在这一过程中,AI的应用场景广泛而深入,涵盖了风险管理、欺诈检测、个性化金融产品推荐、智能投资顾问以及自动化客户服务等多个方面。
麦肯锡全球研究院(MGI)的研究数据显示,生成式AI技术在全球各行业每年可能创造的价值高达2.6万亿至4.4万亿美元。在众多行业中,银行业预计将获得巨大的机遇,年潜在价值可达2000亿至3400亿美元,占行业总收入的2.8%至4.7%,相当于营业利润的9%至15%,这主要得益于行业工作效率的显著提升。
领先的金融企业从去年开始就已经紧密锣鼓在业务场景中落地生成式AI。例如,花旗集团的风险和合规团队去年就开始利用生成式人工智能技术,分析并评估联邦监管机构发布的新资本规则的影响。此外,《华尔街日报》近日报道报道,高盛计划在6月底前向公司内数千名开发者推出其首个用于代码生成的生成式人工智能工具。
成功实施和利用GenAI的金融机构正在努力制定一种合适的、定制化的运营模式,这种模式能够细致考虑新技术的特点和风险,而不是简单地将GenAI技术嵌入现有的运营流程中。
麦肯锡对欧洲和美国16家最大金融机构的通用人工智能使用情况进行了调查,这些机构的资产总额接近26万亿美元。结果显示,超过50%的研究企业已经采用了更加集中化的组织结构来落地应用通用人工智能技术。
但这种集中化可能是暂时的,随着AI技术应用的不断成熟,金融机构的结构将变得更加分散。最终,金融机构可能会发现,让各个职能部门根据自己的需求优先考虑通用人工智能活动是有益的。
在麦肯锡的研究中,尽管金融企业落地生成式AI的方式各不相同,但总结归纳,可以概括为以下四种主要实现组织形式。
(1)高度集中化
(2)领导层集中决策,业务部门执行
这种架构优化了领导层与GenAI团队之间的沟通机制,显著降低了双方协作中的摩擦,确保了新技术在企业内部的应用流程得到有效整合。但这种协作模式也可能会让人工智能团队的技术实施速度带来一些延宕,因为每个项目在推进之前都必须经过领导层的审阅和批准。
(3)业务部门主导,领导层集中支持
(4)高度去中心化
在这种模式下,跨部门或跨职能团队之间的沟通和协作更加顺畅,能够快速产出有价值的洞察,能有效促进内部的整合。然而,当业务部门独立开展GenAI项目时,可能会面临一些风险,例如缺乏集中化管理所能提供的丰富知识和行业最佳实践。这种缺乏可能会导致企业难以深入挖掘AI技术的潜力,进而影响到实现重大创新突破的机会。
(1)智能问答场景
通过构建基于大模型技术的集中问答系统,用户可以通过单一通道提出问题并快速获得解答。这种系统不仅促进了员工对基础业务知识的掌握,也使得一线客户经理能够更高效地处理客户的常见问题,显著提升了工作效率。
(2)投顾咨询场景
由于投资顾问资源有限,传统的个股诊断分析服务往往只覆盖到大型分支机构的重要客户。利用大模型技术,结合规则化报告和专业材料,如研究报告和招股说明书,能有效提升投资顾问的工作效率,并扩大服务的覆盖范围,使更多客户能够享受到专业的个股诊断服务,帮助他们快速把握投资机会和风险,做出明智的投资决策。
(3)个股诊断场景
投资顾问在提炼市场动态和热点新闻以形成投资观点时,常常面临市场变化快速的挑战。利用大模型技术,可以辅助投资顾问快速捕捉市场热点,激发创意,将复杂信息转化为易于客户理解的形式,有效促进客户转化。同时,这种方法也有助于将专业投资顾问的能力扩展到一线客户经理,培养更多具备专业投资顾问技能的人才。
(4)基金诊断场景
投资顾问在进行基金诊断时,需要深入分析市场环境,这要求有扎实的投研能力。通过大模型技术,能为专业投顾提供全面的基金研究和诊断支持,帮助他们提升投研能力,优化基金组合管理。
(5)账户诊断场景
