开通VIP,畅享免费电子书等14项超值服
首页
好书
留言交流
下载APP
联系客服
2023.10.22湖北
近40年来,中国渔业科技实现了快速发展,已初步建立了覆盖内陆水域和海洋的渔业产业技术体系,在良种选育、生态养殖等研究方向已达到世界先进水平。其中,水产种质创制能力不断提升,培育出266个水产新品种,建成80余个国家级水产原良种场,是世界上培育水产养殖新品种最多的国家,初步形成了全国水产良种体系,优质养殖品种的供给为产业发展提供了基础保障。
“十二五”时期,中国系统地开展了鱼、虾、蟹、贝、藻和参等主要水产养殖生物的遗传基础研究,建立了杂交、诱变、多倍体、复合性状人工选择育种和分子标记辅助育种等技术,建成了一批国际先进的科技创新和应用示范平台,培养了一批具有国际视野的创新团队,大幅提升了中国水产养殖的良种覆盖率,支撑了国家鱼、虾、蟹、贝、藻和参等养殖业的快速健康发展,持续保持着世界第一水产养殖大国的地位。
尽管中国水产育种研究方面取得了显著进展,但是水产养殖生物的遗传基础研究和种质创制能力依然薄弱,诸多重大科学问题和共性关键技术瓶颈亟待解决,如生长与品质等重要性状遗传基础与调控机制亟待深度解析,产业急需的抗逆和优良品质性状品种少,性状测评技术落后,分子育种技术还需改进,基因编辑和分子性控等关键前沿技术缺乏,良种规模化制种技术滞后等,严重制约了水产养殖产业绿色和健康可持续发展,水产种业亟待加快科技创新和产业升级。为此,“十三五”期间国家重点研发计划部署了“蓝色粮仓科技创新”(以下简称“蓝色粮仓”)重点专项,围绕水产种业发展需求,按照科技创新链要求,系统设置了主要水产养殖生物重要经济性状遗传基础解析和种质创制重大共性关键技术研发任务,经过4年的努力,重要水产养殖生物优良种质创新和良种培育能力取得了重大突破。
完整准确的基因组信息是开展性状精细解析和分子育种的重要基础,但目前多数水产养殖生物缺乏高质量参考基因组。通过“蓝色粮仓”重点专项的实施,绘制了30余种重要水产养殖生物基因组图谱[1-30](表1),揭示了生长、品质、抗性、性别等重要性状的组学机制。“蓝色粮仓”重点专项突破了条斑紫菜(Pyropiayezoensis)基因组组装瓶颈,并阐明其适应极端环境、世代间碳利用差异的分子机理[1];揭示了鲤科亚基因组间的基因表达趋异策略和调控机制[2];构建了XX、XY和YY南方鲇(Silurusmeridionalis)个体全基因组精细图谱[3];完成了魁蚶(Scapharcabroughtonii)[4]、卵形鲳鲹(Trachinotusovatus)[5]、斑石鲷(Oplegnathuspunctatus)[6]和三疣梭子蟹(Portunustrituberculatus)[7]等30余个水产养殖生物基因组精细图谱绘制,为水产生物性状解析和分子育种奠定了组学基础。
表1“十三五”期间“蓝色粮仓”重点专项支持下中国水产养殖生物全基因组图谱绘制进展
Tab.1ProgressofwholegenomesequencingofaquaculturespeciesinChinaunderthesupportof“BlueGranary”projectinNationalKeyResearchandDevelopmentProgramduring“13thFive-YearPlan”
在性别发育关键基因筛选方面,通过开展水产养殖动物Foxl2基因在性别和育性调控方面的功能研究,发现拟穴青蟹(Scyllaparamamosain)Foxl2偏向在精巢中高表达,应用RNAi将Foxl2敲降,导致卵巢中卵黄蛋白原(VTG)的mRNA高表达,表明Foxl2在青蟹精巢中特异表达,具有抑制卵巢成熟的功能[58];从形态、内分泌和分子等层面揭示了海湾扇贝(Argopectenirradians)Foxl1基因具有卵巢组织表达特异性,且依据其表达启动时序特征,推断其可能具有促进卵巢育性发育的功能,提示海湾扇贝的Foxl2具有促进雌性性别和育性发育作用[59];采用基因编辑技术,发现六倍体银鲫具有3个歧化的Foxl2部分同源基因,它们又各自具有3个序列高度一致的等位基因,而foxl2a-A在进化过程中已经丢失,foxl2a-B、foxl2b-A和foxl2b-B发生了亚功能化,协同调控银鲫的滤泡发生和卵巢发育[32];同时对多个物种Foxl表达的分析表明,其进化出的新功能可调控配子发生[60]。上述研究揭示了Foxl基因在水产动物性别与育性发育的进化过程,以及多倍体重复基因进化命运中的作用,具有重要的理论价值。
