基于协同过滤算法的推荐zhaowei121

(本实验选用数据为真实电商脱敏数据,仅用于学习,请勿商用)

协同过滤算法是一种基于关联规则的算法,以购物行为为例。假设有甲和乙两名用户,有a、b、c三款产品。如果甲和乙都购买了a和b这两种产品,我们可以假定甲和乙有近似的购物品味。当甲购买了产品c而乙还没有购买c的时候,我们就可以把c也推荐给乙。这是一种典型的user-based情况,就是以user的特性做为一种关联。

本次实验选用的是PAI-Studio作为实验平台,仅通过拖拽组件就可以快速实现一套基于协同过滤的推荐系统。本实验的数据和完整业务流程已经内置在了PAI首页模板,开箱即用:

本次实验选用的是PAI-Studio作为实验平台,仅通过拖拽组件就可以快速实现一套基于协同过滤的推荐系统。

首先输入的数据源是7月份之前的购物行为数据,通过SQL脚本取出用户的购买行为数据,进入协同过滤组件,这么做的目的是简化流程,因为购买行为对这次实验分析是最有价值的。协同过滤的组件设置中把TopN设置成1,表示每个item返回最相近的item和它的权重。通过购买行为,分析出哪些商品被同一个user购买的可能性最大。设置图如下:

协同过滤结果,表示的是商品的关联性,itemid表示目标商品,similarity字段的冒号左侧表示与目标关联性高的商品,右边表示概率:

比如上图的第一条,itemid1000和item15584的相似度为0.2747133918,相似度越高表示两个物品被同时选择的概率越大。

上面是统计模块,左边的全表统计展示的是根据7月份之前的购物行为生成的推荐列表,去重后一共18065条。右边的统计组件显示一共命中了90条,命中率0.4%左右。

根据上文的统计结果可以看出,本次试验的推荐效果比较一般,原因在如下几方面:

THE END
1.了解抖音算法机制流程图提升点赞关注和评论.pptxxx年xx月xx日了解抖音算法机制流程图提升点赞关注和评论目录contents抖音算法机制概述抖音算法机制之用户行为分析抖音算法机制之内容推荐算法抖音算法机制之热度算法抖音算法机制之社交关系算法提升抖音点赞关注和评论的方法01抖音算法机制概述VS抖音算法是用于管理和推荐内容的工具,其主要存在意义在于为用户提供个性化、...https://www.renrendoc.com/paper/298478072.html
2.基于Hadoop平台的个性化新闻推荐系统的设计AET其算法流程图如图2所示。 基于物品的协同过滤推荐,当启动基于物品的协同过滤算法引擎后,指定一个用户为其推荐,系统将查询数据库中该用户浏览过的所有新闻,根据新闻中用户表查询浏览过该新闻的相关用户,然后构建协同过滤算法用户的模型。整个过程封装在MyRecommender类的ItemRecommender方法中,而在ItemRecommender中封装了数据...http://www.chinaaet.com/article/3000056950
3.毕业论文基于Apriori算法的课程推荐系统的设计与实现.doc图2.3ADO.NET数据处理流程图 3系统需求分析 3.1总体需求概述本系统是以推荐课程为特色的课程推荐管理系统,除了对课程相关信息的增删查改外,还借助Apriori算法,根据系统中已有的各类信息,进行数据关联后,给出个性化的课程推荐,节省了学生为了选课而四处询问的时间以及精力,更好的帮助学生过滤无效或者有碍信息,帮助学生更...https://max.book118.com/html/2021/0407/8007066043003072.shtm
4.融合项目时序关系的图神经协同过滤推荐方法ying等提出了基于图卷积神经网络推荐模型pinsage,通过采用随机游走和图卷积等方法来捕获到图结构的特征以及节点的特征,以生成节点的嵌入表示,极大地提高了嵌入表示的质量。wang等提出了一种基于图神经协同过滤推荐算法ngcf,通过利用二部图神经网络将用户-项目的历史交互信息进行嵌入编码,并显式的考虑用户-项目之间的高阶...http://mip.xjishu.com/zhuanli/55/202210943278.html
1.使用Java开发推荐系统:协同过滤算法实现协同过滤是一种推荐系统算法,它基于用户行为数据(比如用户的评分、点击、购买等行为)来发现用户之间的相似性和物品之间的相似性,进而进行个性化的推荐。 协同过滤算法分类 协同过滤算法可以分为基于用户的协同过滤和基于物品的协同过滤。基于用户的协同过滤是根据用户对物品的评分来计算用户之间的相似性,从而推荐相似兴趣的...https://www.jianshu.com/p/d62bc356e46d
2.CollaborativeFiltering(协同过滤)算法详解基于用户协同过滤算法的原理图 所以,协同过滤算法主要分为两个步骤: 1、寻找相似的用户集合; 2、寻找集合中用户喜欢的且目标用户没有的进行推荐。 具体实现 一、寻找用户间的相似度 1、Jaccard公式 Jaccard系数主要用于计算符号度量或布尔值度量的个体间的相似度,因为个体的特征属性都是由符号度量或者布尔值标识,因此...https://cloud.tencent.com/developer/article/1085760
3.双单词词频统计算法的流程图资源八数码算法流程图.vsdx 浏览:7 八数码问题算法流程图visio2016的vsdx流程图文件算法学习 银行家算法流程图.edd 浏览:261 银行家算法流程图,对银行家算法通过流程图完美的体现了出来,功能图等都非常详细 基于用户的协同过滤算法UserCF作业流程图.pdf 浏览:98 ...https://download.csdn.net/download/willierstrong/3441551
4.Java基于用户的协同过滤协同过滤算法java协同过滤算法java代码...基于用户的协同过滤推荐算法基本思想是:根据用户-项目评分矩阵查找当前用户的最近邻居,利用最近邻居的评分来预测当前用户对项目的预测值,将评分最高的N个项目推荐给用户,其中的项目可理解为系统处理的商品。其算法流程图如下图1所示。 图1基于用户的协同过滤推荐算法流程 基于用户的协同过滤推荐算法流程为: 1).构建...https://blog.51cto.com/u_16099361/10423282
5.以下关于全功能团队中算法工程师的工作职责描述,属于算法工程师的...网友您好, 请在下方输入框内输入要搜索的题目: 搜题 题目 [多选题] A.算法研究 B.算法需求分析 C.算法编排 D.算法建模 多选题,请选择你认为正确的答案: ABCD 提交 查看参考答案https://www.shangxueba.cn/hangye/F6A6974E.html
6.护理评分系统(精选十篇)为了检验本文提出的算法的有效性,以传统的总体评分数据集作为对照,使用相同的修正余弦相似性算法,计算其MAE,邻居个数从5增加到20,间隔为5,实验结果如图1所示。 图1 算法比较 3.结束语 本文根据传统的协同过滤在酒店推荐系统的局限性,提出了基于多属性评分的协同过滤算法,并通过实验证实在推荐质量上优于传统的协同过...https://www.360wenmi.com/f/cnkey0j511tc.html
7.基于推荐算法的降养老APP开发目前,常用的推荐算法主要分为协同过滤和基于内容的推荐算法两大类,因为本APP的推荐系统更加专注于内容的属性,而不注重不同用户之间的交互,所以推荐系统采用了一种基于内容的推荐算法 [13]。 基于内容的推荐算法Content-based Recommendations (CB)是以用户过去感兴趣的产品为依据,来推荐和他过去喜欢的产品类似的产品,...https://www.hanspub.org/journal/PaperInformation.aspx?paperID=58138