账户综合诊断是投资顾问的重要职责之一。利用大模型技术,我们希望为专业投顾提供全面的账户诊断能力,支持他们分析客户的投资组合,评估风险和收益,为客户提供客观、专业的诊断报告,从而提升投研能力。
(1)欺诈检测和预防
金融领域的数据如信用卡信息、个人记录和银行账户详情,使其成为网络攻击的主要目标。生成式AI与欺诈检测算法结合,可提高数据保护能力。
传统的欺诈检测算法利用机器学习(ML)都是从历史数据中自我训练,难以及时跟上新兴欺诈手段。而生成式AI则可以通过创建合成的“异常”模式,优化检测算法,使其在防范欺诈者方面保持领先。这样不仅减少了监督需求,实现更高的自动化,还能更高效地识别网络攻击企图。
(2)个性化金融服务和支持
个性化服务和支持是企业提升竞争力的关键因素,据估计可带来高达10%的年收入增长。在金融领域,实现个性化服务面临挑战,因为需要处理大量客户数据,如交易历史、支出偏好和储蓄目标。
生成式人工智能(GenAI)在此方面发挥重要作用,能快速利用这些数据生成定制建议和优惠,提升客户满意度,促进交叉销售,增强企业竞争力。此外,GenAI还通过智能虚拟助理和自动化表单提交提供高效自助服务,帮助金融机构降低成本,提高客户参与度,是优化服务效率和客户体验的关键工具。
(3)风险评估和信用评分
金融机构在贷款审批过程中必须对客户的信用状况和潜在风险进行评估,信用评分是这一流程的核心环节。传统信用评分依赖于历史数据和固定规则,但这种方法可能缺乏灵活性,难以适应信用风险的复杂性和变化性。此外,这些方法需要不断的监控和深入分析,十分耗时。
生成式人工智能(GenAI)在此领域提供了一种新的解决方案。它通过创建与真实数据极为相似的合成数据,与实际数据结合,构建出更丰富的训练数据集,从而训练出更精准的预测分析工具。GenAI能够高效处理大量动态数据,减少了对人工操作的依赖,使得信用评分过程更加可靠和高效。
(4)合规性和监管挑战
生成式人工智能(GenAI)可以有效处理这些任务。GenAI能生成高质量的合成数据,增强合规控制和质量保证的准确性,确保合规报告快速、一致且零误差。此外,GenAI能够持续监控合规性,自动通知违规行为,及时采取措施。
(5)市场与投资分析
生成式人工智能(GenAI)在此发挥重要作用。它能够快速浏览和分析海量历史数据,识别出人类可能忽略的模式和异常情况。GenAI自动化的分析过程不仅能生成深刻洞见,还能创建交易参数,如最佳买卖时机、止损点和头寸规模。
这种数据驱动的方法为银行提供显著竞争优势,使其更深入地理解市场状况,制定更加精准有效的战略。GenAI正成为金融分析师在复杂数据中导航的得力助手。
(6)文档处理/报告生成
(7)市场推广降本增效
在基金产品推广和风险声誉管理中,金融从业者常面临数据抓取难、资讯数量少、内容生产慢、沟通效能低等问题。
有连云公募基金商用AI大模型通过多重训练和强大的数据中台,打通了资讯生产的实时链路,实现7*24小时自动化生成各类型文本和智能改写,并能跨模态生成基金短视频,超越传统作业效率。
(8)一键辅助产品销售
近年来,境内ETF市场迅速发展,数量和规模持续增长。Wind数据显示,截至目前,国内ETF总份额增加4700亿份,达到1.94万亿份;总规模增加3200亿元,为1.98万亿元;新发行54只新ETF基金,总数量超过800只。
麒麟金融场景商用AI大模型为公募基金、券商、银行等领域提供解决方案。它实时获取和解析ETF产品数据,生成产品分析、研报摘要、观点等关键信息,提升信息检索效率和AI批量生成资讯的能力。强大的生态连接渗透到数据、交易、搜索、新闻、视频和财经等端口,一键辅助投资者教育和价值投资理念呈现,并生成多维BI可视化报表,帮助基金公司快速分析和决策。