在共性技术育种方面,构建了抑制受精卵第二极体制备牡蛎四倍体的方法,通过倍性检测、修复等技术,开展了福建牡蛎、香港牡蛎和熊本牡蛎四倍体的创制工作[88-89],已形成稳定的四倍体核心群体,并进一步通过4N×2N生物学杂交方法进行了全三倍体牡蛎的规模化生产,将三倍体种苗推广至中国福建、广东等省和广西壮族自治区,以及越南等国家,有效推进了中国华南地区牡蛎三倍体产业的发展。牡蛎三倍体研究成果总体处于国际先进水平。
通过“蓝色粮仓”重点专项的实施,主导水产种质创制能力显著提升,培育新品种30个(表2),推广养殖面积超过11万hm2,良种覆盖率获得大幅提升。
表2“十三五”期间“蓝色粮仓”重点专项支持下中国获得的30个水产养殖新品种
Tab.230newvarietiesofaquaculturespeciesinChinaunderthesupportof“BlueGranary”projectinNationalKeyResearchandDevelopmentProgramduring“13thFive-YearPlan”
在鱼类新品种培育方面,培育出全雄罗非鱼“粤闽1号”、全雌翘嘴鳜“鼎鳜1号”和罗非鱼抗无乳链球菌病新品种——罗非鱼“壮罗1号”等新品种。其中,全雄罗非鱼“粤闽1号”生长速度比吉富罗非鱼快23.77%,带皮出肉率平均高2.54%;“鼎鳜1号”生长速度较对照鳜快20%,养殖成活率较高;“壮罗1号”累计繁育种苗1.23亿尾,推广养殖面积超过3333hm2,带动了从业企业及养殖户增收致富,为解决罗非鱼无乳链球菌病害问题提供了种苗保障。
在藻类新品种培育方面,条斑紫菜分子定向设计育种技术取得了突破,创制国际上首例精准分子设计育种的经济藻株等新种质材料25份,在经济海藻分子设计育种方面处于国际领先水平;综合应用诱变、杂交和细胞工程等育种技术,选育出品质优、耐高温和生长快的坛紫菜“闽丰2号”新品种,示范应用超过6667hm2,其高产、优质和抗逆性状得到了养殖户的高度肯定,使得“南菜北养”的范围进一步扩大。
目前,中国水产育种在主导养殖生物种质创制能力上获得了显著提升,在经济性状生物学机制上取得了新认知,种质创制和生殖操作关键技术取得了新突破,在重要养殖生物经济性状遗传解析、生殖干细胞培养诱导与移植、性别控制育种技术、经济性状高通量精准测评技术、基因组选育技术平台构建和新品种培育等领域取得了世界领先成果。然而,在新形势下,中国水产种业科技创新仍然面临一些问题。
1)种质资源收集、鉴定和发掘不足。对种质资源普查收集工作和资源保存设施建设的支持力度不够,地方特色种质资源开发、精准鉴定和发掘不足,种质资源利用率较低。
3)水产新品种覆盖率有较大提升空间。与发达国家主要养殖品种55%的水产良种覆盖率和25%的遗传改良率相比,中国大部分水产新品种仍有较大提升空间。
4)未来育种技术创新性有待继续提高。分子设计育种技术和智能育种技术缺乏,不能满足新品种培育需要。
5)商业化育种体系不完善。公益性科研教学单位仍是新品种培育主体,以企业为主体的产学研结合模式和商业化育种体系亟待完善。
6)与良种配套的大规模繁育推广技术标准和苗种生物安保体系缺失。
根据中国海洋农业与淡水渔业发展的新形势和新趋势,针对中国水产种业发展面临的水产种业大而不强的主要问题和重大科技需求,聚焦精准育种,提高科技创新能力,加强原始基础理论和重大共性技术创新,实现现代渔业的良种化、精准化和智能化,助力“碳中和”“碳达峰”,推动产业升级,巩固脱贫攻坚,促进乡村振兴,需要继续加强以下方面的工作。
1)加强水产养殖生物种质资源收集、评价与保存。支持地方种质资源保护平台和设施建设,深度挖掘种质资源,提高种质资源利用率。
2)加快突破性新品种研发进程,加强优势性状保持能力。针对大宗水产种类和未有新品种的养殖种类,突破基因编辑和分子设计等前沿育种技术,结合传统育种技术,加快育种进程。
3)强化企业技术创新主体地位,推进种业科企合作。重点扶持优势企业发展和健全商业化育种体系,建立良种科技研发与商业化种业协同发展机制。
4)加强育种原创性理论与技术研究。深化重要经济性状形成机制、群体协同进化规律、基因组结构和功能多样性等研究,为优良品种培育提供理论基础,融合基因编辑、全基因组选择、合成生物和人工智能等前沿技术,推进水产育种向高效化、精准化和智能化发展。
5)推进水产种业体系与水产优质种苗规模化繁育基地建设,完善新品种“育、繁、推”一体化技术体系,加强水产优质种苗推广,推进苗种安保体系建设。
参考文献:
