项目中采用OpenVINO部署行人检测算法、关键点检测算法以及摔倒检测算法实现对行人摔倒自动识别算法,并在英特尔开发套件AlxBoard使用OpenVINOC#API结合应用场景部署多模型。
项目中所使用的代码全部在GitHub上开源,项目链接为:
(复制链接到浏览器打开)
Part1
英特尔开发套件
1.1OpenVINO工具套件
英特尔发行版OpenVINO工具套件基于oneAPI而开发,可以加快高性能计算机视觉和深度学习视觉应用开发速度工具套件,适用于从边缘到云的各种英特尔平台上,帮助用户更快地将更准确的真实世界结果部署到生产系统中。通过简化的开发工作流程,OpenVINO可赋能开发者在现实世界中部署高性能应用程序和算法。
OpenVINO2023.1于2023年9月18日发布,该工具包带来了挖掘生成人工智能全部潜力的新功能。生成人工智能的覆盖范围得到了扩展,通过PyTorch*等框架增强了体验,您可以在其中自动导入和转换模型。大型语言模型(LLM)在运行时性能和内存优化方面得到了提升。聊天机器人、代码生成等的模型已启用。OpenVINO更便携,性能更高,可以在任何需要的地方运行:在边缘、云中或本地。
1.2英特尔开发套件AlxBoard介绍
产品定位
英特尔开发套件AlxBoard是英特尔开发套件官方序列中的一员,专为入门级人工智能应用和边缘智能设备而设计。英特尔开发套件AlxBoard能完美胜人工智能学习、开发、实训、应用等不同应用场景。该套件预装了英特尔OpenVINO工具套件、模型仓库和演示案例,便于您轻松快捷地开始应用开发。
套件主要接口与JetsonNano载板兼容,GPIO与树莓派兼容,能够最大限度地复用成熟的生态资源。这使得套件能够作为边缘计算引擎,为人工智能产品验证和开发提供强大支持;同时,也可以作为域控核心,为机器人产品开发提供技术支撑。
产品参数
AI推理单元
借助OpenVINO工具,能够实现CPU+iGPU异构计算推理,IGPU算力约为0.6TOPS
Part2
PaddleDetection
实时行人分析工具PP-Human
飞桨(PaddlePaddle)是集深度学习核心框架、工具组件和服务平台为一体的技术先进、功能完备的开源深度学习平台,已被中国企业广泛使用,深度契合企业应用需求,拥有活跃的开发者社区生态。提供丰富的官方支持模型集合,并推出全类型的高性能部署和集成方案供开发者使用。是中国首个自主研发、功能丰富、开源开放的产业级深度学习平台。
PaddleDetection是一个基于PaddlePaddle的目标检测端到端开发套件,内置30+模型算法及250+预训练模型,覆盖目标检测、实例分割、跟踪、关键点检测等方向,其中包括服务器端和移动端高精度、轻量级产业级SOTA模型、冠军方案和学术前沿算法,并提供配置化的网络模块组件、十余种数据增强策略和损失函数等高阶优化支持和多种部署方案。在提供丰富的模型组件和测试基准的同时,注重端到端的产业落地应用,通过打造产业级特色模型|工具、建设产业应用范例等手段,帮助开发者实现数据准备、模型选型、模型训练、模型部署的全流程打通,快速进行落地应用。
如图所示,PP-Human支持单张图片、图片文件夹单镜头视频和多镜头视频输入,经目标检测以及特征关联,实现属性识别、关键点检测、轨迹/流量计数以及行为识别等功能。此处基于OpenVINO模型部署套件,进行多种模型联合部署,实现实时行人行为识别,此处主要实现行人摔倒识别。
Part3
预测模型获取与转换
3.1PP-YOLOE行人跟踪
模型介绍
PP-YOLOE是基于PP-YOLOv2的卓越的单阶段Anchor-free模型,超越了多种流行的YOLO模型,可以通过widthmultiplier和depthmultiplier配置。PP-YOLOE避免了使用诸如DeformableConvolution或者MatrixNMS之类的特殊算子,以使其能轻松地部署在多种多样的硬件上。此处主要利用PP-Yoloe模型进行行人跟踪。
模型下载与转换
(1)PaddlePaddle模型下载与裁剪:
PP-Human提供了训练好的行人跟踪模型,此处只需要下载,并将其解压到指定文件夹中:
此处模型裁剪主要是在Paddle模型格式下进行裁剪,裁剪方式参考的jiangjiajun[1]提供的模型裁剪方式,为了方便使用,当前项目提供了模型裁剪工具包,在“./paddle_model_process/”文件夹下,利用命令进行模型裁剪:
pythonprune_paddle_model.py--model_dirmot_ppyoloe_l_36e_pipeline--model_filenamemodel.pdmodel--params_filenamemodel.pdiparams--output_namestmp_16concat_14.tmp_0--save_direxport_model
如表4所示,提供了模型裁剪命令说明,大家可以根据自己设置进行模型裁剪,当前命令裁剪的模型目前已经进行测试,完全符合当前阶段的要求。
