在对电力系统进行研究和开展工程实践的过程中,我们往往不能直接对实际电力系统进行试验。常规的做法是建立电力系统的模型,尽可能准确地反映电力系统的特性,通过在该模型上进行实验,间接地研究实际电力系统的运行规律。这就是电力系统仿真技术。
一般来说,仿真包含物理仿真(又称实物仿真)和数字仿真。物理仿真以相似性原理为理论基础,需要搭建实际系统的实物模型。数字仿真是用数学模型在数字计算机上进行实验和研究的过程。对于复杂的电力系统来说,搭建实物模型极其困难。因此,对于电力系统研究而言,数字仿真具有非常关键的作用和意义(若无特殊说明,文中提及的仿真均指数字仿真)。
精细仿真对大规模
新型电力系统有何重要性
新型电力系统中新能源发电设备正逐步替代传统同步发电机。这些新能源发电通过电力电子设备并网,并通过交直流电网远距离输送电能。新型电力系统的动态特性受到电力电子装置快速控制和开关离散动作过程的影响,无法采用传统中长期动态仿真和机电暂态仿真准确刻画。因此,研究新型电力系统稳定性机理和故障防御策略,需要采用精细的微秒级电磁暂态模型和仿真工具。
新型电力系统电磁暂态
仿真模型的规模到底有多大
为此,我们将新型电力系统电磁暂态仿真中的节点概念一般化,将其定义为电气拓扑或控制拓扑中的边相交的点。这种节点定义方式更加接近系统中方程的个数。在电力系统电磁暂态仿真节点的一般定义下,中国电网的电磁暂态仿真模型规模可达百万节点级别。以中国西北新能源发电送出基地为例,西北交直流输电网网架全电磁暂态仿真模型电气节点数约为10万单相节点;一个典型风力发电单元的平均化模型所含单相电气节点数量在50~100之间,控制节点数量在300~500之间;若用2000台风机等值接入我国西北电网的所有风电场,其整体电磁暂态仿真模型的电气节点总数可达20万~30万,控制节点总数可达60万~100万,总节点数将在80万~130万之间。若考虑全部新能源机组详细模型接入仿真,同时考虑受端华北、华中及华东电网联网的计算规模,其模型节点总数可达600万以上。
超大规模的新型电力系统
精细仿真面临哪些挑战
面向新型电力系统的电磁暂态云
仿真平台CloudPSS研发实践
CloudPSS是面向新型电力系统的高性能电磁暂态云仿真平台,是笔者团队为突破超大规模新型电力系统精细仿真所进行的探索。
1.新型电力系统全电磁暂态多尺度融合建模和仿真方法
2.面向异构处理器和超算的大规模电磁暂态并行仿真算法
3.开放式高性能超算云仿真平台实现和应用支撑技术
在电磁暂态仿真平台建设方面,现有仿真软件体系架构较为陈旧,与当前主流云计算和人工智能主导的数字化基础设施架构相去甚远,难以适应不断增长和快速演化的仿真应用需求。现有电磁暂态仿真软件大多起步于20世纪90年代,主要面向个人用户,在通用个人计算机(PC)或特定的计算服务器上运行,以假想案例研究为主要形式,是一种高级的个人研究工具。然而,当今世界的主流软件,大多已迁移到云计算基础设施,按照原生云架构设计,提供多形态数字化服务形式,通过不断衍生高价值的App来满足海量、多样的用户需求。虽然,也有一些仿真工具被移植到云计算环境中,但其计算内核存在大量的遗留代码,在计算任务调度、资源管理、应用开发和部署等环节中暴露出不兼容、不适应、不敏捷等弱点,限制了高性能仿真及其应用水平的提升。为了将高性能仿真模型、算法和软件转化为对新型电力系统的分析决策能力,还需要面向云计算架构,设计和研发超算云仿真平台,实现仿真驱动应用的敏捷开发和弹性部署。为此,CloudPSS提出了开放式高性能超算云仿真平台实现和应用支撑技术。
CloudPSS的开放式高性能超算云仿真平台,包括建模仿真平台、仿真应用调度平台和硬件计算资源三大部分(见图4)。其中,前端建模仿真平台为Web应用,提供了图形化的模型构建、仿真设置和结果分析等功能。用户可在浏览器中直接使用,不需要安装其他软件。当用户发送仿真任务后,仿真任务会被发送至仿真应用调度平台进行解析。根据仿真任务的不同,调度平台会选择合适的计算资源,自动调用自动代码生成器生成仿真程序,并发送至具体的计算服务器完成计算。计算结果也会实时传回建模仿真平台,并以可视化的形式呈现给用户进行分析。与现有国际主流的电磁暂态仿真平台相比,CloudPSS在云仿真平台实现和应用支撑方面具有领先优势(见表3)。
CloudPSS平台的应用情况
专家简介沈沉:教授,清华大学学位委员会委员,清华大学电机系学位评定分委员会主席,清华四川能源互联网研究院数字化研究中心主任,能源电力系统数字孪生研究所所长。
陈颖:研究员,清华四川能源互联网研究院能源电力系统数字孪生研究所副所长。
黄少伟:副研究员,清华四川能源互联网研究院能源电力系统数字孪生研究所副所长。
于智同:清华四川能源互联网研究院能源电力系统数字孪生研究所所长助理。