[1]WANGDM,YUXZ,XUKP,etal.Pyropiayezoensisgenomerevealsdiversemechanismsofcarbonacquisitionintheintertidalenvironment[J].NatureCommunications,2020,11:4028.
[2]LIJT,WANGQ,YANGMDH,etal.Parallelsubgenomestructureanddivergentexpressionevolutionofallo-tetraploidcommoncarpandgoldfish[J].NatureGenetics,2021,53(10):1493-1503.
[3]ZHENGSQ,SHAOF,TAOWJ,etal.Chromosome-levelassemblyofsoutherncatfish(Silurusmeridionalis)providesinsightsintovisualadaptationtonocturnalandbenthiclifestyles[J].MolecularEcologyResources,2021,21(5):1575-1592.
[4]BAICM,XINLS,ROSANIU,etal.Chromosomal-levelassemblyofthebloodclam,Scapharca(Anadara)broughtonii,usinglongsequencereadsandHi-C[J].GigaScience,2019,8(7):giz067.
[5]ZHANGDC,GUOL,GUOHY,etal.Chromosome-levelgenomeassemblyofgoldenpompano(Trachinotusovatus)inthefamilyCarangidae[J].ScientificData,2019,6:216.
[6]LIM,ZHANGR,FANGY,etal.Reconstructionoftheoriginofaneo-Ysexchromosomeanditsevolutioninthespottedknifejaw,Oplegnathuspunctatus[J].MolecularBiologyandEvolution,2021,38(6):2615-2626.
[7]LVJJ,LIRH,SUZC,etal.Achromosome-levelgenomeofPortunustrituberculatusprovidesinsightsintoitsevolution,salinityadaptationandsexdetermination[J].MolecularEcologyResources,2022,22(4):1606-1625.
[8]ZHAOM,WANGW,ZHANGFY,etal.Achromosome-levelgenomeofthemudcrab(ScyllaparamamosainEstampador)providesinsightsintotheevolutionofchemicalandlightperceptioninthiscrustacean[J].MolecularEcologyResources,2021,21(4):1299-1317.
[9]JINSB,BIANC,JIANGSF,etal.Achromosome-levelgenomeassemblyoftheorientalriverprawn,Macrobrachiumnipponense[J].GigaScience,2021,10(1):giaa160.
[10]CAOM,XUKP,YUXZ,etal.Achromosome-levelgenomeassemblyofPyropiahaitanensis(Bangiales,Rhodophyta)[J].MolecularEcologyResources,2020,20(1):216-227.
[11]CHENHM,CHUJSC,CHENJJ,etal.InsightsintotheancientadaptationtointertidalenvironmentsbyredalgaebasedonagenomicandmultiomicsinvestigationofNeoporphyrahaitanensis[J].MolecularBiologyandEvolution,2022,39(1):msab315.
