深共晶溶剂

林志豪1,2,3,张耀海1,2,3,焦必宁1,2,3*,韩科1,2,3,秦艳1,2,3

1(西南大学/中国农业科学院柑桔研究所,重庆,400712)2(农业农村部柑桔产品质量安全风险评估实验室,重庆,400712)3(农业农村部柑桔及苗木质量监督检验测试中心,重庆,400712)

关键词深共晶溶剂;天然深共晶溶剂;分散液液微萃取;环境污染物

样品前处理是检测分析技术的重要环节,快速简单、环保、微型化是方向发展。分散液液微萃取技术(dispersiveliquid-liquidmicroextraction,DLLME)集采样、萃取和浓缩于一体,具有简单、廉价、快速、富集倍数高、有机溶剂或离子液体(ionicliquid,IL)用量少等特点[1]。但是传统的DLLME需要使用三氯甲烷、四氯乙烷、芳香烃类IL等毒性大和环境不友好的液体作为提取溶剂。

DESs与DLLME相结合,可以充分发挥两者的优势,形成萃取和浓缩一体化的绿色环保新技术,具有操作简单、回收率高、富集倍数高、预处理微型化等特点。2015年,KHEZELI等[3]和KARIMI等[4]最早将DESs与DLLME相结合,建立了深共晶溶剂-分散液液微萃取技术(deepeutecticsolvents-baseddispersiveliquid-liquidmicroextraction,DESs-DLLME),并分别应用于水样中多环芳香烃和食用油中Pb、Cd元素的分析检测。此后,关于DESs-DLLME技术在检测污染物方面的研究相继出现,如图1所示。本文简要介绍DESs的性质,重点对DESs-DLLME不同模式间的优劣进行分析比较和综述其在食品及环境污染物检测中的应用,以期为DESs-DLLME的发展和应用提供参考。

DESs-DLLME的原理是DESs在分散剂(或借助外部条件达到分散的目的)的作用下形成细小的液滴,均匀分散在含有目标物的样品溶液中,形成样品溶液-分散剂-DESs乳浊液体系,目标物不断地被萃取到DESs相中并快速达到平衡。经离心、冷却或凝固后,目标物被富集在离心管顶部或底部DESs相中,利用注射器取出含目标物的DESs相并进行仪器分析。图2阐述了DESs-DLLME的操作步骤。

图2DESs-DLLME的操作过程Fig.2FlowchartofDESs-DLLME

对DESs-DLLME而言,科学选择萃取剂和分散剂可以提高提取效率。萃取剂的选择应满足与水相比,密度有差异、对目标物亲和性高和有优良的色谱行为。常用的萃取剂主要有以氯化胆碱(cholinechloride,ChCl)等季铵盐为HBA合成的亲水性DESs和以薄荷醇或百里香酚为HBA合成的疏水性DESs。而分散剂的选择要同时满足溶于DESs和样品溶液,才能保证可在样品溶液中分离DESs液滴,常用的分散剂主要有乙腈、表面活性剂、甲醇、丙酮、四氢呋喃(tetrahydrofuran,THF)、IL、DESs。

DESs最突出的性质是饱和蒸汽压低、极性范围广、性质可调等。(1)熔点由分子结构对称性、氢键和范德华力决定,DESs中阳离子和阴离子之间微弱的晶体格能导致熔点降低,HBD的比率决定DESs的熔点。(2)密度是DESs的一个非常重要物理参数,决定其在萃取目标物基质中的扩散性和溶解度。大部分DESs的密度比水的密度大,而HBD的结构对密度有显著影响,一般情况下,相同组分HBA/HBD的比值越大,密度越小。(3)DESs的高黏度归因于组分分子间强大的氢键网络,受HBD类型、盐类型以及它们的摩尔比影响,可通过加水和升高温度降低DESs黏度(η),且ηDESs>ηIL>η有机溶剂。(4)DESs的电导率与分子流动性呈线性关系,随温度升高而升高。DESs电导率低(室温下<2mS/cm),组分的摩尔比对DESs的电导率影响较大。(5)表面张力与黏度相似,受DESs组分分子间相互作用的影响,和温度呈线性关系,随HBA浓度增大而减小。(6)DESs的极性范围广,取决于其组成及HBD的分子结构,随温度升高而减小和通过加水增加极性。(7)与有机溶剂和IL相比,合成DESs的各组分毒理特性较低,甚至无毒,且可生物降解,但DESs的毒性缺乏系统试验支撑[5-6],需要深入调查研究。

目前主要研究的DESs可分为3大类:亲水性DESs、准疏水性DESs和疏水性DESs,按HBD和HBA的构成不同可分为4种类型,即金属+有机盐、金属盐水合物+有机盐、HBD+有机盐和锌/AlCl3+HBD,其中由HBD+有机盐组成的DESs作为提取溶剂应用较多[7-9],多用于污染物分析检测。因此,可以通过改变DESs的性质来满足不同检测需要,扩大应用范围。