(2)转换为ONNX格式:
该方式需要安装paddle2onnx和onnxruntime模块。导出方式比较简单,可以进行模型输入固定,此处使用的都为bath_size=1,在命令行中输入以下指令进行转换:
paddle2onnx--model_dirmot_ppyoloe_l_36e_pipeline--model_filenamemodel.pdmodel--params_filenamemodel.pdiparams--input_shape_dict"{'image':[1,3,640,640]}"--opset_version11--save_filemot_ppyoloe_l_36e_pipeline.onnx
(3)转成IR格式
IR格式为OpenVINO原生支持的模型格式,此处主要通过OpenVINO工具进行转换,直接在命令行输入以下指令即可:
mo--input_modelmot_ppyoloe_l_36e_pipeline.onnx
3.2PP-TinyPose人体姿态识别
PP-TinyPose是PaddlePaddle提供了关键点识别模型,PP-TinyPose在单人和多人场景均达到性能SOTA,同时对检测人数无上限,并且在微小目标场景有卓越效果,助力开发者高性能实现异常行为识别、智能健身、体感互动游戏、人机交互等任务。同时扩大数据集,减小输入尺寸,预处理与后处理加入AID、UDP和DARK等策略,保证模型的高性能。实现速度在FP16下122FPS的情况下,精度也可达到51.8%AP,不仅比其他类似实现速度更快,精度更是提升了130%。此处使用的是dark_hrnet_w32_256x192模型,该模型输入与输出如下表所示。
第一模型的输入与conv2d_585.tmp_1节点输出形状,呈现倍数关系,具体是输入的长宽是输出的四倍,因此我们可以通过输入形状来推算输出的大小。
第二模型argmax_0.tmp_00节点输出为预测出的17个点的灰度图,因此后续在进行数据处理是,只需要寻找到最大值所在位置,就可以找到近似的位置。
(1)PaddlePaddle模型下载方式:
命令行直接输入以下代码,或者浏览器输入后面的网址即可。
下载好后将其解压到文件夹中,便可以获得Paddle格式的推理模型。
paddle2onnx--model_dirdark_hrnet_w32_256x192--model_filenamemodel.pdmodel--params_filenamemodel.pdiparams--input_shape_dict"{'image':[1,3,256,192]}"--opset_version11--save_filedark_hrnet_w32_256x192.onnx
(3)转换为IR格式
利用OpenVINO模型优化器,可以实现将ONNX模型转为IR格式。在OpenVINO环境下,切换到模型优化器文件夹,直接使用下面指令便可以进行转换。
cd.\openvino\tools
经过上述指令模型转换后,可以在当前文件夹下找到转换后的三个文件。
mo--input_modelpaddle/model.pdmodel--data_typeFP16--input_shape[1,3,256,192]
3.3ST-GCN基于关键点的行为识别
摔倒行为识别模型使用了ST-GCN,并基于PaddleVideo套件完成模型训练,此处可以直接下载飞桨提供的训练好的模型。
该方式需要安装paddle2onnx和onnxruntime模块。在命令行中输入以下指令进行转换:
paddle2onnx--model_dirSTGCN--model_filenamemodel.pdmodel--params_filenamemodel.pdiparams--opset_version11--save_fileSTGCN.onnx
mo--input_modelpaddle/model.pdmodel--data_typeFP16
Part4
配置PP-Human_Fall_Detection项目
项目中所使用的代码已经放在GitHub仓库PP-Human_Fall_Detection[2],大家可以根据情况自行下载和使用,下面我将会从头开始一步步构建PP-Human_Fall_Detection项目。
4.1环境配置
4.2创建PP-Human_Fall_Detection项目
在该项目中,我们需要使用OpenCvSharp,该依赖目前在Ubutun平台最高可以支持.NETCore3.1,因此我们此处创建一个.NETCore3.1的项目,使用Terminal输入以下指令创建并打开项目文件:
dotnetnewconsole--framework"netcoreapp3.1"-oPP-Human_Fall_Detection
4.3添加项目源码
