【题目】某品牌饮水机厂生产一种饮水机和饮水机桶,饮水机每台定价350元,饮水机桶每只定价50元,厂方开展促销活动期间,可以同时向客户提供两种优惠方案:
方案一:买一台饮水机送一只饮水机桶;
方案二:饮水机和饮水机桶都按定价的90%付款.
【答案】(1)客户按方案一购买需付款(50x+9000)元,客户按方案二购买需付款(45x+9450)元;(2)当x=40时,按方案一购买合算;(3)先按方案一购买30台饮水机,送30只饮水机桶需10500元,差10只饮水机桶按方案二购买需450元,共需10950元.
【解析】
(1)按照对应的方案的计算方法分别列出代数式即可;
(2)把x=40代入求得的代数式求得数值,进一步比较得出答案即可;
(3)根据两种方案的优惠方式,可得出先按方案一购买30台饮水机,送30只饮水机桶,另外10只饮水机桶再按方案二购买即可.
(1)客户按方案一购买需付款30×350+(x﹣30)×50=50x+30(350﹣50)=(50x+9000)元;
客户按方案二购买需付款350×90%×30+50×90%×x=(45x+9450)元;
(2)当x=40时,方案一需50×40+9000=11000(元);
方案二需45×40+9450=11250(元);
所以按方案一购买合算;
(3)先按方案一购买30台饮水机,送30只饮水机桶需10500元,差10只饮水机桶按方案二购买需450元,共需10950元.
【题目】如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为()
A.5cmB.1cmC.5或1cmD.无法确定
(1)求证:CD平分∠ACE;
(2)判断直线ED与⊙O的位置关系,并说明理由;
(3)若CE=1,AC=4,求阴影部分的面积.
【题目】一个花坛的形状如图所示,它的两端是半径相等的半圆,求:
(1)花坛的周长l;
(2)花坛的面积S;
(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).
(1)求直线CD的解析式;
(2)如图2,若点M为直线CD上的一个动点,过点M作MN∥y轴,交直线AB与点N,当四边形AMND为菱形时,求△ACM的面积;
(3)如图3,点P为x轴上的一个动点连接PA、PD,将△ADP沿DP翻折得到△A1DP,当以点A、A1、B为顶点的三角形是等腰三角形时,求点P的坐标.
【题目】定义:有一组邻边相等的凸四边形叫做“准菱形”.利用该定义完成以下各题:
(1)理解
填空:如图1,在四边形ABCD中,若(填一种情况),则四边形ABCD是“准菱形”;
(2)应用
证明:对角线相等且互相平分的“准菱形”是正方形;(请画出图形,写出已知,求证并证明)
(3)拓展
如图2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将Rt△ABC沿∠ABC的平分线BP方向平移得到△DEF,连接AD,BF,若平移后的四边形ABFD是“准菱形”,求线段BE的长.
(1)线段AB的长=
(2)数轴上在B点右边有一点C,点C到A、B两点的距离和为11,求点C在数轴上所对应的数;
(3)若P、Q两点分别从A、B出发,同时沿数轴正方向运动,P点的速度是Q点速度的2倍,且3秒后,2OP=OQ,求点Q运动的速度
(2)当小李和小陆相遇时,他们离B地的路程是____________千米;