传统DESs-DLLME技术以DESs作为萃取剂,在分散剂的作用下进行扩散和有序排列,形成DESs/样品溶液/分散剂的萃取体系。以ChCl为HBA的DESs为例:Cl-形成的氢键指向外部亲水体系,其他疏水性基团互相作用构成疏水性内核,样品溶液中不同极性的成分吸附于DESs的不同部位或进入疏水性内核被DESs萃取。目前,研究人员对传统DESs-DLLME技术进行了改进,例如当DESs密度小于水时,借助空气或超声波辅助提高萃取效率[10-11],与目标物衍生法相结合[12-13]和借助外部条件(温控、沸腾等)而达到不需要使用分散剂[14-15]。LI等[5]总结了近年来DESs-DLLME的应用。本文将DESs-DLLME分为3种模式:传统DESs-DLLME,温控、超声波、振荡、微波、涡旋、空气、泡腾辅助DESs-DLLME和原位DESs-DLLME(insitu-DESs-DLLME)。

表1DESs-DLLME的3种模式Table1ModesofDESs-DLLME

模式萃取剂分散剂萃取方式冰浴传统DESs-DLLMEDESs(萃取金属元素时需加入螯合剂)有机溶剂、IL、DESs—有时空气、泡腾、温控、超声波、震荡、微波、涡旋辅助DESs-DLLMEDESs(萃取金属元素时需加入螯合剂,有时不用)有机溶剂、IL、DESs(有时候不需要分散剂)能量(温控、超声波、微波、涡旋、震荡、空气、泡腾)有时原位DESs-DLLMEDESs(萃取金属元素时需加入螯合剂,有时不用)不用能量(温控、超声波、震荡、微波、涡旋、空气、泡腾)有时

注:—代表文中未提及(下同)

在传统DESs-DLLME技术中,多使用IL或有机溶剂作为分散剂。最近,科研人员已将DESs作为分散剂或不使用分散剂。TORBATI等[27]以准疏水性DESs(ChCl∶丁酸=1∶2)为萃取剂,亲水性DESs[ChCl∶苯酚(phenol,Ph)=1∶3]为分散剂,利用DESs-DLLME结合气相色谱-质量选择检测器(massselectivedetector,MS)测定干茶叶中6种除草剂,最佳条件下,富集倍数高达350~445,检出限为2.6~8.4ng/kg,回收率为70%~89%。通过减少或不使用有机试剂,让DESs-DLLME技术更加绿色可持续,有望成为未来前处理技术中的新技术。

最初的DESs-DLLME技术仅限于一些简单的基质(以果汁、水体、食用油为代表),近年来,该技术已开始应用于复杂基质(以果蔬、蜂蜜和土壤为代表)。NASSER等[28]采用DESs-DLLME结合GC-MS检测蜂蜜中8种有机硫代磷酸盐农药,以三元相DESs(氯磷酸胆碱∶二氯乙酸∶癸酸=1∶1∶1)为萃取剂可极大降低DESs黏度,增加提取效率,乙腈为分散剂,最佳条件下富集因子为82~98,检出限为0.05~0.10ng/g,回收率为82%~98%,符合农药残留检测标准。

DESs-DLLME同样适用于兽药检测。JI等[31]首次将UA-DESs-DLLME结合HPLC-UVD测定果汁中3种磺胺类药物:以疏水性DESs(三辛基甲基氯化铵∶2-辛醇=1∶2)为萃取剂,最佳条件下检出限为0.02~0.05μg/mL,回收率为88.09%~97.84%。该研究不需要使用分散剂,且和QuEChERs(quick,easy,cheap,effective,robustandsafeextractionprocedure)、固相萃取(solidphaseextraction,SPE)等方法进行比较,操作过程简单、快速、环保,在食品基质的同类物质分析检测中具有重要的价值。

真菌毒素及其次生代谢物常见于食品中,例如:黄曲霉毒素和展青霉素,严重危害人体健康。当前,DESs-DLLME技术主要用于食用油、大米和果汁中真菌毒素的分析检测,但研究报道甚少。ALTUNAY等[26]首次提出UA-DESs-DLLME结合紫外可见分光光度仪(ultraviolet-visiblespectrophotometry,UV-Vis)测定果汁中展青霉素:以亲水性DESs(四丁基氯化铵∶2,3-丁二醇=1∶3)为提取剂,丙酮作为分散剂,最佳条件下检出限为2.2μg/L,回收率为90.2%~106.9%。同时该方法同QuEChERs、基质分散固相萃取(matrixsolidphasedispersion,MSPD)相比,精密度和回收率更好,线性范围不及MSPD,但优于QuEChERs。

HE等[33-34]对UA-DESs-DLLME进行了优化,结合HPLC-荧光检测器(fluorescencedetection,FLD)测定大米和食用油中4种黄曲霉毒素:以亲水性DESs(ChCl∶丙二酸=1∶2)作为萃取剂,不需要分散剂和衍生化,在最佳条件下,检出限为0.0005~0.06μg/kg,回收率为72.05%~113.64%。与GB5009.22—2016和欧盟标准相比,该方法更加简单、灵敏、高效,可作为食品基质中检测黄曲霉毒素的新方法。

