RFM模型分析与实现<应用示例和案例解析<第八章分析表达式Wyn商业智能

RFM模型用于分析客户价值,它包括三个关键指标:

F(Frequency),消费频率

M(Monetary),消费金额

一般来说,最近一次消费的间隔越短、消费频率和消费金额越高,客户价值越大。

实际上在分析所有客户数据时,如果为每个客户计算R、F、M值,不能清晰直观地反映规律,所以我们按照R、F、M值对客户进行分组。

首先,选择每个客户并计算上述三个指标的值。

其次,从以上结果来看三个指标的平均值;

第三,对每个客户进行分组。

如果R值<平均R值,则属于R↑,我们标记为R_UP,否则属于R↓,我们标记为R_DOWN;F和M值的逻辑类似。如果F值>平均F值,则属于F↑,我们标记为F_UP,否则属于F↓,我们标记为F_DOWN;如果M值>平均M值,则属于M↑,我们标记为M_UP,否则属于M↓,我们标记为M_DOWN;

R↓F↓M↓R↑F↑M↑之间任意组合为8组,映射到业务定义,如下:

R↑F↑M↑:重要价值客户

R↑F↑M↓:一般价值客户

R↑F↓M↑:重要发展客户

R↑F↓M↓:一般发展客户

R↓F↑M↑:重要保持客户

R↓F↑M↓:一般保持客户

R↓F↓M↑:重要挽留客户

R↓F↓M↓:一般挽留客户

然后基于这个组和平均值,用户可以进行更复杂的分析和仪表板,如会员分类、会员百分比、会员消费百分比。

得到最终的RFM值,关键是得到R,F、M值分别与平均值的比较结果,如下图所示:

所有指标均使用新加度量值来实现。

首先来看R。

这里以最新的业务日期为锚点,最新业务日期的度量值,我们暂且将其命名为Rday:

为了更方便,我们先得出业务最新成交日期,暂且将其命名为Rmax。然后再求间隔。

DATEDIFF('Sales'[Rday],'Sales'[Rmax],Day)接下来计算平均间隔天数的度量值,这里将其命名为Ravg:

CALCULATE(AVERAGEX(SUMMARIZECOLUMNS('Customer'[Name],"rdayValues",datediff('Sales'[Rday],'Sales'[Rmax],day)),[rdayValues]),REMOVEFILTERS('Customer'[Name]))R和Ravg都有了,如果最近消费间隔天数比平均天数短,则客户价值越高,我们标记为R_UP,反之则低,标记为R_DOWN。

这里我们用Rrank来命名这个度量值。

IF('Sales'[R]<='Sales'[Ravg],"R_UP","R_DOWN")这样,R的指标就计算出来了。

下面用同样的方式来计算F和M.

我们需要拿到每个客户的消费频次,平均消费频次,然后将这两个值进行比较,得出F_UP或者F_DOWN。

客户的消费次数F

DISTINCTCOUNTX('Sales','Sales'[OrderNumber])平均消费频次Favg

CALCULATE(AVERAGEX(SUMMARIZECOLUMNS('Customer'[Name],"fCount",calculate(DISTINCTCOUNTX('Sales','Sales'[OrderNumber]))),[fCount]),REMOVEFILTERS('Customer'[Name]))Frank

IF('Sales'[F]<='Sales'[Favg],"F_UP","F_DOWN")Monetary:消费金额我们需要拿到每个客户的消费金额,平均消费金额,然后将这两个值进行比较,得出M_UP或者M_DOWN。

消费金额M

SUMX('Sales','Sales'[Quantity]*'Sales'[NetPrice])平均消费金额Mavg

CALCULATE(AVERAGEX(SUMMARIZECOLUMNS('Customer'[Name],"mValues",calculate('Sales'[M])),[mValues]),REMOVEFILTERS('Customer'[Name]))Mrank

IF('Sales'[M]<='Sales'[Mavg],"M_UP","M_DOWN")上面的这些度量值已把R、F、M三个指标计算出来,下面来看看如何展现根据这三个指标来对客户进行分类。

