[例1]竖立放置的粉笔压在纸条的一端.要想把纸条从粉笔下抽出,又要增加粉笔不倒,应该缓缓、小心地将纸条抽出,还是将纸条抽出说明理由。
二、用动量定理解曲线运动问题
[例2]以速度v0水平抛出一个质量为1kg的物体,若在抛出后5s未落地且未与其它物体相碰,求它在5s内的动量的变化.(g=10m/s2)。
[解析]此题若求出末动量,再求它与初动量的矢量差,则极为繁琐.由于平抛出去的物体只受重力且为恒力,故所求动量的变化等于重力的冲量.则
Δp=Ft=mgt=1×10×5=50kg·m/s。
[点评]①运用Δp=mv-mv0求Δp时,初、末速度需要在同一直线上,若不在同一直线,需考虑运用矢量法则或动量定理Δp=Ft求解Δp.②用I=F·t求冲量,F需要是恒力,若F是变力,需用动量定理I=Δp求解I。
三、用动量定理解决打击、碰撞问题
打击、碰撞过程中的相互作用力,一般不是恒力,用动量定理可只讨论初、末状态的动量和作用力的冲量,不必讨论每一瞬时力的大小和加速度大小问题。
[解析]将运动员看成质量为m的质点,从高h1处下落,刚接触网时速度方向向下,大小。
弹跳后到达的高度为h2,刚离网时速度方向向上,大小,
接触过程中运动员受到向下的重力mg和网对其向上的弹力F.选取竖直向上为正方向,由动量定理得:。
由以上三式解得:
代入数值得:F=1.2×103N。#p#副标题#e#
四、用动量定理解决连续流体的作用问题
在日常生活和生产中,常涉及流体的连续相互作用问题,用常规的分析方法很难奏效.若构建柱体微元模型应用动量定理分析求解,则曲径通幽,“柳暗花明又一村”。
[[例4]]有一宇宙飞船以v=10km/s在太空中飞行,突然进入一密度为ρ=1×10-7kg/m3的微陨石尘区,假设微陨石尘与飞船碰撞后即附着在飞船上.欲使飞船保持原速度不变,试求飞船的助推器的助推力应增大为多少(已知飞船的正横截面积S=2m2)
则:
根据牛顿第三定律可知,微陨石对飞船的撞击力大小也等于20N.因此,飞船要保持原速度匀速飞行,助推器的推力应增大20N。
五、动量定理的应用可扩展到全过程
物体在不同阶段受力情况不同,各力可以先后产生冲量,运用动量定理,就不用考虑运动的细节,可“一网打尽”,干净利索。
[[解析]]本题若运用牛顿定律解决则过程较为繁琐,运用动量定理则可一气呵成,一目了然.由于全过程初、末状态动量为零,对全过程运用动量定理,有
故:
[点评]本题同学们可以尝试运用牛顿定律来求解,以求掌握一题多解的方法,同时比较不同方法各自的特点,这对今后的学习会有较大的帮助。#p#副标题#e#
六、动量定理的应用可扩展到物体系
尽管系统内各物体的运动情况不同,但各物体所受冲量之和仍等于各物体总动量的变化量。
[[解析]]金属块和木块作为一个系统,整个过程系统受到重力和浮力的冲量作用,设金属块和木块的浮力分别为F浮M和F浮m,木块停止时金属块的速度为vM,取竖直向下的方向为正方向,对全过程运用动量定理得
①
细线断裂前对系统分析受力有
②
联立①②得。
综上,动量定量的应用广泛.仔细地理解动量定理的物理意义,潜心地探究它的典型应用,对于我们深入理解有关的知识、感悟方法,增强运用所学知识和方法分析解决实际问题的能力很有帮助.