食品添加剂在食品中广泛存在,但过量食用会对人体健康产生一定潜在危害。LIU等[35]首次应用UA-DESs-DLLME结合HPLC-UV测定食用油中叔丁基对苯二酚抗氧化剂,以亲水性DESs(ChCl∶乙二醇=1∶2)作为萃取剂,不需要分散剂,最佳条件下检测结果与传统方法相当。GE等[36]以疏水性DESs(DL-薄荷醇∶癸酸=2∶1)为萃取剂,应用insitu-DESs-DLLME结合HPLC-光电二极管检测器(diodearraydetector,DAD)测定水样中对羟基苯甲酸酯等4种防腐剂。最佳条件下,检出限为0.6~0.8ng/mL,回收率为84.8%~108.7%,提供了一种用于在水溶液中检测防腐剂的新方法。最近,FARAJI[37]建立涡旋辅助DESs-DLLME-HPLC方法测定饮料、果冻、巧克力糖果中5种合成着色剂,以疏水性DESs(苄基三乙基氯化铵∶薄荷醇=1∶4)作为提取剂,富集倍数为95~10,检出限为0.01~0.08μg/L,回收率为90%~97%。

近年来,工业染料违法添加到食品中的现象时有发生,科研人员为此开展了有关研究。SHI等[38]采用insitu-DESs-DLLME结合荧光分光光度计(fluorescencespectrophotometer,FLS)测定面条、鱼丸、蘑菇和纸杯中荧光增白剂52,以4-羟基苯甲酸-2-乙基己酯为萃取剂,在涡旋辅助条件下和目标物原位形成DESs,最佳条件下,检出限为0.045μg/L,回收率为82~113%。同时OZAK等[39]以疏水性DESs(薄荷醇∶香豆素=1∶1)作为萃取剂,不需要分散剂,应用UA-DESs-DLLME结合HPLC-UV测定香料中4种苏丹红染料。优化相应参数,检出限为0.25~0.35μg/g,回收率为85.55%~99.29%,该方法简单省时,价格低廉,环保,适合于快速检测大量样品。

重金属元素由于排放或处理不当,容易对环境造成污染。DESs-DLLME常与石墨炉原子吸收(graphitefurnaceatomicabsorptionspectrometry,GFAAS)、电热原子吸收(electrothermalatomicabsorptionspectrometry,ETAAS)、火焰原子吸收(flameatomicabsorptionspectrometry,FAAS)等联用检测重金属元素。YILMAZ等[40]提出UA-DESs-DLLME-FAAS测定水样中Cr3+和Cr6+,以亲水性DESs(ChCl∶Ph=1∶3)为萃取剂,二乙基二硫代氨基甲酸钠(sodiumdiethyldithiocarbamate,NaDDTC)为螯合剂,THF为分散剂,优化相应参数条件,该方法富集因子为20,检出限为5.5μg/L,回收率为97%~109%。SOROURADDIN等[41]合成黏度可调的三元相DESs(薄荷醇∶山梨醇∶扁桃酸=1∶2∶1),且可用作螯合剂,甲醇为分散剂,结合DESs-DLLME-FAAS测定牛奶中Cd2+、Cu2+、Pb2+,最佳条件下回收率为88.8%~104.7%,检出限为0.38~0.42μg/L。

近年来,DESs-DLLME技术开始集中于复杂基质中重金属元素的检测。TEKIN等[21]应用SA-DESs-DLLME结合开槽石英管(slottedquartztube,SQT)-FAAS测定菩提茶中Co元素,以亲水性DESs(ChCl∶Ph=1∶2)为萃取剂,(Z)-3-溴代-5-((p-对甲基苯胺)甲基)苯酚为络合剂,THF作为分散剂,在最优条件下,检出限为2.0μg/L,回收率为97.1%~100%,FAAS的检测能力提高了约67倍,与电感耦合等离子体质谱(inductivelycoupledplasmamassspectrometry,ICP-MS)所测结果相当。HABIBOLLAHI等[24]利用VA-DESs-DLLME结合GFAAS测定土壤和蔬菜中Cd、Pb和Hg元素,以DESs(1-癸基-2,3-二甲基咪唑氯∶十一醇=1∶2)作为萃取剂,二乙基二硫代磷酸盐作为螯合剂,不需分散剂,含有目标物的DESs相在冰浴中凝固。优化相应参数,富集倍数高达114~172,检出限为0.01~0.03g/kg,回收率为91%~110%,与浊点萃取(cloudpointextraction,CPE)、SPE和传统DLLME相比,该方法线性范围广、简单、省时节能。

最近有研究建议将磁性碳纳米管(magneticcarbonnanotubes,MCNTs)加入到DESs中合成磁性纳米流体(magneticnanofluid,MNF),利用MCNTs的超顺磁性和大比表面积等优势,可以实现自动化的无离心萃取过程。SHIRANI等[17]提出AA-DESs-MNF-DLLME结合ETAAS测定食品和非酒精饮料中Cd、Pb、Cu、As等重金属元素:以DESs(ChCl∶硫乙酰胺=1∶2)和MCNTs合成MNF作为萃取剂,不需要分散剂和螯合剂,在外磁铁的作用下,DESs-MNF从溶液中分离。优化相应参数,富集因子高达635~644.5,检出限为3~5.5μg/L,回收率为94.4%~101.4%,该技术具有高灵敏度、操作过程简单、高通量、低溶剂消耗等优点,可应用于各种复杂基质中多种重金属元素的同时分析检测。