前文中我们已经提供了项目源码链接,大家可以直接再在源码使用,此处由于篇幅限制,因此此处不对源码做太多的讲解,只演示如何使用项目源码配置当前项目。将项目源码中的PP-Human文件夹和HumanFallDown.cs、Program.cs文件复制到当前项目中,最后项目的路径关系如下所示:
4.4添加OpenVINOC#API
OpenVINOC#API目前只支持克隆源码的方式实现,首先使用Git克隆以下源码,只需要在Terminal输入以下命令:
然后将该项目文件夹下的除了src文件夹之外的文件都删除掉,然后项目的文件路径入下所示:
最后在当前项目中添加项目引用,只需要在Terminal输入以下命令:
dotnetaddreference./OpenVINO-CSharp-API/src/CSharpAPI/CSharpAPI.csproj
4.5添加OpenCvSharp
安装NuGetPackage
OpenCvSharp可以通过NuGetPackage安装,只需要在Terminal输入以下命令:
dotnetaddpackageOpenCvSharp4_.runtime.ubuntu.20.04-x64
添加环境变量
将以下路径添加到环境变量中:
exportLD_LIBRARY_PATH=/home/ygj/Program/OpenVINO-CSharp-API/tutorial_examples/AlxBoard_deploy_yolov8/bin/Debug/netcoreapp3.1/runtimes/ubuntu.20.04-x64/native
/bin/Debug/netcoreapp3.1/runtimes/ubuntu.20.04-x64/native是项目编译后生成的路径,该路径下存放了libOpenCvSharpExtern.so文件,该文件主要是封装的OpenCV中的各种接口。也可以将该文件拷贝到项目运行路径下。
Part5
测试PP-Human_Fall_Detection项目
5.1创建视频读取器
当前项目测试内容为视频,此处主要通过OpenCV的VideoCapture类进行读取,实现逐帧读取测试图片。
5.2行人识别
利用创建好的视频读取器逐帧读取视频图片,将其带入到yoloe_predictor预测器中进行预测,并将预测结果绘制到图片上,期预测结果存放到ResBboxs类中,方便进行数据传输。
通过上述代码,可以实现视频所有帧图片预测,将预测结果保存到本地,如图所示,经过预测器预测,可以很好的捕获到运动的行人。
5.3关键点识别
上一步通过行人跟踪,捕捉到了行人,由于行人是在不断运动的,因此在进行关键点预测时,需要先进行裁剪,将行人区域按照指定要求裁剪下来,并根据裁剪结果对行人关键点进行预测,此处使用的是bath_size=1的预测,适合单人预测,如果出现多人时,可以采用同时预测。
经过模型预测,第一会将预测结果存到结果容器“mot_point”中,用于后面的摔倒识别;另一点将模型预测结果绘制到图像中,如图所示。
5.4摔倒识别
摔倒识别需要同时输入50帧人体关键点识别结果,所以在开始阶段需要积累50帧的关键点识别结果,此处采用自定义的结果保存容器“MotPoint”实现,该容器可以实现保存关键点结果,并将关键点识别结果与上一帧结果进行匹配,当容器已满会返回推理标志,当满足识别条件是,就会进行依次模型预测;同时会清理前20帧数据,继续填充识别结果等待下一次满足条件。
摔倒识别结果为是否摔倒以及对应的权重,此处主要是在满足条件的情况下,进行一次行为识别,并将识别结果绘制到图像上。
5.5模型联合部署实现行人摔倒识别
通过行人跟踪、关键点识别以及行为识别三个模型联合预测,可以实现行人的行为识别,其识别效果如图14所示。在该图中分别包含了三个模型的识别结果:行人位置识别与跟踪是通过PP-YOLOE模型实现的,该模型为下一步关键点识别提供了图像范围,保证了关键点识别的结果;人体骨骼关键点识别时通过dark_hrnet模型实现,为后续行为识别提供了输入;最终的行为识别通过ST-GCN模型实现,其识别结果会知道了行人预测框下部,可以看到预测结果与行人是否摔倒一致。
Part6
总结
在该项目中,基于C#和OpenVINO联合部署PP-YOLOE行人检测模型、dark_hrnet人体关键点识别模型以及ST-GCN行为识别模型,实现行人摔倒检测。
在该项目中,主要存在的难点一是PP-YOLOE模型无法直接使用OpenVINO部署,需要进行裁剪,裁剪掉无法使用的节点,并根据裁剪的节点,处理模型的输出数据;难点二是处理好行人预测与关键点模型识别内容的关系,在进行多人识别时,要结合行人识别模型进行对应的人体关键点识别,并且要当前帧识别结果要对应上一帧行人识别结果才可以保证识别的连续性。
[1]jiangjiajun提供的模型裁剪方式:
[2]PP-Human_Fall_Detection:
[3]【2023Intel有奖征文】爱克斯开发板使用OpenVINOC#API部署Yolov8模型
英特尔、英特尔标识、以及其他英特尔商标是英特尔公司或其子公司在美国和/或其他国家的商标。