[12]YANXW,NIEHT,HUOZM,etal.Clamgenomesequenceclarifiesthemolecularbasisofitsbenthicadaptationandextraordinaryshellcolordiversity[J].iScience,2019,19:1225-1237.
[13]XUTJ,LIY,ZHENGWW,etal.Achromosome-levelgenomeassemblyoftheblackspottedcroaker(Protonibeadiacanthus)[J].AquacultureandFisheries,2022,7(6):616-622.
[14]HAOSJ,HANK,MENGLF,etal.Africanarowanagenomeprovidesinsightsonancientteleostevolution[J].iScience,2020,23(11):101662.
[15]ZHANGYL,GAOHY,LIHB,etal.Thewhite-spottedbamboosharkgenomerevealschromosomerearrangementsandfast-evolvingimmunegenesofcartilaginousfish[J].iScience,2020,23(11):101754.
[16]XUTJ,LIY,CHUQ,etal.Achromosome-levelgenomeassemblyofthereddrum,Sciaenopsocellatus[J].AquacultureandFisheries,2021,6(2):178-185.
[17]SUNS,WANGY,ZENGWH,etal.ThegenomeofMekongtigerperch(Datnioidesundecimradiatus)providesinsightsintothephylogeneticpositionofLobotiformesandbiologicalconservation[J].ScientificReports,2020,10:8164.
[18]GUOL,LIANGSJ,ZHANGZY,etal.GenomeassemblyofNannochloropsisoceanicaprovidesevidenceofhostnucleusoverthrowbythesymbiontnucleusduringspeciation[J].CommunicationsBiology,2019,2:249.
[19]LIUQH,WANGXY,XIAOYS,etal.Sequencingoftheblackrockfishchromosomalgenomeprovidesinsightintospermstorageinthefemaleovary[J].DNAResearch:AnInternationalJournalforRapidPublicationofReportsonGenesandGenomes,2019,26(6):453-464.
[20]WANGXT,XUWJ,WEIL,etal.NanoporesequencingandDeNovoassemblyofablack-shelledPacificoyster(Crassostreagigas)genome[J].FrontiersinGenetics,2019,10:1211.
[21]DONGYH,ZENGQF,RENJF,etal.Thechromosome-levelgenomeassemblyandcomprehensivetranscriptomesoftherazorclam(Sinonovaculaconstricta)[J].FrontiersinGenetics,2020,11:664.
[22]WANGSQ,LINLD,SHIYJ,etal.FirstdraftgenomeassemblyoftheseaweedSargassumfusiforme[J].FrontiersinGenetics,2020,11:590065.
[23]LIUD,GUIL,ZHUYF,etal.Chromosome-levelassemblyofmaleOpsariichthysbidensgenomeprovidesinsightsintotheregulationoftheGnRHsignalingpathwayandgenomeevolution[J].Biology,2022,11(10):1500.
[24]ZHANGR,LIC,YUMJ,etal.Chromosome-levelgenomeassemblyofthehumpbackpuffer,Tetraodonpalembangensis[J].Gigabyte,2021,2021:1-12.
[25]LIUD,WANGXY,GUOHY,etal.Chromosome-levelgenomeassemblyoftheendangeredhumpheadwrasseCheilinusundulatus:insightintotheexpansionofopsingenesinfishes[J].MolecularEcologyResources,2021,21(7):2388-2406.
[26]LVMQ,ZHANGYL,LIUKQ,etal.Achromosome-levelgenomeassemblyoftheanglerfishLophiuslitulon[J].FrontiersinGenetics,2020,11:581161.
[27]OUM,HUANGR,YANGC,etal.Chromosome-levelgenomeassembliesofChannaargusandChannamaculataandcomparativeanalysisoftheirtemperatureadaptability[J].GigaScience,2021,10(10):giab070.
[28]LIUXL,WANGYK,YUANJ,etal.Chromosome-levelgenomeassemblyofAsianyellowpondturtle(Mauremysmutica)withtemperature-dependentsexdeterminationsystem[J].ScientificReports,2022,12:7905.