TORBATI等[10]最早应用AA-DESs-DLLME检测水样中4种芳香胺,在10mL样品溶液中,加入65μL亲水性DESs(ChCl∶正丁酸=1∶2)和15μL氯甲酸乙酯衍生剂,针筒来回抽吸溶液后形成乳浊液后离心冰浴,转移上层凝固相并用乙腈溶解,取1μL溶液上GC-MS分析。该方法富集因子高达790~940,检测限为1.8~6.0ng/L,回收率为79%~94%。与传统DLLME和顶空固相微萃取(Headspace-solidphasemicroextraction,HS-SPME)相比,该方法线性范围更广,富集倍数显著高于其他方法,这可能由于针筒来回抽吸使DESs分解成更微小的液滴,与目标物接触面积更大,萃取效率更高。

NAEBI等[42]首次在50mL水样或饮料中添加0.69gChCl和2.8mL油酸,在超声波辅助下原位形成疏水性DESs,并对2种抗氧化剂污染物(irganox1010和irgaphos168)进行萃取,不需要离心即可和溶液分层,最后进行HPLC-DAD分析。优化相应参数,富集因子高达435~488,检出限为0.03~0.09ng/mL,回收率为74%~83%。研究人员将该方法同传统DLLME和IL-DLLME相比,该方法具有更好的富集倍数和回收率,且不需要使用有机溶剂和离心,更符合环保节能的要求。

表2DESs-DLLME在食品和环境污染物检测中的应用Table2ApplicationofDESs-DLLMEintheanalysisofcontaminantsinfoodandenvironment

续表2

参考文献

[1]张琰,张耀海,焦必宁.离子液体-分散液液微萃取在食品及环境污染物检测中的应用[J].食品科学,2015,36(5):250-259.

ZHANGY,ZHANGYH,JIAOBN.Applicationofionicliquid-dispersiveliquid-liquidmicroextractionforthedeterminationofcontaminantsinfoodsandenvironment:Areview[J].FoodScience,2015,36(5):250-259.

[2]PAIVAA,CRAVEIROR,AROSOI,etal.naturaldeepeutecticsolvents-solventsforthe21stcentury[J].ACSSustainableChemistry&Engineering,2014,2(5):1063-1071.

[3]KHEZELIT,DANESHFARA,SAHRAEIR.Emulsificationliquid-liquidmicroextractionbasedondeepeutecticsolvent:Anextractionmethodforthedeterminationofbenzene,toluene,ethylbenzeneandsevenpolycyclicaromatichydrocarbonsfromwatersamples[J].JournalofChromatographyA,2015,1425:25-33.

[4]KARIMIM,DADFARNIAS,SHABANIAMH,etal.Deepeutecticliquidorganicsaltasanewsolventforliquid-phasemicroextractionanditsapplicationinligandlessextractionandpreconcentraionofleadandcadmiuminedibleoils[J].Talanta,2015,144:648-654.

[5]LIGZ,ROWKH.Utilizationofdeepeutecticsolventsindispersiveliquid-liquidmicro-extraction[J].TrACTrendsinAnalyticalChemistry,2019,120.DOI:10.1016/j.trac.2019.115651.

[6]LOMBAL,ZURIAGAE,GINERB.Solventsderivedfrombiomassandtheirpotentialasgreensolvents[J].CurrentOpinioninGreenandSustainableChemistry,2019,18:51-56.

[7]LOOWYL,NEWEK,YANGGH,etal.Potentialuseofdeepeutecticsolventstofacilitatelignocellulosicbiomassutilizationandconversion[J].Cellulose,2017,24(9):3591-3618.

[8]TORRES-VALENZUELALS,BALLESTEROS-GMEZA,RUBIOS.Greensolventsfortheextractionofhighadded-valuecompoundsfromagri-foodwaste[J].FoodEngineeringReviews,2020,12(1):83-100.

[9]SMITHEL,ABBOTTAP,RYDERKS.Deepeutecticsolvents(DESs)andtheirapplications[J].ChemicalReviews,2014,114(21):11060-11082.

[10]TORBATIM,MOHEBBIA,FARAJZADEHMA,etal.Simultaneousderivatizationandair-assistedliquid-liquidmicroextractionbasedonsolidificationoflighterthanwaterdeepeutecticsolventfollowedbygaschromatography-massspectrometry:Anefficientandrapidmethodfortraceanalysisofaromaticaminesinaqueoussamples[J].AnalyticaChimicaActa,2018,1032:48-55.

[11]OZAKSS,YILMAZY.Ultrasound-assistedhydrophobicdeepeutecticsolventbasedsolid-liquidmicroextractionofSudandyesinspicesamples[J].SpectrochimicaActaPartA:MolecularandBiomolecularSpectroscopy,2020,236:118353-118360.

[12]JOUYBANA,FARAJZADEHMA,KHOUBNASABJAFARIM,etal.Derivatizationanddeepeutecticsolvent-basedair-assistedliquid-liquidmicroextractionofsalbutamolinexhaledbreathcondensatesamplesfollowedbygaschromatography-massspectrometry[J].JournalofPharmaceuticalandBiomedicalAnalysis,2020,191:113572-113578.

[13]NOROUZIF,KHOUBNASABJAFARIM,JOUYBAN-GHARAMALEKIV,etal.Determinationofmorphineandoxymorphoneinexhaledbreathcondensatesamples:Applicationofmicrowaveenhancedthree-componentdeepeutecticsolvent-basedair-assistedliquid-liquidmicroextractionandderivatizationpriortogaschromatography-massspectrometry[J].JournalofChromatographyB,2020,1152:122256-122262.

