处理。
蔬菜残余单独收集,收集后进行破碎。
猪粪经过格栅,去除石块、塑料等大的无机物质。
干清猪粪、经过预处理的秸秆和蔬菜残余均被输送至快速混合系统,并在快速混合系统内充分混匀,然后泵入厌氧消化罐内。在此实现匀浆,以保障后续处理构筑物正常运行。
餐厨垃圾在原料进入反应器之前需要进行适当的预处理。本项目在预处理过程中采用粗破碎的方式进行预处理。
餐厨垃圾、水冲猪粪在预混池中混合均匀,然后泵入厌氧消化罐内。
2、厌氧消化工艺
厌氧消化工艺包括进料单元、厌氧消化单元、沼气净化及贮存单元等。(1)进料方式
经过破碎的秸秆在预混池和稀释水混合均匀后经螺杆泵输送至生物预处理发酵罐,经过生物预处理后的原料溢流至出料池,然后泵送至快速混合系统。猪粪和经预处理的蔬菜残余暂时储存在固体进料槽中,称重后由螺旋输送器输送至快速混合系统。猪粪、经预处理的蔬菜残余、秸秆和回流的发酵罐出料在快速混合系统中混合,然后输送至厌氧消化单元。
餐厨垃圾、水冲猪粪在液体进料系统中通过螺杆泵泵入厌氧消化单元。(2)厌氧反应器选择
本工程采用完全混合厌氧反应器
(CSTR),见图7-2。完全混合厌氧反应
器适用于畜禽粪污发酵工艺。它在沼气
发酵罐内采用搅拌和加温技术,这是沼
气发酵工艺中的一项重要技术突破。搅
拌和加热,使沼气发酵速率大大提高,
完全混合式厌氧反应器也被称为高速沼
气发酵罐。其特点是:固体浓度高,可
使畜禽粪便污水全部进行沼气发酵处
理。优点是处理量大,产沼气量多,便
于管理,易启动,运行费用低。一般适
图7-2CSTR反应器示意图
宜于以产沼气为主,有使用液态有机肥
(水肥)习惯的地区。由于这种工艺适宜处理含悬浮物高的畜禽粪污和有机废弃
(3)厌氧消化罐配置
每座厌氧反应器内设置中轴搅拌器,使进料均匀分布并充分与厌氧微生物接触,并使厌氧消化罐内料液温度均匀,有利于提高产气率。
罐内设加热盘管,维持厌氧反应所需的稳定的温度环境。
反应器底部设出料系统,通过凸轮转子泵打入换热器后进入出料缓冲池。(4)保温与增温
厌氧消化反应过程受温度影响很大。温度主要通过对厌氧微生物细胞内某些酶的活性而影响微生物的生长速率和微生物对基质的代谢速率。根据微生物生长的温度范围,厌氧微生物可分为嗜冷、嗜温、嗜热微生物,相应地,厌氧消化按温度可分为常温、中温、高温发酵。本项目厌氧处理单元设计为中温,温度对发酵产气率的影响如图7-3所示。其最佳温度范围为35~38℃,且发酵温度每升高10℃,厌氧反应速率约增加1倍。为了保证厌氧反应在冬季仍可正常运行,必须对系统实施增温和整体保温措施。
a.保温
系统整体保温包括管道、阀
门保温和厌氧消化罐体的保温。
对厌氧消化罐采用岩棉进行强
化保温。
b.增温
方面,一是通过泥泥换热器回收
厌氧发酵罐出料的热能,以减少
图7-3温度对厌氧中温发酵产气率的影响
炉,以补充回收热量的不足,保障整个发酵系统在持续稳定的温度条件下运行。
3、沼液沼渣处理工艺
出料经过固液分离后,沼渣沼液均作为有机肥厂的原料。本项目采用现代高新技术与传统常规农业技术相结合;沼渣沼液固体废弃物资源开发利用与农业环境保护相结合;自有技术创新与技术设备配套输出相结合;将有机化学—无机化学—生物学—工程机械学—生态学等多学科融为一体的综合技术路线。经固液分离之后产生的沼渣和沼液,经科学的工艺方法处理生产有机肥。
4、沼气净化与贮存工艺
(1)沼气净化工艺
厌氧发酵罐刚产出的沼气是含饱和水蒸气的混合气体,除含有CH4和CO2外,还含有H2S和悬浮的颗粒状杂质。H2S不仅有毒,而且有很强的腐蚀性。过量的H2S和杂质会危及后续设备的寿命,因此需进行脱硫、脱水等净化处理。
为保护后续处理设备,沼气中H2S气体含量需低于15mg/m3,因此沼气的脱硫净化处理是必须的。
本工程拟采用湿法脱硫法对沼气进行脱硫处理。
由于沼气中的硫化氢含量较高,采用络合铁法双塔并联脱硫工艺。沼气分别从前后串联的一级填料吸收塔、二级填料吸收塔的下部进入,与自上而下的脱硫液在两段填料区内逆流接触,硫化氢被脱硫液所吸收,脱硫后的沼气经除雾器后由出气管供给预处理装置。
脱硫液为含有络合铁催化剂的碱液,吸收了硫化氢的脱硫液从填料吸收塔底流入富液罐,再经富液泵加压打入再生塔中,与自吸进入喷射器的空气充分混合,经反应后进入再生塔,在再生塔内进一步氧化再生,再生后的贫液从再生塔上部溢流进入贫液槽,由贫液泵升压送入吸收塔循环吸收。
再生塔内析出的元素硫悬浮与再生塔顶部的环形塔内,并溢流进入泡沫槽,在泡沫槽,含硫泡沫经离心机过滤,分离出单质硫,过滤后的清液由回流泵打回到贫液槽循环使用。
(2)沼气储存工艺
如图7-4和图7-5所示。膜式储气柜由外膜、内膜、底膜和混凝土基础组成,内膜与底膜围成的内腔用于贮存沼气,外膜和内膜之间气密。外层膜充气为球体形状。贮气柜设防爆鼓风机,风机可自动调节气体的进/出量,以保持气柜内气压稳定。内外膜和底膜均采用优质膜材,由HF熔接工序熔接而成,材料经表面