(1)在回归分析中,解决共线性问题:如果回归分析中存在共线性问题,那么可以对有共线性问题的多个变量提取出一个有代表性的公因子,利用提取出的这个公因子替代原有的有共线性问题的多个变量,参与建模,可解决回归分析中的共线性问题。
(2)变量精简:一般来说,纳入模型的变量越少越好,如果存在很多变量,我们可以先使用因子分析的方法,通过提取公因子的方式对变量进行精简,这样纳入模型的变量信息不仅没有大幅度衰减,还降低了模型的复杂程度。
(3)问卷中的效度分析:对于问卷中的量表题,希望通过因子分析来进行问卷结构的发现,检验问卷的结构效度,将量表题目根据因子分析分成不同的评分维度。
4.对应分析
学术论文中常用的数据分析方法中对应分析也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
5.回归分析
学术论文中常用的数据分析方法中研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regressionanalysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
回归分析分类
(1)一元线性回归分析
只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。
(2)多元线性回归分析
多元线性回归分析的使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。
1)变呈筛选方式
选择最优回归方程的变里筛选法包括全横型法(CP法)、逐步回归法,向前引入法和向后剔除法
2)横型诊断方法
A、残差检验:观测值与估计值的差值要艰从正态分布;
B、强影响点判断:寻找方式一般分为标准误差法、Mahalanobis距离法;
C共线性诊断:诊断方式:容忍度、方差扩大因子法(又称膨胀系数VIF)、特征根判定法、条件指针CI、方差比例
处理方法:增加样本容量或选取另外的回归如主成分回归、岭回归等
(3)Logistic回归分析
线性回归模型要求因变量是连续的正态分布变里,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况。
分类:Logistic回归模型有条件与非条件之分,条件Logistic回归模型和非条件Logistic回归模型的区别在于参数的估计是否用到了条件概率。
(4)其他回归方法
6.方差分析
学术论文中常用的数据分析方法中方差分析又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。
不管是采用哪种数据分析方法,我们都需要注意在统计数据的时候一定要保证正确无误,这样才能使得最终的结果也是正确的。
月期刊咨询网深耕学术辅导20余年.为学者提供:EI、ISTP、SCI、国内外著作、译著、职称出书、诗歌散文、小说传记等出版咨询辅导服务.构建学术交流平台助力国际学术交流,让学术交流变得更为便捷!