[14]ABDIK,EZODDINM,PIROOZNIAN.Temperature-controlledliquid-liquidmicroextractionusingabiocompatiblehydrophobicdeepeutecticsolventformicroextractionofpalladiumfromcatalyticconverterandroaddustsamplespriortoETAASdetermination[J].MicrochemicalJournal,2020,157:104999-105005.

[15]JIALY,HUANGX,ZHAOWF,etal.Aneffervescencetablet-assistedmicroextractionbasedonthesolidificationofdeepeutecticsolventsforthedeterminationofstrobilurinfungicidesinwater,juice,wine,andvinegarsamplesbyHPLC[J].FoodChemistry,2020,317:126424-126430.

[16]FARAJZADEHMA,DABBAGHMS,YADEGHARIA.Deepeutecticsolventbasedgas-assisteddispersiveliquid-phasemicroextractioncombinedwithgaschromatographyandflameionizationdetectionforthedeterminationofsomepesticideresiduesinfruitandvegetablesamples[J].JournalofSeparationScience,2017,40(10):2253-2260.

[17]SHIRANIM,HABIBOLLAHIS,AKBARIA.Centrifuge-lessdeepeutecticsolventbasedmagneticnanofluid-linkedair-agitatedliquid-liquidmicroextractioncoupledwithelectrothermalatomicabsorptionspectrometryforsimultaneousdeterminationofcadmium,lead,copper,andarsenicinfoodsamplesandnon-alcoholicbeverages[J].FoodChemistry,2019,281:304-311.

[18]SHISHOVA,GERASIMOVA,NECHAEVAD,etal.Aneffervescence-assisteddispersiveliquid-liquidmicroextractionbasedondeepeutecticsolventdecomposition:Determinationofketoprofenanddiclofenacinliver[J].MicrochemicalJournal,2020,156:104837-104843.

[19]FARAJZADEHMA,HOJGHANAS,MOGADDAMMRA.Developmentofanewtemperature-controlledliquidphasemicroextractionusingdeepeutecticsolventforextractionandpreconcentrationofdiazinon,metalaxyl,bromopropylate,oxadiazon,andfenazaquinpesticidesfromfruitjuiceandvegetablesamplesfollowedbygaschromatography-flameionizationdetection[J].JournalofFoodCompositionandAnalysis,2018,66:90-97.

[20]BüNYAMIND,ADILE,NAILA.Determinationofparacetamolinsyntheticureaandpharmaceuticalsamplesbyshaker-assisteddeepeutecticsolventmicroextractionandspectrophotometry[J].MicrochemicalJournal,2020,154.DOI:10.1016/j.microc.2020.104645.

[21]TEKINZ,UNUTKANT,ERULASF,etal.Agreen,accurateandsensitiveanalyticalmethodbasedonvortexassisteddeepeutecticsolvent-liquidphasemicroextractionforthedeterminationofcobaltbyslottedquartztubeflameatomicabsorptionspectrometry[J].FoodChemistry,2020,310:125825-125831.

[22]TORBATIM,FARAJZADEHMA,MOGADDAMMRA,etal.Developmentofmicrowave-assistedliquid-liquidextractioncombinedwithlighterthanwaterinsyringedispersiveliquid-liquidmicroextractionusingdeepeutecticsolvents:Applicationinextractionofsomeherbicidesfromwheat[J].MicrochemicalJournal,2019,147:1103-1108.

[23]DIX,ZHAOXJ,GUOXL.Hydrophobicdeepeutecticsolventasagreenextractantforhigh-performanceliquidchromatographicdeterminationoftetracyclinesinwatersamples[J].JournalofSeparationScience,2020,43(15):3129-3135.

[24]HABIBOLLAHIMH,KARIMYANK,ARFAEINIAH,etal.Extractionanddeterminationofheavymetalsinsoilandvegetablesirrigatedwithtreatedmunicipalwastewaterusingnewmodeofdispersiveliquid-liquidmicroextractionbasedonthesolidifieddeepeutecticsolventfollowedbyGFAAS[J].JournaloftheScienceofFoodandAgriculture,2019,99(2):656-665.

[25]HEIDARIH,GHANBARI-RADS,HABIBIE.Optimizationdeepeutecticsolvent-basedultrasound-assistedliquid-liquidmicroextractionbyusingthedesirabilityfunctionapproachforextractionandpreconcentrationoforganophosphoruspesticidesfromfruitjuicesamples[J].JournalofFoodCompositionandAnalysis,2020,87:103389-103395.

[26]ALTUNAYN,ELIKA,GüRKANR.Anovel,greenandsafeultrasound-assistedemulsificationliquidphasemicroextractionbasedonalcohol-baseddeepeutecticsolventfordeterminationofpatulininfruitjuicesbyspectrophotometry[J].JournalofFoodCompositionandAnalysis,2019,82:103256-103264.

[27]TORBATIM,FARAJZADEHMA,MOGADDAMMRA,etal.Deepeutecticsolventbasedhomogeneousliquid-liquidextractioncoupledwithin-syringedispersiveliquid-liquidmicroextractionperformedinnarrowtube;Applicationinextractionandpreconcentrationofsomeherbicidesfromtea[J].JournalofSeparationScience,2019,42(9):1768-1776.