将三个指标组合成一个RFM值:

RFM值=[R值]&[F值]&[M值]

计算每个客户所属的RFM类型:

至此,RFM模型所需要的度量值已写完,利用这些度量值就可以进行RFM分析了。

另外,您也可以制作一张如下类似下图这样的综合数据看板,来辅助分析。

以上示例使用度量值来实现的整个过程,我们也可以通过计算列来实现各个步骤,最终得到的结果也是一个计算列。然后就可以使用结果作为维度和统计数据。

THE END
1.大数据分析案例用RFM模型对客户价值分析(聚类)简介:大数据分析案例-用RFM模型对客户价值分析(聚类) 1.项目背景 随着行业竞争越来越激烈,商家将更多的运营思路转向客户。例如,购物时,常常被商家推荐扫码注册会员;各种电商平台也推出注册会员领优惠券等推销政策,而这些做法都是为了积累客户,以便对客户进行分析。 https://developer.aliyun.com/article/1123824
2.用户画像分析的数据可视化应用RFM模型分析可视化效果: 可视化分析教程: 1、首先制作R模型:用户最近一次消费。 在BDP工作表界面,点击右上角的“创建合表”--“数据聚合”: (注:订单时间务必为日期格式,付款金额为数值) 在执行函数操作时,BDP非常人性化的加上了函数说明和示例,使用MAX_DATE这个函数就可以将最近消费的时间统计出来了。在左侧字段...https://www.niaogebiji.com/article-81275-1.html
1.案例(一)利用RFM模型做用户价值分析在产品迭代过程中,通常需要根据用户的属性进行归类,也就是通过分析数据,对用户进行归类,以便于在推送及转化过程中获得更大的收益。 本案例是基于某互联网公司的实际用户购票数据为研究对象,对用户购票的时间,购买的金额进行了采集,每个用户用手机号来区别唯一性。数据分析人员根据用户购买的时间和金额,通过建立RFM模型,...https://www.jianshu.com/p/bd173958fc11
2.RFM模型案例分析指標介紹如何應用RFM做顧客用戶分析經營RFM模型一直以來都是操作會員經營時候非常重要的模型參考,而在網路時代,行動網路的改變讓RFM模型也做了一些變化修正,搭配上數位科技的發展,RFM已經轉為RFM數位策展術 ,除了消費頻次以外,也需要考量到如何在消費者心中有心佔率,而這篇則將介紹RFM模型的最基礎概念。https://jerrywangtc.blog/rfm-case-introduce/
3.数据挖掘应用案例:RFM模型分析与客户细分资源浏览查阅154次。数据挖掘应用案例:RFM模型分析与客户细分,最近正好刚帮某电信行业完成一个数据挖掘工作,其中的RFM模型还是有一定代表性,就再把数据挖掘RFM模型的建模思路细节与大家分享一下吧!手机充值业务是一项主要电信业务形式,客户的充值行为记录正好满足RFM模https://download.csdn.net/download/weixin_38698018/14964417
4.数据分析八大模型:详解RFM模型腾讯云开发者社区数据分析八大模型:详解RFM模型 大家好,我是爱学习的小xiong熊妹。 今天跟大家分享的是一个经常被提及,但是价值被严重低估的模型:RFM模型。 一、RFM的基本思路 RFM模型由三个基础指标组成: R:最近一次消费至今的时间 F:一定时间内重复消费频率 M:一定时间内累计消费金额...https://cloud.tencent.com/developer/article/1938429
5.用户运营一定要懂RFM分析,带你找到高价值用户钱要花在刀口上,利用RFM 模型可以提早发掘即将流失的重要顾客,并将行销预算费用重点花在高价值黄金客。 知名品牌都在用RFM 分析,实际应用案例3 步骤快速制定熟客策略 品牌进行顾客分众,并不是分群越细越好,品牌可根据自身需求与资源,执行专属品牌的顾客经营计画,Ocard 建议品牌优先把握三种客群,分别为:黄金客、一般...https://www.linkflowtech.com/blogs/rfm-model-find-vip-users