[29]XUTJ,LIY,ZHENGWW,etal.Achromosome-levelgenomeassemblyofthemiiuycroaker(Miichthysmiiuy)usingnanoporesequencingandHi-C[J].AquacultureandFisheries,2021
[30]LIX,WANGSY,XUNXG,etal.Acarotenoidoxygenaseisresponsibleformusclecolorationinscallop[J].BiochimicaetBiophysicaActa(BBA)-MolecularandCellBiologyofLipids,2019,1864(7):966-975.
[31]HUANP,WANGQ,TANSJ,etal.DorsoventraldecouplingofHoxgeneexpressionunderpinsthediversificationofmolluscs[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,2020,117(1):503-512.
[32]GANRH,WANGY,LIZ,etal.FunctionaldivergenceofmultipleduplicatedFoxl2homeologsandallelesinarecurrentpolyploidfish[J].MolecularBiologyandEvolution,2021,38(5):1995-2013.
[33]WANGH,DINGJ,DINGSY,etal.MetabolomicchangesandpolyunsaturatedfattyacidbiosynthesisduringgonadalgrowthanddevelopmentintheseaurchinStrongylocentrotusintermedius[J].ComparativeBiochemistryandPhysiologyPartD:GenomicsandProteomics,2019,32:100611.
[34]ZHAOZY,YUXZ,JIAJR,etal.miR-181b-5pmayregulatemusclegrowthintilapiabytargetingmyostatinB[J].FrontiersinEndocrinology,2019,10:812.
[35]KONGJ,YANYJ,LUX,etal.IntegrativephenotypicandgeneexpressiondataidentifymyostatinasamusclegrowthinhibitorinChineseshrimpFenneropenaeuschinensis[J].ScientificReports,2020,10:5985.
[36]常永杰,周佳佳,张丽红,等.刀鲚肌间骨新类型的发现[J].水生生物学报,2020,44(1):104-111.
CHANGYJ,ZHOUJJ,ZHANGLH,etal.TheidentificationofnewtypesofintermuscularbonesinCoilianasus[J].ActaHydrobiologicaSinica,2020,44(1):104-111.(inChinese)
[37]TANGGP,LVWH,SUNZP,etal.Heritabilityandquantitativetraitlocusanalysesofintermuscularbonesinmirrorcarp(Cyprinuscarpio)[J].Aquaculture,2020,515:734601.
[38]XIONGXM,ROBINSONNA,ZHOUJJ,etal.Geneticparameterestimatesforintermuscularboneinbluntsnoutbream(Megalobramaamblycephala)basedonamicrosatellite-basedpedigree[J].Aquaculture,2019,502:371-377.
[39]ZHOUY,FUBD,YUXM,etal.Genome-wideassociationstudyrevealsgenomicregionsandcandidategenesforheadsizeandshapeinbigheadcarp(Hypophthalmichthysnobilis)[J].Aquaculture,2021,539:736648.
[40]NIECH,HILSDORFAWS,WANSM,etal.Understandingthedevelopmentofintermuscularbonesinteleost:statusandfuturedirectionsforaquaculture[J].ReviewsinAquaculture,2020,12(2):759-772.
[41]WANSM,XIONGXT,etal.IdentificationandmappingofSNPsassociatedwithnumberofintermuscularboneinbluntsnoutbream[J].Aquaculture,2019,507:75-82.
[42]LIA,LIL,ZHANGZY,etal.Noncodingvariationandtranscriptionalplasticitypromotethermaladaptationinoystersbyalteringenergymetabolism[J].MolecularBiologyandEvolution,2021,38(11):5144-5155.
[43]WANGXX,LIA,WANGW,etal.DirectandheritableeffectsofnaturaltidalenvironmentsonDNAmethylationinPacificoysters(Crassostreagigas)[J].EnvironmentalResearch,2021,197:111058.
[44]MENGL,XUWT,CHENYD,etal.pik3r3b,anovelimmune-relatedgeneinNiletilapia(Oreochromisniloticus):identification,expressionandanalysisofantibacterialactivity[J].Fish&ShellfishImmunology,2019,87:705-713.
[45]HUQM,AOQW,TANY,etal.Genome-wideDNAmethylationandRNAanalysisrevealpotentialmechanismofresistancetoStreptococcusagalactiaeinGIFTstrainofNiletilapia(Oreochromisniloticus)[J].JournalofImmunology,2020,204(12):3182-3190.