[28]NASSERM,MOHAMMADALIT,ALIFM,etal.Synthesisandcharacterizationofphosphocholinechloride-basedthree-componentdeepeutecticsolvent:Applicationindispersiveliquid-liquidmicroextractionfordeterminationoforganothiophosphatepesticides[J].JournaloftheScienceofFoodandAgriculture,2020,100(6):2364-2371.

[29]PIAOHL,JIANGYX,QINZC,etal.Applicationofanin-situformulatedmagneticdeepeutecticsolventforthedeterminationoftriazineherbicidesinrice[J].Talanta,2021,222:121527-121533.

[30]JOUYBANA,FARAJZADEHMA,AFSHARMOGADDAMMR.Dispersiveliquid-liquidmicroextractionbasedonsolidificationofdeepeutecticsolventdropletsforanalysisofpesticidesinfarmerurineandplasmabygaschromatography-massspectrometry[J].JournalofChromatographyB,2019,1124:114-121.

[31]JIYH,MENGZR,ZHAOJ,etal.Eco-friendlyultrasonicassistedliquid-liquidmicroextractionmethodbasedonhydrophobicdeepeutecticsolventforthedeterminationofsulfonamidesinfruitjuices[J].JournalofChromatographyA,2020,1609:460520-460529.

[32]YUKL,YUEME,XUJ,etal.Determinationoffluoroquinolonesinmilk,honeyandwatersamplesbysaltingout-assisteddispersiveliquid-liquidmicroextractionbasedondeepeutecticsolventcombinedwithMECC[J].FoodChemistry,2020,332:127371-127377.

[33]HETT,ZHOUT,WANYQ,etal.Asimplestrategybasedondeepeutecticsolventfordeterminationofaflatoxinsinricesamples[J].FoodAnalyticalMethods,2020,13(2):542-550.

[34]HETT,ZHOUT,WANH,etal.One-stepdeepeutecticsolventstrategyforefficientanalysisofaflatoxinsinedibleoils[J].JournaloftheScienceofFoodandAgriculture,2020,100(13):4840-4848.

[35]LIUW,ZHANGKD,YUJJ,etal.Agreenultrasonic-assistedliquid-liquidmicroextractionbasedondeepeutecticsolventfortheHPLC-UVdeterminationofTBHQinedibleoils[J].FoodAnalyticalMethods,2017,10(9):3209-3215.

[36]GEDD,WANGY,JIANGQ,etal.Adeepeutecticsolventasanextractionsolventtoseparateandpreconcentrateparabensinwatersamplesusinginsituliquid-liquidmicroextraction[J].JournaloftheBrazilianChemicalSociety,2019,30(6):1203-1210.

[37]FARAJIM.Determinationofsomereddyesinfoodsamplesusingahydrophobicdeepeutecticsolvent-basedVortexassisteddispersiveliquid-liquidmicroextractioncoupledwithhighperformanceliquidchromatography[J].JournalofChromatographyA,2019,1591:15-23.

[38]SHIYY,LIX,SHANGY,etal.Effectiveextractionoffluorescentbrightener52fromfoodsbyinsituformationofhydrophobicdeepeutecticsolvent[J].FoodChemistry,2020,311:125870-125876.

[39]OZAKSS,YILMAZY.Ultrasound-assistedhydrophobicdeepeutecticsolventbasedsolid-liquidmicroextractionofSudandyesinspicesamples[J].SpectrochimicaActaPartA:MolecularandBiomolecularSpectroscopy,2020,236:118353-118360.

[40]YILMAZE,SOYLAKM.Ultrasoundassisted-deepeutecticsolventbasedonemulsificationliquidphasemicroextractioncombinedwithmicrosampleinjectionflameatomicabsorptionspectrometryforvalencespeciationofchromium(III/VI)inenvironmentalsamples[J].Talanta,2016,160:680-685.

[41]SOROURADDINSM,FARAJZADEHMA,DASTOORIH.Developmentofadispersiveliquid-liquidmicroextractionmethodbasedonaternarydeepeutecticsolventaschelatingagentandextractionsolventforpreconcentrationofheavymetalsfrommilksamples[J].Talanta,2020,208:120485-120492.

[42]NAEBIM,JAMSHIDIMA,FARAJZADEHMA,etal.In-processprepareddeepeutecticsolventbasedhomogeneousliquid-liquidmicroextractionforthedeterminationofirgaphos168andirganox1010inpolypropylenepackeddrinks[J].JournalofSeparationScience,2020,43(14):2850-2857.

[43]ZHANGK,LIUC,LISY,etal.Ahydrophobicdeepeutecticsolventbasedvortex-assistedliquid-liquidmicroextractionforthedeterminationofformaldehydefrombiologicalandindoorairsamplesbyhighperformanceliquidchromatography[J].JournalofChromatographyA,2019,1589:39-46.

[44]SOROURADDINSM,FARAJZADEHMA,OKHRAVIT.Developmentofdispersiveliquid-liquidmicroextractionbasedondeepeutecticsolventusingascomplexingagentandextractionsolvent:Applicationforextractionofheavymetals[J].SeparationScienceandTechnology,2020,55(16):2955-2966.

[45]ALOTHMANZA,HABILAMA,YILMAZE,etal.Anoveldeepeutecticsolventmicroextractionprocedureforenrichment,separationandatomicabsorptionspectrometricdeterminationofpalladiumatultra-tracelevelsinenvironmentalsamples[J].Measurement,2020,153:107394-107398.

