数学建模方法详解三十四种常用算法

数学建模方法详解--三十四种常用算法

目录

一、主成分分析法(2)

二、因子分析法(5)

三、聚类分析(9)

四、最小二乘法与多项式拟合(16)

五、回归分析(略)(22)

六、概率分布方法(略)(22)

七、插值与拟合(略)(22)

八、方差分析法(23)

九、逼近理想点排序法(28)

十、动态加权法(29)

十一、灰色关联分析法(31)

十二、灰色预测法(33)

十三、模糊综合评价(35)

十四、隶属函数的刻画(略)(37)

十六、蒙特卡罗(MC)仿真模型(42)

十七、BP神经网络方法(44)

十八、数据包络分析法(DEA)(51)

十九、多因素方差分析法()基于SPSS)(54)

二十、拉格朗日插值(70)

二十一、回归分析(略)(75)

二十二、概率分布方法(略)(75)

二十三、插值与拟合(略)(75)

二十四、隶属函数的刻画(参考《数学建模及其方法应用》)(75)

二十五、0-1整数规划模型(参看书籍)(75)

二十六、Board评价法(略)(75)

二十七、纳什均衡(参看书籍)(75)

二十八、微分方程方法与差分方程方法(参看书籍)(75)

二十九、莱斯利离散人口模型(参看数据)(75)

三十、一次指数平滑预测法(主要是软件的使用)(75)

三十一、二次曲线回归方程(主要是软件的使用)(75)

三十二、成本-效用分析(略)(75)

三十三、逐步回归法(主要是软件的使用)(75)

三十四、双因子方差分析(略)(75)

一、主成分分析法

一)、主成分分析法介绍:

主成分分析(principalcomponentsanalysis,PCA)又称:主分量分析,主成分回归分析法。旨在利用降维的思想,把多指标转化为少数几个综合指标。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。

二)、主成分分析法的基本思想:

例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。

三)、主成分分析法的数学模型:

其中:

为第j个指标对应于第个主成分的初始因子载荷,

为第l个主成分对应的特征值

根据主成分表达式得出综合得分模型:

四)、主成分分析法的基本原理:

五)、主成分分析法的作用:

概括起来说,主成分分析主要由以下几个方面的作用。

1.主成分分析能降低所研究的数据空间的维数。即用研究m维的Y空间代替p维的X空间(m<p),而低维的Y空间代替高维的x空间所损失的信息很少。即:使只有一个主成分Yl(即m=1)时,这个Yl仍是使用全部X变量(p个)得到的。例如要计算Yl的均值也得使用全部x的均值。在所选的前m个主成分中,如果某个Xi的系数全部近似于零的话,就可以把这个Xi删除,这也是一种删除多余变量的方法。

2.有时可通过因子负荷aij的结论,弄清X变量间的某些关系。

3.多维数据的一种图形表示方法。我们知道当维数大于3时便不能画出几何图形,多元统计研究的问题大都多于3个变量。要把研究的问题用图形表示出来是不可能的。然而,经过主成分分析后,我们可以选取前两个主成分或其中某两个主成分,根据主成分的得分,画出n个样品在二维平面上的分布况,由图形可直观地看出各样品在主分量中的地位,进而还可以对样本进行分类处理,可以由图形发现远离大多数样本点的离群点。

4.由主成分分析法构造回归模型。即把各主成分作为新自变量代替原来自变量x做回归分析。

5.用主成分分析筛选回归变量。回归变量的选择有着重的实际意义,为了使模型本身易于做结构分析、控制和预报,好从原始变量所构成的子集合中选择最佳变量,构成最佳变量集合。用主成分分析筛选变量,可以用较少的计算量来选择量,获得选择最佳变量子集合的效果。

六)、主成分分析法的计算步骤:

