横向对比:横向对比就是跟自己比。最常见的数据指标就是需要跟目标值比,来回答我们有没有完成目标;跟我们上个月比,来回答我们环北增长了多少。
纵向对比:简单来说就是跟他人比。我们要跟竞争对手比,来回答我们在市场中的份额和地位是怎样的。
2、分组分析法
结合对比法,把总体中不同性质的对象分开,并进行对比以便了解内在的数据关系。
3、结构分析法
亦称比重分析,分析总体内各组成部分占总体的比例以及构成的变化,从中掌握事物的特点和变化趋势。
4、留存分析法
留存分析法是一种用来分析用户参与情况和活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。从用户的角度来说,留存率越高就说明这个产品对用户的核心需求也把握的越好,转化成产品的活跃用户也会更多,最终能帮助公司。
5、交叉分析法
6、漏斗分析法
结合对比、分组分析法,可以比较同一环节优化前后效果、不同用户群转化率,同行类似产品的转化率。反映用户行为状态以及从起点到终点各阶段用户转化情况,常用转化率和流失率两个指标。
7、矩阵分析法
即矩阵关联分析法,以事物的两个重要属性为分析的依据,进行分类关联分析,为解决问题和资源分配提供参考依据。
8、象限分析法
依据数据的不同,将各个比较主体划分到4个象限中。如果把智商和情商进行划分,就可以划分为两个维度四个象限,每个人都有自己所属的象限。一般来说,智商保证一个人的下限,情商提升一个人的上限。
9、趋势分析法
当数据很多,而我们又想从数据中更快、更便捷来发现数据信息的时候,这个时候需要借助图形的力量,所谓图形的力量,就是借助EXCEl或者其他画图工具把他画出来。
趋势分析一般用于核心指标的长期跟踪,比如:点击率、GMV、活跃用户数。一般做成简单的数据趋势图,但光制作成数据趋势图还不算分析,必须像上面一样,数据有那些趋势上的变化,有没有周期性,有没有拐点,并分析背后的原因,无论是内部原因还是外部原因。趋势分析最好的产出是比值。有环比、同比、定基比。比如2017年4月份比3月份GDP增长了多少,这就是环比,环比体现了最近变化的趋势,但有季节性的影响。为了消除季节性的影响,推出了同比,比如:2017年4月份比2016年的4月份GDP增长了多少,这就是同比。定基比就更好理解,就是固定某个基点,比如将2017年1月份的数据作为基点,定基比则为2017年5月份的数据和2017年1月份的数据做对比。
10、指标分析法
在实际工作中,当拿到一些可视化数据图表或者是Excel表格时,我们可以直接运用统计学中的一些基础指标来做数据分析,比如平均数、众数、中位数、最大值、最小值等,下面我们分别来介绍:
平均数
平均数指标可用于对比同类现象在不同地区、不同行业、不同单位等之间的差异程度,比用总量指标对比更具说服力。除此以外,利用平均指标对比某些现象在不同历史时期的变化,也更能说明其发现趋势和规律。
众数、中位数
众数也就是数据中的一种代表数,它反应的是数据的一种集中程度。比如说最佳,最受欢迎,最满意都与众数有关。众数本质上来说,反映的是数据中发生频率最高的一些数据指标,在做数据分析时,我们可以对这些数据指标提取一些共性的特点,然后进行提炼和总结,然后得出一些改进的意见。
中位数主要是反映的是一组数据的集中趋势,像我们比较常见的正态分布,比如说我们想去统计某市的人均收入,其实,大部分的人均收入都是在一定范围之内的,只有少部分是处于最低的和最高的,其实这是中位数带来的意义。
在做数据分析时,如果各个数据之间的差异程度较小,用平均值就有较好的代表性;而如果数据之间的差异程度较大,特别是有个别的极端值的情况,用中位数或众数有较好的代表性。
最大(小)值
最大(小)值在平时做数据分析工作时比较常见,只是我们没有特别去注意。最值是作为典型代表和异常值进行分析的,比如说销售团队里的销售冠军,电商爆款商品等。
11、综合评价分析法
将多个指标转化为一个能够反映综合情况的指标来进行评价,如企业经济效益评价。包括主成分分析法、数据包络分析法、模糊评价法等。