[46]FLORINDOC,BRANCOLC,MARRUCHOIM.Questforgreen-solventdesign:Fromhydrophilictohydrophobic(deep)eutecticsolvents[J].Chemsuschem,2019,12(8):1549-1559.

[47]SHISHOVA,GORBUNOVA,MOSKVINL,etal.Decompositionofdeepeutecticsolventsbasedoncholinechlorideandphenolinaqueousphase[J].JournalofMolecularLiquids,2020,301:112380-112384.

[48]CELEBIAT,VLUGTTJH,MOULTOSOA.Structural,thermodynamic,andtransportpropertiesofaqueousrelineandethalinesolutionsfrommoleculardynamicssimulations[J].JournalofPhysicalChemistryB,2019,123(51):11014-11025.

[49]MARYAMS,HAKIMF,HAMIDREZAS,etal.Sustainableandgreenmicroextractionoforganophosphorusflameretardantsbyanovelphosphonium-baseddeepeutecticsolvent[J].JournalofSeparationScience,2020,43(2):452-461.

[50]FARAJZADEHMA,SOHRABIH,MOHEBBIA,etal.Combinationofamodifiedquick,easy,cheap,efficient,rugged,andsafeextractionmethodwithadeepeutecticsolventbasedmicrowave-assisteddispersiveliquid-liquidmicroextraction:Applicationinextractionandpreconcentrationofmulticlasspesticideresiduesintomatosamples[J].JournalofSeparationScience,2019,42(6):1273-1280.

[51]ASGHARM,AFSHARMMR,ALIFM,etal.Athree-phasesolventextractionsystemcombinedwithdeepeutecticsolvent-baseddispersiveliquid-liquidmicroextractionforextractionofsomeorganochlorinepesticidesincocoasamplespriortogaschromatography-electroncapturedetector[J].JournalofSeparationScience,2020,43(18):3674-3682.

[52]王素利,郭振幅,庚丽丽.基于低共熔溶剂的液-液微萃取技术测定食用油中的新烟碱类杀虫剂[J/OL].食品科学,2020.

WANGSL,GUOZF,GENGLL.Theliquidphasemicroextractiontechnologybasedondeepeutecticsolventfordeterminationofnewneonicotinoidinsecticideinedibleoil[J/OL].FoodScience,2020.

[53]YUVALID,SEYHANEYILDIZIM,SOYLAKM,etal.Anenvironment-friendlyandrapidliquid-liquidmicroextractionbasedonnewsynthesizedhydrophobicdeepeutecticsolventforseparationandpreconcentrationoferythrosine(E127)inbiologicalandpharmaceuticalsamples[J].SpectrochimicaActaPartA:MolecularandBiomolecularSpectroscopy,2021,244:118842-118847.

LINZhihao1,2,3,ZHANGYaohai1,2,3,JIAOBining1,2,3*,HANKe1,2,3,QINYan1,2,3

1(CitrusResearchInstitute,SouthwestUniversity&ChineseAcademyofAgriculturalSciences,Chongqing400712,China)2(LaboratoryofQualityandSafetyRiskAssessmentforCitrusProducts,MinistryofAgricultureandRuralAffairs,Chongqing400712,China)3(QualitySupervisionandTestingCenterforCitrusandSeedling,MinistryofAgricultureandRuralAffairs,Chongqing400712,China)

AbstractDeepeutecticsolvents(DESs)havebeenfavoredbyscientificresearchersduetotheiruniqueproperties,suchaslowvaporpressure,lowtoxicity,gooddesignablestructures,goodrecyclability,environmentfriendlyandcheap,andgraduallyappliedinthefieldsofextractionandseparation.Inthepaper,thecharacteristicsofDESsandthemodesofdeepeutecticsolvents-dispersiveliquid-liquidmicroextractionwereintroduced.Therecentapplicationsofthistechniqueinthedeterminationofcontaminantsinfoodsandtheenvironmentwereemphaticallyreviewed.Basedontheabovediscussion,futureexplorationanddevelopmentofthistechniquearealsoproposed.

Keywordsdeepeutecticsolvents(DESs);naturaldeepeutecticsolvents(NaDESs);dispersiveliquid-liquidmicroextraction(DLLME);environmentpollutant

DOI:10.13995/j.cnki.11-1802/ts.025921

引用格式:林志豪,张耀海,焦必宁,等.深共晶溶剂-分散液液微萃取在食品及环境污染物检测中的应用[J].食品与发酵工业,2021,47(7):260-268.LINZhihao,ZHANGYaohai,JIAOBining,etal.Applicationofdeepeutecticsolvents-dispersiveliquid-liquidmicroextractionforthedeterminationofcontaminantsinfoodandenvironment[J].FoodandFermentationIndustries,2021,47(7):260-268.