6.傅一航:Python实现大数据挖掘技术培训汇师经纪8、 贝叶斯分析 ? 条件概率 ? 常见贝叶斯网络 第七部分: 聚类分析(客户细分)实战 1、 客户细分常用方法 2、 聚类分析(Clustering) ? 聚类方法原理介绍及适用场景 ? 常用聚类分析算法 ? 聚类算法的评价 案例:使用SKLearn实现K均值聚类 案例:使用TSNE实现聚类可视化 3、 RFM模型分析 ? RFM模型,更深...http://m.huishi365.com/course/content/18812.html
7.澳门今晚九点30分开奖,创新策略设计RFM10.457活现版RFM10.457指的是一种将RFM模型与实际业务结合的新策略设计,具体地讲,它能够通过数据分析,识别最优客户并针对性地进行营销。在今天的开奖活动中,我们可以运用这个策略,吸引更多的玩家参与。 案例分析:用户细分与个性化营销 以某澳门赌场为例,该赌场在使用RFM10.457策略后,通过数据分析发现,最近参与活动的客户(Recency)和...http://blmsaf.com/post/27069.html
8.五个Pandas实战案例带你分析操作数据python当数据量足够大,用户足够多的时候,就可以只用RFM模型来将用户分成8个类型 用户复购周期分析 复购周期是用户每两次购买之间的时间间隔:以xiaoming用户为例,前2次的复购周期分别是4天和22天 下面是求解每个用户复购周期的过程: 1、每个用户的购买时间升序 2、将时间移动一个单位: 3、合并后的差值: 出现空值是每个用...https://www.jb51.net/article/235878.htm
9.实战案例,手把手教你构建电商用户画像1# 查看其中是否有缺失值,统计各字段缺失值23df.isnull().any().sum()45# 发现只有user_geohash有缺失值,且缺失的比例很高,无统计分析的意义,将此列删除67df.drop('user_geohash',axis=1,inplace=True)89# 将time字段拆分为日期和时段1011df['date']=df['time'].str[0:10]1213df['time']=df['...https://www.51cto.com/article/700483.html
10.RFM分析及其在业务中的重要性RFM 分析案例研究:服装零售商 这里的RFM分析可能有助于确定他们最有价值的客户。 事实上,对于任何零售企业而言,了解高价值客户所在的位置对于企业的长期生存至关重要。 在这里,它首先定义谁是高价值客户。 例如,对于一家平均价格为 50-100 美元的服装店,公司可能会将高价值客户定义为在上个月购买过商品(新近度)...https://fourweekmba.com/zh-CN/%E5%B0%84%E9%A2%91%E5%88%86%E6%9E%90/
11.O2O研究以阿里降APP为例聊聊会员积分运营体系设计一、会员与积分案例分析 会员体系和积分体系是传统行业和互联网行业广泛应用的运营方式。两者均是通过制定规则/设立权益来引导用户产生特定行为,提高用户活跃度,增加用户粘性。但是两者也有不一样的地方。会员体系的建立区分用户等级,用初级到高级是培养核心用户的过程,而积分体系的设立是“网络虚拟货币”的形式之一,可以...https://maimai.cn/article/detail?fid=823250089&efid=1Q5Wcxj5ADlN0LMqv7XUrQ
12.APP运营:如何高效召回用户,ROI超过500%?青瓜传媒RFM模型是众多客户关系管理(CRM)分析方法中的一种,能够方便快速有效地量化用户价值和创利能力。 RFM模型有三个要素,分别是:Recency(最近一次交易距今时间), Frequency(交易频率), Monetary(交易金额)。 R值(最近一次交易距今时间)用户最近一次交易距今的时间,间隔时间越短,值越大。这类客户也是最有可能对活动产生反应...https://www.opp2.com/126628.html