[46]LUOS,LIWB,XIEYJ,etal.AmolecularinsightintotheresistanceofyellowdrumtoVibrioharveyibygenome-wideassociationanalysis[J].Aquaculture,2021,543:736998.
[47]QINYT,SUNZS,WANGW,etal.CharacterizationofCD3γ/δ+cellsingrasscarp(Ctenopharyngodonidella)[J].Developmental&ComparativeImmunology,2021,114:103791.
[48]JIAZY,WUN,JIANGXN,etal.IntegrativetranscriptomicanalysisrevealstheimmunemechanismforaCyHV-3-resistantcommoncarpstrain[J].FrontiersinImmunology,2021,12:687151.
[49]LONGY,LIXX,LIFY,etal.Transcriptionalprogramsunderlyingcoldacclimationofcommoncarp(CyprinuscarpioL.)[J].FrontiersinGenetics,2020,11:556418.
[50]WENX,CHUP,XUJJ,etal.Combinedeffectsoflowtemperatureandsalinityontheimmuneresponse,antioxidantcapacityandlipidmetabolisminthepufferfish(Takifugufasciatus)[J].Aquaculture,2021,531:735866.
[51]ZHAOXR,LIRJ,DANGHF,etal.ComparisonofwholegenomesequencesofthreeBacilluscereusstrainsrevealsthefoodsafetyrisksofApostichopusjaponicusinChina[J].AquacultureReports,2021,20:100649.
[52]TIANY,SHANGYP,GUOR,etal.Salinitystress-induceddifferentiallyexpressedmiRNAsandtargetgenesinseacucumbersApostichopusjaponicus[J].CellStressandChaperones,2019,24(4):719-733.
[53]HUOD,SUNLN,ZHANGLB,etal.Timecourseanalysisofimmunity-relatedgeneexpressionintheseacucumberApostichopusjaponicusduringexposuretothermalandhypoxicstress[J].Fish&ShellfishImmunology,2019,95:383-390.
[54]ZHENGSQ,WANGXS,ZHANGS,etal.Screeningandcharacterizationofsex-linkedDNAmarkersandmarker-assistedselectioninthesoutherncatfish(Silurusmeridionalis)[J].Aquaculture,2020,517:734783.
[55]王德寿,郑树清,王晓双,等.南方鲇性染色体特异分子标记与基于该分子标记的遗传性别鉴定方法和单性鱼生产方法:CN110551808A[P].2021-07-06.
WANGDS,ZHENGSQ,WANGXS,etal.SpecificmolecularmarkersofsexchromosomesofSilurusmeridionalisandgeneticsexidentificationmethodandunisexualfishproductionmethodbasedonmolecularmarkers:CN110551808A[P].2021-07-06.(inChinese)
[56]ZHAIG,SHUTT,CHENKX,etal.Successfulproductionofanall-femalecommoncarp(CyprinuscarpioL.)populationusingcyp17a1-deficientneomalecarp[J].Engineering,2022,8:181-189.
[57]YANGLY,ZHANGXF,LIUSJ,etal.Cyp17a1isrequiredforfemalesexdeterminationandmalefertilitybyregulatingsexsteroidbiosynthesisinfish[J].Endocrinology,2021,162(12):bqab205.
[58]WANHF,ZHONGJY,ZHANGZP,etal.Characterizationofthefoxl2geneinvolvedinthevtgexpressioninmudcrab(Scyllaparamamosain)[J].Gene,2021,798:145807.
[59]WEIHL,LIWR,LIUT,etal.SexualdevelopmentofthehermaphroditicscallopArgopectenirradiansrevealedbymorphological,endocrineandmolecularanalysis[J].FrontiersinCellandDevelopmentalBiology,2021,9:646754.
[60]WANGYK,LIUXL,ZHAOJ,etal.MolecularcloningofESR1,BMPR1B,andFOXL2anddifferentialexpressionsdependonmaternalageandsizeduringbreedingseasoninculturedAsianyellowpondturtle(Mauremysmutica)[J].ComparativeBiochemistryandPhysiologyPartB:BiochemistryandMolecularBiology,2019,232:108-120.
[61]沈雅威,陈楠,骆轩,等.一种用于快速测定鲍耐低氧能力的方法:CN110276546A[P].2019-09-24.