第一作者:硕士研究生(焦必宁研究员为通讯作者,E-mail:jiaobining@cric.cn)

基金项目:国家重点研发计划项目(2019YFC1605604);现代农业(柑桔)产业技术体系建设专项(CARS-26);国家农产品质量安全风险评估重大专项(GJFP2019012)

THE END
1.粮食污染包括那些方面?粮油及产品与其他食品一样,在种植、加工、包装、储存、运输、销售等环节,都会受到各种各样的有毒有害物质污染。这些有毒有害物质的来源也是多方面的,可能来自环境污染,也可能来自生产加工过程,有的则是粮油本身存在的(如棉籽油中的游离棉酚)。粮油的污染可分为生物性污染、化学性污染和放射性污染三大类。 http://www.scpc.gov.cn/hdjl/wdzsk/13454831.html
2.三种类型的食品污染分别是什么1、生物性污染:包括微生物、寄生虫、昆虫及病毒的污染。 2、化学性污染:食品化学性污染涉及范围较广,主要包括来自生产、生活和环境中的污染物,如农药、兽药、有毒金属、多环芳烃化合物、亚硝基化合物、杂环胺、二恶英、三氯丙醇污染等;食品容器、包装材料、运输工具等接触食品时溶入食品中的有害物质污染;滥用食品添...http://m.rili11.com/xw2687062/
3.食品伙伴网手机版―关注食品安全,探讨食品技术,中国食品行业专业...6月2日,广东省市场监督管理局发布2023年第14期通告,通报了12批次不合格食品,检出农兽药残留、重金属污染及食品添加剂超限量使用等问题。 5批次食品检出农兽药残留问题 5批次食品检出农兽药残留问题,分别为中山市石岐区段建波蔬菜档销售的白豆角,噻虫胺不符合食品安全国家标准规定;佛山市南海区江方誉开刀鱼店销售的泥...http://m.foodmate.net/index.php?itemid=169883&moduleid=35
1.食品安全学(精选6篇)细菌性食物中毒:人体摄入了被细菌或其毒素污染的食品后所出现的非传染性急性、亚急性疾病。 9.在食品物流领域中,如何把好采购关 (一)应符合国家有关食品安全标准和规定的有关要求,并应进行验收,不得采购《食品安全法》第二十八条规定禁止生产经营的食品和《中华人民共和国农产品质量安全法》第三十三条规定不得销售...https://www.360wenmi.com/f/filewe6uc0kg.html
2.食品中污染物的种类有哪些食品中污染物分为化学污染物、微生物污染物、生物污染物、物理污染物、放射性污染物等种类,包括:重金属、农药残留、兽药残留、细菌及细菌毒素、病毒、寄生虫及其虫卵、金属、砂石、木屑等。 一、化学污染物 1、重金属 如铅(Pb)、镉(Cd)、汞(Hg)、砷(As)等。 https://www.qilaijian.com/zishi/34305.html
3.(优选)食品安全管理制度3、索取和查验的营业执照(身份证明)、生产许可证、流通许可证、质量认证证书、商检证明、检验检疫合格证明、质量检验合格报告和销售发票(凭证)应当按供货商名称或者食品种类整理建档备查,相关档案应当妥善保管,保管期限自该种食品购入之日起不少于2年。 4、禁止采购腐败变质、掺杂掺假、发霉生虫、有毒有害、质量不新鲜...https://www.unjs.com/fanwenwang/gzzd/20230706164942_7366870.html
4.2017年新版食品安全试卷C、建立CCP的监控体系 D、建立物理污染物的检查程序 2、( )当前各国普遍采用的良好操作规范(GMP)最早起源于 A)国际食品法典委员会 B)美国 C)加拿大 D)中国 3、( )什么是某CCP的关键限值? A、食品生产操作超出某限度值而可能造成健康危害 B、微生物指标 ...https://www.oh100.com/kaoshi/peixun/377969.html
5.速看!江西这些食品不合格!涉及农兽药残留重金属污染……近期,江西省市场监督管理局组织对糖果制品、食用农产品、乳制品、饮料、水产制品和餐饮食品6大类食品共556批次食品进行了监督抽检。检出食用农产品、饮料和餐饮食品3大类食品共16批次不合格食品。涉及微生物污染、农兽药残留、重金属污染和质量指标问题。现将具体情况通告如下: ...https://m.thepaper.cn/newsDetail_forward_15944677
6....福建公告28批次食品不合格情况涉及农兽药残留超标重金属污染...《公告》显示,福建省市场监管局组织食品安全监督抽检,共发现餐饮食品(含餐饮具)、炒货食品及坚果制品、食用农产品、食用油(含油脂及其制品)、水产制品、饮料6大类食品28批次样品不合格,主要涉及重金属污染、微生物污染、农兽药残留超标等问题。 11批次存在农兽药残留超标问题...https://m.yunnan.cn/system/2021/03/23/031350632.shtml
7.化学性食品污染化学性食品污染主要由有害有毒的化学物质污染引起的。按照化学污染物的性质和来源大体分为四类:农药兽药残留污染、有毒重金属污染、食品容器和包装材料污染、其他常见化学毒物污染。 (一)农药 农药是指用于预防、消灭或者控制危害农业、林业的病、虫、草和其他有害生物以及有目的地调节植物、昆虫生长的化学合成物或者...https://tesdcn.com/index.php?m=home&c=View&a=index&aid=1495
8.影响我国食品安全的主要因素有哪些影响食品安全的因素有哪些?有以环境污染为源头的食品原料污染;食品添加剂超范围、超限量使用;食品中检出非食用物质;保健食品掺假。 食品中农兽药残留指标不合格的问题在逐年升高,说明破解原料污染问题的复杂、艰难与长期。 进口食品因基数加大,进口国食品安全管理水平不一,风险概率提升。食品行业对进口食品与原料的开放度加大,产生风险的概率增加。https://cai.verywind.com/xx/crnenwwcccrecriice.htm