新闻推荐算法的问题及优化策略

以人工神经网络为代表的新的算法范式,对于推荐系统中许多难以解决的老问题,很可能会有非常好的效果。

供图/CFP

个性化新闻推荐系统在实际的应用中褒贬不一,通过对一些用户的访谈,笔者发现,个性化新闻推荐中往往含有一些劣质内容,利用人性的弱点,导致过度娱乐化的新闻泛滥。这些刺激感官的内容吸引人们点击,造成了点击量上的“虚假繁荣”以及用户的“信息成瘾”。

个性化新闻推荐算法的问题

(一)内容不符合用户兴趣

个性化推荐算法并不一定能把符合用户兴趣的内容推荐给用户,造成这个问题的原因有很多。

协同过滤算法本身的缺陷,亦造成了一些个性化推荐算法的推送内容不符合用户兴趣。一个经典的例子是,娱乐新闻往往很受欢迎,因此用户在协同过滤中的近邻群体多少都阅读过一些娱乐新闻,但这个用户可能从来不读娱乐新闻,强行推荐会使他反感。

(二)内容质量问题

(三)信息茧房与信息成瘾

信息茧房(InformationCocoons)指的是信息个性化技术使得人们可能减少阅读多样化内容的趋势。由于个性化推荐系统是根据用户已有的阅读偏好进行关键词匹配和推荐,因此相似性较低的内容基本上不会被推荐,这样用户的阅读内容会变得狭隘。在一次又一次阅读自己喜欢领域的信息后,用户不断地在自己与整个世界之间筑起一座高墙。许多人沉湎于这样的拟态环境中,无法自拔。

(四)可遗忘性

推荐算法的优化策略

(一)技术不断革新

运用以人工神经网络为代表的新的算法范式,对于推荐系统中许多难以解决的老问题,很可能会有非常好的效果。目前,以深度学习为代表的人工神经网络方法在图像识别、声音识别领域取得了巨大成就,人工神经网络方法,正在被许多研究者尝试运用到推荐系统中。

最简单直接且效果也比较好的方式是请用户直接表达出其喜好的资讯话题。很多应用都采用了这种直接的方法来获取新用户初次打开时的喜好。对于协同过滤算法可能存在的不恰当推荐问题,在应用上可以增加一个设置界面,允许用户设定明确不想被推荐的话题,增加算法的可预测性和可控制性。

算法的可遗忘性问题只需通过加入重置用户画像的功能,即可圆满解决。

(二)构建优质内容生态

从内容生态的构建角度,互联网企业应当考虑整个产业的长远发展,将回报向优质内容的生产者进行倾斜,同时遏制低俗内容的蔓延。

作为互联网公司,要改变单纯追求用户时长的KPI(关键绩效指标)评判标准,注意内容的消费升级。

(三)加大人工审核力度,加强立法管理

尽管自动化内容审核系统已经做得比较先进,但仍需要人工审核来进行最后把关。要积极通过立法方式规范监管,鼓励优质主旋律内容的生产和传播。同时政府机构应当发挥作用,对市场调节失灵的情况进行合理干预,让信息流消费市场不至于沦为低质量内容循环生产的垃圾堆。政府还应对互联网企业加以引导,鼓励企业将算法权重向优质内容倾斜,对频频出现三俗内容的产品加以约束。

THE END
1.相关商品推荐:基于协同过滤的推荐算法协同过滤算法适用于很多领域,比如电商平台、社交网络、新闻推荐、音乐电影推荐等。通过分析用户的行为,协同过滤算法可以为用户提供个性化的推荐产品或内容,提高用户体验和购买转化率。 实现原理 协同过滤算法的实现原理是基于用户行为的相似性,通过用户之间的行为数据进行比较和匹配,找到相似的用户或商品,从而预测用户对未接...https://www.jianshu.com/p/396b7c403ee4
2.通过社交网络关系的图卷积协同过滤实现的产品推荐方法基于用户的协同过滤算法原理是利用其相似用户对该物品的所有评分的加权平均值,以此来 预测用户对某项物品的未知评分,而基于物品的协同过滤算法是预测用户对某项物品的评分是基 于用户对相似物品的平均评分。基于邻域的cf方法的关键问题是计算相似度和如何加权汇总评 分。 https://www.xjishu.com/zhuanli/55/202111235556.html
1.协同过滤算法在电商推荐系统中的应用:原理与实践3.1 算法原理概述 协同过滤算法通过分析用户和商品之间的关系,找出用户之间的相似性和商品之间的相似性,从而实现推荐。具体来说,协同过滤算法的核心思想是: 利用用户的浏览历史、购买记录、评分等行为数据,建立用户画像。 利用商品的销售数据、用户评分、标签等数据,建立物品画像。 https://blog.csdn.net/2405_88636357/article/details/143904879
2.协同过滤算法原理51CTO博客已为您找到关于协同过滤算法原理的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及协同过滤算法原理问答内容。更多协同过滤算法原理相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。https://blog.51cto.com/topic/780fa7612181653.html
3.CollaborativeFiltering(协同过滤)算法详解基于用户协同过滤算法的原理图 所以,协同过滤算法主要分为两个步骤: 1、寻找相似的用户集合; 2、寻找集合中用户喜欢的且目标用户没有的进行推荐。 具体实现 一、寻找用户间的相似度 1、Jaccard公式 Jaccard系数主要用于计算符号度量或布尔值度量的个体间的相似度,因为个体的特征属性都是由符号度量或者布尔值标识,因此...https://cloud.tencent.com/developer/article/1085760
4.字节跳动AI高级产品经理田宇洲:AI产品经理需要掌握的核心算法...R2.ai:端到端完成数据清洗到模型搭建,非机器学习专家也可使用,高级数据质检、调参和算法选择等功能,供机器学习专家手动调教模型,比肩人类数据科学家,不断自学习改进建模流程,建模速度可达小时/分钟级,透明可追溯的建模流程。 Q4. 机器学习的基础算法原理及应用场景是怎样的? https://maimai.cn/article/detail?fid=1246742214&efid=hW5NlFAEkS-MHjfZl5IAxg