(9)轻松驾驭声誉风险管理
在声誉风险管理中,金融机构需要建立全流程管理体系。麒麟大模型强有力的数据反馈能力协助基金公司及时获取风险信息,迅速形成解决方案,提供从生成、使用到数据决策的闭环支持,释放对人的依赖和流程压力,助推基金公司声誉管理和价值呈现。
有连云麒麟金融场景商用AI大模型以AI速度解决基金公司多场景需求,轻松驾驭需求痛点,在销售、市场和声誉管理过程中提供更科学、可靠和专业的链路,助力增益、降本和增效。
(1)AlphaSense推出生成式AI助手-AlphaSense助手
AlphaSense是金融市场情报和搜索领域的领先平台,此前其推出了AlphaSense助手,这是一款创新的生成式AI聊天工具,旨在改变金融从业者从数百万商业和财务文档中提取行业洞察的方式。此外,AlphaSense还推出了企业智能服务,将其AI驱动的搜索、摘要和聊天功能安全地集成到客户专有的组织知识和AlphaSense广泛的内容库中。
AlphaSense助手由AlphaSense专为市场情报定制的大型语言模型(ASLLM)支持,基于AlphaSense的行业领先内容库,提供一个会话式聊天界面,大大提升了商业和金融专业人士的研究效率。用户可以轻松咨询特定领域的投资机会或竞争对手分析,并立即获得准确答案。这些答案还具备内置的可审计性,方便用户追溯到原始资料,进行上下文和验证的检查。
(2)FeatureSpace推出TallierLTM金融垂直大模型
作为全球领先的企业级防欺诈技术供应商,FeatureSpace推出了世界首个大型交易模型(LTM)-TallierLTM。
TallierLTM采用自我监督的预训练方法,对各司法管辖区和市场细分领域的交易行为进行了深入分析,使其能够真实反映现实世界中的消费者交易行为。与行业标准模型在典型的5:1误报率下运行相比,TallierLTM在欺诈检测准确性方面提升高达71%。
该AI工具通过学习持卡人的交易习惯,能在四毫秒内自动评估交易风险,区分正常消费与异常行为,快速识别可能的攻击性交易。其经过超过150亿笔交易数据的训练,通过比对历史枚举攻击模式生成风险评分,预测交易是否属于枚举攻击。与现有的风险评估模型相比,VAAI工具在减少误报方面显著进步,误报率降低了85%。
(4)澜码科技尽调报告Agent案例
国内某银行推出一项普惠贷款服务,旨在为中小企业提供便捷的贷款服务,以支持实体经济的发展和创新。但在发放普惠贷款的过程中,银行难以全面了解借款企业信息状况和还款能力,尤其是面对缺乏完善财务记录的中小企业和个体工商户时。
1.明确转型目标和战略:
金融机构首先需要明确自身的数字化转型目标和战略,确定AI技术在其中的角色和定位。一个有效的GenAI规模化落地战略,必须包含以下关键因素:高层领导层的愿景、一致性和承诺,以及业务单元级对交付结果的责任、清晰的应用场景和目标、全面的运营计划。
2.选准应用场景:
在明确转型目标后,金融机构需要选准AI技术的应用场景。这些场景应该是业务流程中的痛点或价值创造的潜在领域。例如,AI技术可以用于风险评估、信贷审批、智能投顾、客户服务等方面。
3.数据和技术的积累:
在部署大模型的时候,金融企业获机构需要与自身现有的系统、工作流程、企业应用程序和数据源集成。这是一个关键且复杂的任务。麦肯锡认为,有效的集成和模型维护将依赖于多个架构组件:上下文管理和缓存、策略管理、模型中心、提示库、MLOps平台、风险管理引擎、大型语言模型(LLM)运营等。