SHENYW,CHENN,LUOX,etal.Methodforrapidlydetermininghypoxiatoleranceofabalone:CN110276546A[P].2019-09-24.(inChinese)
[62]韦晓慧,柯才焕,游伟伟,等.一种橙红色足肌西氏鲍类胡萝卜素鉴定与含量测定方法:CN110308220A[P].2019-10-08.
WEIXH,KECH,YOUWW,etal.AmethodfortheidentificationandcontentdeterminationofcarotenoidsinHaliotisgigantea:CN110308220A[P].2019-10-08.(inChinese)
[63]赵虹博,邓素贞,张静,等.从织锦巴非蛤提取总类胡萝卜素的两种前处理方法效果比较[J].海洋科学,2019,43(11):62-67.
ZHAOHB,DENGSZ,ZHANGJ,etal.ComparisonbetweentwopretreatmentmethodsoftotalcarotenoidextractionfromPaphiatextile[J].MarineSciences,2019,43(11):62-67.(inChinese)
[64]白志毅,何志然,袁立,等.一种珍珠光泽度的精准快速检测方法:CN111366562A[P].2020-07-03.
BAIZY,HEZR,YUANL,etal.Apreciseandfastmeasuringmethodforpearlgloss:CN111366562A[P].2020-07-03.(inChinese)
[65]包振民,王心园,黄晓婷,等.一种自动化贝类表型分析系统:CN113155827A[P].2021-07-23.
BAOZM,WANGXY,HUANGXT,etal.Anautomaticshellfishphenotypeanalysissystem:CN113155827A[P].2021-07-23.(inChinese)
[66]邢强,朱星海,彭程,等.一种栉孔扇贝耐温性状指标ABT的快速测定方法:CN111280098A[P].2020-06-16.
XINGQ,ZHUXH,PENGC,etal.ArapidmeasurementmethodforABToftemperaturetolerancetraitsinChlamysfarreri:CN111280098A[P].2020-06-16.(inChinese)
[67]黄晓婷,曾祥意,胡丽萍,等.一种栉孔扇贝拉力指标的标准化测定方法:CN111280098A[P].2020-06-16.
HUANGXT,ZENGXY,HULP,etal.AstandardizedmeasurementmethodfortensileindexofChlamysfarreri:CN111280098A[P].2020-06-16.(inChinese)
[68]王广策,何帮翔,郑阵兵.一种紫菜功能基因沉默的方法及其应用:CN110747223A[P].2020-02-04.
WANGGC,HEBX,ZHENGZB,etal.Amethodoffunctionalgenesilencinginporphyraanditsapplication:CN110747223A[P].2020-02-04.(inChinese)
[69]ZHOUL,GAOS,WUSC,etal.PGRL1overexpressioninPhaeodactylumtricornutuminhibitsgrowthandreducesapparentPSIIactivity[J].ThePlantJournal:forCellandMolecularBiology,2020,103(5):1850-1857.
[70]WUMX,HUQ,ZHOUY,etal.DevelopmentofaVP28-pseudotypedbaculovirusexpressionsystemforefficientgenetransferinpenaeidshrimps[J].Aquaculture,2021,541:736741.
[71]LIN,GUOLW,GUOHR.Establishment,characterization,andtransfectionpotentialofanewcontinuousfishcellline(CAM)derivedfromthemuscletissueofgrassgoldfish(Carassiusauratus)[J].InVitroCellular&DevelopmentalBiology-Animal,2021,57(9):912-931.
[72]郭华荣,毋梦茜.一种用于对虾的假型昆虫杆状病毒基因转移系统、病毒及构建方法和应用:CN111378689A[P].2021-12-28.
GUOHR,WUMQ.Apseudoinsectbaculovirusgenetransfersystem,virus,constructionmethodandapplicationforshrimp:CN111378689A[P].2021-12-28.(inChinese)
[74]HUANGJF,YOUWW,XUZW,etal.AneffectivemicroinjectionmethodandTALEN-mediatedgenomeeditinginPacificabalone[J].MarineBiotechnology,2019,21(4):441-447.
[75]TAOBB,LIAOXY,CHENL,etal.Germcellsarenotessentialforsexualdimorphismofgonadsincommoncarp,C.carpioL.[J].Aquaculture,2022,547:737501.
