人工智能技术这几年非常火热,蚂蚁金服也在AI领域做了很多的探索,同时取得了一定的结果,沉淀了一定的能力。下图中可以看到人工智能技术基本已深入到了蚂蚁金服各个业务中。
智能营销项目。蚂蚁金服经常会做一些营销活动,给用户发放权益红包。以前的做法是发放固定价值的权益红包。但有了智能营销之后,可以根据用户的特征,动态的决定给用户发放红包的价值。智能营销大大的降低了蚂蚁金服营销活动的成本。
保险智能理赔。使用人工智能技术可以帮助蚂蚁金服决定给客户理赔的金额,这大大提升了运营的效率。
网商风控大脑。人工智能帮助蚂蚁金服根据借贷者的信用状况,动态的决定给借贷者的借贷份额,在控制风险的前提下最大化利润。
智能理财顾问。蚂蚁金服正在开发一套系统,以人机交互对话形式为用户提供一对一的个性化的理财顾问服务。
智能问答系统。探索感知用户的需求有两种方式。第一种是隐性方式,通过学习用户的历史行为轨迹,猜测用户的需求。另外一种是显性方式,用户可以通过人机对话方式直接提问,问一些简单的问题或者概念性的问题,比如说,什么是基金?什么是股票?或者更进一步,用户也可以问现在有一万块钱,应该买什么理财产品?或者可不可以推荐一个最适合用户的基金?
下图为蚂蚁金服智能问答系统架构图。当用户提一个问题之后,主要经过五步。
Step1.预处理。
a.常用词过滤。用户在提问题的时候,会使用一些常用词,而这些词对后面分析用户的意图没有任何帮助。用户可能会说“早上好”,“麻烦问一下”。系统需要将这些常用词在预处理阶段直接过滤掉。
b.纠错。纠正用户的拼写错误。比如用户经常会把“基金”写成“机经”。
c.实体识别。简单来讲,实体识别是对用户输入的句子进行分词,再对每一个词打上相应的标签。用户问“花呗如何开通?”,这句话里面有三个词,主语是花呗,问题是如何是操作,动词是开通。对用户的问题做实体识别会对后面具体识别用户的意图有很大的帮助。
Step2.模型层。将用户的问题转化成事先定义好的意图。比如说,用户想查询市场行情或者想购买基金,事先定义好这些意图。如何把用户问的问题转化成意图?分别通过规则和算法。规则方式一般使用FST模型和Fuzzymatch(模糊匹配)来提高覆盖率。规则模型最大的好处是一旦与用户的意图匹配上了,准确率会非常高,但劣势是覆盖率会很低。如果只是依赖规则模型,很难理解用户所有的问题。在规则模型基础之上,蚂蚁金服开发了基于算法的模型,如XGB,FastText,及RNN,和CNN等深度学习模型。算法类模型的好处是覆盖率比规则类模型高。所以通过将规则类和算法类模型结合在一起,便可以得到满意的覆盖率和准确率。