1、原始指标数据的标准化采集p维随机向量x=(x1,X2,...,Up)T)n个样品xi=(xi1,xi2,...,dip)T,I=1,2,…,n,

THE END
1.一文读懂主成分分析与因子分析(二)图表说明: 上表为因子分析的根据载荷系数等信息所做的主成分权重分析,其计算公式为:方差解释率/旋转后累积方差解释率。 结果分析:因子的权重计算结果显示,因子 1 的权重为 66.9%、因子 2 的权重为 27.396%、因子 3 的权重为 4.625%、因子 4 的权重为 0.576%、因子 5 的权重为 0.503%。 https://developer.aliyun.com/article/1241967
2.主成分分析法案例3篇.doc主成分分析法案例3篇.doc,主成分分析法案例3篇 篇一:主成分分析法及案例分析 在统计学中,主成分分析是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标上,第二大方差在第二个坐标上,依次类https://max.book118.com/html/2017/0116/84478429.shtm
3.学术前沿与此不同,当下的犯罪率研究,不是用多个自变量解释一个已知的因变量,而是从多个变量中提炼、浓缩共性,前提是多个变量之间存在共性。降维分析中的主成分分析法和因子分析法恰好适合解决此类问题。不过,作为第一次尝试,采用降维分析方法研究犯罪率出来的结果应该不再是每十万人口中的全部或某类案件数或人数,而是多个具体...http://www.zgfzxxh.com/xsqy/202204/t20220411_3620737.shtml
1.简单例子弄懂主成分分析主成分分析法举例但我们发现,可能数学和物理成绩往往有较强的相关性,英语和语文成绩也有一定的关联。 这时我们使用主成分分析(PCA),它会找到新的“综合科目”,也就是主成分。比如第一个主成分可能综合反映了学生的理科思维能力,与数学和物理成绩的关系较大;第二个主成分可能综合反映了学生的语言能力,与英语和语文成绩关系较大。https://blog.csdn.net/Llcm3030zzstj81/article/details/141691418
2.数学建模暑期集训21:主成分分析(PCA)腾讯云开发者社区主成分分析指标解释案例 主成分分析的一大难点是指标意义模糊,难以解释,下面这个例子可以辅助理解。 上表的累计贡献率 = 当前项贡献率 + 之前的累计贡献率。当累计贡献率 > 80%时,剩下的特征向量可以舍弃。 上面的分析需要一定的语言组织能力,也需要一定运气成分,若难以解释,或者强行解释,或者换方法。 https://cloud.tencent.com/developer/article/2022167
3.常用:主成分分析和因子分析的原理,操作,代码和案例讲解!今天,分享《主成分分因子分析的原理, 操作, 代码和案例讲解》,全文分为两个部分,分别对应着主成分分析和因子分析。 1.主成分分析 PCA analysis 主成分分分析也称作主分量分析,是霍特林(Hotelling)在1933年首先提出。主成分分析是利用降维的思想,在损失较少信息的前提下把多个指标转化为较少的综合指标。转化生成的...https://www.shangyexinzhi.com/article/5113763.html
4.数学建模暑期集训21:主成分分析(PCA)51CTO博客主成分分析指标解释案例 主成分分析的一大难点是指标意义模糊,难以解释,下面这个例子可以辅助理解。 上表的累计贡献率 = 当前项贡献率 + 之前的累计贡献率。当累计贡献率 > 80%时,剩下的特征向量可以舍弃。 上面的分析需要一定的语言组织能力,也需要一定运气成分,若难以解释,或者强行解释,或者换方法。 主成分分析...https://blog.51cto.com/u_15762365/5612135
5.转录组专题转录组结题报告解读+文章撰写描述主成分分析(Principal Component Analysis,PCA)是一种无监督模式识别的多维数据统计分析方法,用来判断组内样本的重复性和组间样本的差异。 图2.样本的PCA图 2.3 gene_expression.annot所有样本比对上的所有基因及注释信息 包括基因ID,基因的FPKM值,基因的counts值,以及在不同数据库的注释信息,这个表是所有后续差异基因...https://www.antpedia.com/news/wx_article/752184.html
6.解释主成分分析的主要结果解释主成分分析的主要结果 了解关于 Minitab 的更多信息 请完成以下步骤来解释主分量分析。主要输出包括特征值、分量解释的方差比率、系数和几个图形。 关于本主题 步骤1:确定主分量数 步骤2:根据原始变量解释每个主分量 步骤3:标识异常值 步骤1:确定主分量数 ...https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/multivariate/how-to/principal-components/interpret-the-results/key-results/
7.路噪问题的诊断与优化振动与噪声而参考车内噪声进行主成分分析时,解耦出来的特征基本与目标点噪声直接相关,所以基本上一到两个主成分即可完成拟合,更加方便我们的数据处理分析,同时也更能体现NVH问题。 本案例分析结果如下: 图5 以车内噪声为参考的PCA分析结果 根据图 5所示,车内噪声主要峰值基本均由第一阶主成分拟合而成,所以该阶主成分将被...https://www.auto-testing.net/news/show-106120.html
8.主成分分析(PCA)原理详解及案例分析主成分分析(PCA) 假设我们一组二维数据点如图(1)所示,我们可以看出这两个维度具有很高的相似性,也就是说两个维度之间具有很高的冗余性,如果我们只想保留一个维度,那么该怎么选择才能尽可能多的保留原始数据的信息呢。我们先对数据进行归一化处理,得到的数据点如图(2)所示。然后将数据点映射到另一个新的空间,如图...https://www.pianshen.com/article/65462319392/
9.文化与自然灾害对四川居民保护旅游地生态环境行为的影响对价值观量表、生态环境信念观量表、保护旅游地生态环境行为量表和灾害后果认知及个人规范量表分别进行探索性因子分析(主成分分析法、最大方差旋转、特征值>1)。所有测量量表信度>0.60,效度>0.55表示量表内在信度和效度较好(表 1);同时所有指标因子载荷>0.50,表明不需要剔除任何题项。经探索性因子分析后得到7个因子,由...https://www.ecologica.cn/stxb/ch/html/2014/17/stxb201301090075.htm
10.探索性因子分析(ExploratoryFactorAnalysis)——SPSS软件实现...EFA分析的主要目的之一是通过选取的主成分因子(维度)对数据进行降维,但同时也要注意应尽可能多的包含对数据变异的解释。 1. 软件操作 在“因子分析”(图7)页面,点击“确定”,输出结果如表7所示。 表7 2. 结果解读 在表7“总方差解释”表格中,每个主成分因子(维度)的解释率都>5%,累计方差解释率为58.188%。https://mengte.online/archives/13442