[76]ZHOUL,WANGXY,LIUQH,etal.SuccessfulspermatogonialstemcellstransplantationwithinPleuronectiformes:firstbreakthroughatinter-familylevelinmarinefish[J].InternationalJournalofBiologicalSciences,2021,17(15):4426-4441.
[77]叶欢,李创举,危起伟,等.一种鲟鱼性腺组织的冷冻保存液和冷冻保存及复苏的方法:CN111567515A[P].2020-08-25.
YEH,LICJ,WEIQW,etal.Cryopreservationsolutionandmethodforcryopreservationandresuscitationofsturgeongonadtissue:CN111567515A[P].2020-08-25.(inChinese)
[78]刘威,易梅生,张洪,等.一种精原细胞分离液及其在分离纯化云斑尖塘鳢精原细胞中的应用:CN112608887A[P].2021-04-06.
LIUW,YIMS,ZHANGH,etal.AspermatogeniccellisolationsolutionanditsapplicationintheseparationandpurificationofspermatogeniccellsfromBostrichthysmarmoratus:CN112608887A[P].2021-04-06.(inChinese)
[79]刘清华,李军,王文琪,等.一种大菱鲆精原干细胞的分离方法:CN107916251A[P].2018-04-17.
LIUQH,LIJ,WANGWQ,etal.AmethodforisolationofspermatogonialstemcellsfromScophthalmusmaximus:CN107916251A[P].2018-04-17.(inChinese)
[80]YEH,ZHOUCL,YUEHM,etal.CryopreservationofgermlinestemcellsinAmericanpaddlefish(Polyodonspathula)[J].AnimalReproductionScience,2021,224:106667.
[81]殷战,翟刚,舒婷婷,等.实现XX/XY性别遗传决定型鱼类性别控制育种的方法及应用:CN113789352A[P].2021-12-14.
YINZ,ZHAIG,SHUTT,etal.MethodsandapplicationofsexcontrolbreedingforXX/XYsexgeneticdeterminantsfishes:CN113789352A[P].2021-12-14.(inChinese)
[82]HANC,ZHUQY,LUHM,etal.Screeningandcharacterizationofsex-specificmarkersdevelopedbyasimpleNGSmethodinmandarinfish(Sinipercachuatsi)[J].Aquaculture,2020,527:735495.
[83]HANC,ZHUQY,ZHOUXN,etal.APCR-basedgeneticsexidentificationmethodinspottedmandarinfish(Sinipercascherzeri)andbigeyemandarinfish(Sinipercakneri)[J].AquacultureReports,2020,18:100552.
[84]LIUS,XUP,LIUXG,etal.Productionofneo-malemandarinfishSinipercachuatsibymasculinizationwithorallyadministered17α-methyltestosterone[J].Aquaculture,2021,530:735904.
[85]LUOZ,YUY,XIANGJH,etal.GenomicselectionusingasubsetofSNPsidentifiedbygenome-wideassociationanalysisfordiseaseresistancetraitsinaquaculturespecies[J].Aquaculture,2021,539:736620.
[86]PENGWZ,YUF,WUYY,etal.Identificationofgrowth-relatedSNPsandgenesinthegenomeofthePacificabalone(HaliotisdiscusHannai)usingGWAS[J].Aquaculture,2021,541:736820.
[87]YUF,PENGWZ,TANGB,etal.Agenome-wideassociationstudyofheattoleranceinPacificabalonebasedongenomeresequencing[J].Aquaculture,2021,536:736436.
[88]张跃环,喻子牛,秦艳平,等.一种通过亲本改良来提高香港牡蛎三倍体生产性能的方法:CN108040938A[P].2018-05-18.
ZHANGYH,YUZN,QINYP,etal.AmethodofimprovingtriploidproductionperformanceofCrassostreahongkongensisbyparentimprovement:CN108040938A[P].2018-05-18.(inChinese)
[89]张跃环,喻子牛,秦艳平,等.一种香港牡蛎四倍体幼贝的制备方法:CN107494358A[P].2019-11-01.
ZHANGYH,YUZN,QINYP,etal.ApreparationmethodofyoungtetraploidoysterofCrassostreahongkongensis:CN107494358A[P].2019-11-01.(inChinese)