(1)设A类工种职工的每份保单保险公司的收益为随机变量X(元),求X的数学期望;
(2)若该公司全员参加保险,求保险公司该业务所获利润的期望值;
(3)现有如下两个方案供企业选择:
方案1:企业不与保险公司合作,职工不交保险,若出意外,企业自行拿出与保险公司提供的等额赔偿金赔付给出意外职工,且企业开展这项工作每年还需另外固定支出12万元;
方案2:企业与保险公司合作,企业负责职工保费的70%,职工个人负责保费的30%,出险后赔偿金由保险公司赔付,企业无额外专项开支.
请根据企业成本差异给出选择合适方案的建议.
【解析】
(3)分别求得两种方案企业的成本,比较大小,即可选择.
(1)X的分布列为:
X
25
P
(2)设BC类工种职工的每份保单保险公司的收益为随机变量YZ(元),
则YZ的分布列分别为:
Y
Z
40
保险公司的利润的期望值为:
所以保险公司在该业务所获利润的期望值为9万元.
(3)方案1:企业不与保险公司合作,则企业每年赔付支出与固定开支共为:
方案2:企业与保险公司合作,则企业支出保险金额为:
(2)求该班级这次月考语文作文分数的平均数和中位数.(每组数据用该组区间中点值作为代表)
【题目】为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为()
A.720B.768C.810D.816
【题目】为提升教师业务水平,引领青年教师专业成长,乌鲁木齐市教育局举行了全市青年教师课堂教学比赛,乌鲁木齐市各中学青年教师积极报名、蹦跃参加.现甲、乙两校各有3名教师报名参赛,其中甲校2男1女,乙校1男2女.
(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
【题目】甲、乙、丙三人投篮的命中率各不相同,其中乙的命中率是甲的2倍,丙的命中率等于甲与乙的命中率之和.若甲与乙各投篮一次,每人投篮相互独立,则他们都命中的概率为0.18.