数据质量至关重要,尤其是在通用人工智能领域。面对海量且非结构化的数据集,确保输出答案的质量变得更加具有挑战性。领先的金融机构正借助优质人才和自动化技术,在数据生命周期的关键环节进行精准干预,以保证数据的高标准质量。同时,数据领域的领导者需要深入考虑新技术带来的安全风险,并随时准备根据法规的变化迅速采取行动。
4.构建高效的组织架构:
为了推动AI项目的顺利实施,金融机构需要构建高效的组织架构。这包括设立专门的AI团队、明确职责和分工、以及与业务部门的紧密合作。要优化组织架构之前,金融机构必须思考当前的架构为何难以无缝集成AI创新能力。
5.注重人才培养和合作:
金融机构需要培养一批既懂金融业务又懂AI技术的复合型人才。还需要定期评估自己的人才招聘策略,以适应不断变化的优先事项。清晰的职业发展和晋升机会——以及有意义和价值的工作——对普通的技术从业者来说非常重要。此外,与AI领域的领先企业或研究机构合作,可以加快技术进步和创新。
6.强化合规和安全风险管理:
在引入大型模型和生成式人工智能之前,金融机构通常需要对其风险管理和模型治理框架进行重新设计,并根据需要开发新的控制机制。模型的可解释性和决策的公正性是关键问题,必须在推广任何生成式AI应用之前得到全面而深入的解决。通过这种方式,金融机构可以在确保技术优势的同时,维护其业务的合规性和安全性。
7.持续优化和创新:
AI技术是不断发展的,金融机构需要在实践中持续优化和创新。这包括收集反馈、改进算法、探索新的应用场景等。
对于金融企业而言,获取高质量、具有代表性的数据分析来训练人工智能模型是实现技术优势的关键所在。AI模型的性能和准确性在很大程度上取决于训练数据的质量,因此,金融机构必须实施严格的数据治理流程,以确保数据的准确性和可靠性。
许多银行拥有一个庞大而复杂的数据架构,这些架构往往跨越了数十年,涉及多种大型机系统。将这些分散的数据整合并准备用于人工智能项目是一项艰巨的任务,需要投入大量的资源和努力。
同时,金融企业还必须严格遵守数据保护法规,确保敏感的客户数据得到妥善的匿名化处理和安全保护。这不仅涉及到技术层面的挑战,也考验着企业在数据隐私和合规性方面的责任和担当。
此外,AI技术在金融领域的应用涉及到对海量数据的处理和分析,这不仅要求金融机构拥有强大的存储和计算资源,也带来了对基础设施的挑战。尽管云计算提供了灵活的解决方案,但数据安全和地区法规的限制常常成为其广泛应用的障碍。同时,将先进的AI工具与金融机构现有的IT系统无缝集成,也是一个需要克服的技术难题。
人工智能在金融领域的整合引发了重要的道德考量,特别是在偏见和公正性方面。人工智能系统可能会无意中延续甚至加剧训练数据中存在的偏见。例如,如果历史贷款数据对某些特定人群存在偏见,那么基于这些数据训练的人工智能模型可能会继续使这些群体处于不利地位。
此外,快速变化的监管环境对金融机构提出了更高要求。随着法律和道德对AI的期望不断演变,金融机构需要不断适应新的监管政策,并保持系统的灵活性以应对这些变化。
尽管生成式人工智能是目前各行各业的流行词,但如何将该技术付诸实践的最佳方式仍然尚未确定。
此外,在认知层面,一个普遍的误区是人们常常被所谓的“理想路径”所误导,认为大语言模型能够应对所有任务。然而,在实际操作中,可能由于业务人员对专业知识掌握不够精确导致无法完成相应任务。在这种情况下,我们需要通过更高效的人机交互方式,使业务人员能够明确地表达他们的需求,以便在业务流程中实现端到端的有效支持。
另一个常见的误区是,人们期望用户去适应技术,而不是让技术去适应用户。如果整个行业能够在技术适应用户交互方式和需求理解方面做出创新和改进,就可能充分发挥大型模型的潜力。但目前,这一领域的探索还相对较少。