用户分层基础方法:RFM分层实践

分层是用户运营最基础的底层思维。为什么要做分层?简单来说,分层是为了区别对待不同的用户群体。为什要区别对待?因为不同的用户群体价值不同、需求不同、驱动力不同等等。

这些不同决定了想要提升用户群体的价值,必须对症下药。

RFM最早在20世纪应用于美国黄页业务,直到今天在互联网中也被广泛应用。其是基于用户历史消费数据,以三维坐标系进行用户价值分析的分层方法。基础的分析步骤如下。

拉取用户历史消费数据,并计算出每个用户对应的R、F、M数值,分别为:

1)将所有用户的R、F、M三个数值分别进行梯度划分,通常每个指标被划分成5个梯度,对应5个分值。

2)梯度的划分方法可参考两种:

3)依据上述分值梯度,计算每个用户的R、F、M三个指标对应的分值。

4)计算所有用户的R、F、M三个指标的均值。

5)将用户的R、F、M三个指标的分值依次与上述平均值进行比较,若小于平均值则计为低,否则为高,得出每个用户R、F、M分值的高低情况。

6)依据RFM分层表,进行用户类型的匹配,用户最终被分为8种类型。如下图:

RFM分层结果表

7)依据实际情况,针对每一类用户制定不同的策略。

任何事物的成立都有前提,而前提往往是最容易被忽略的。

RFM层成立的前提有3个:

之所以要说前提,是因为方法论都有它的局限性。对方法论不加分辨、胡乱套用,不仅不能解决问题,反而会越走越偏。

从上面三个前提也可以看出RFM的局限性。比如针对以下情况,上述三个前提很可能不成立。

用户最近一次消费间隔越短,流失几率越小:

所以不同行业不同类型的业务在使用该分层方法时一定要反问自己,上述三个前提对于自己的业务是否成立。

在不考虑创作者发布内容质量的前提下,基于创作者的发布行为进行分层,以提升创作者群体的内容发布数量。

1)第一步

确定创作者的R、F、M指标分别对应什么指标并进行取数及数据处理。

相比于交易用户,创作者在平台的关键行为是内容发布,其对应的三个指标分别为:

确定以上指标后,取数如下:

将数据处理为以下格式:

2)第二步

观察R、F、M各个数值对应的用户占比图,以确定分值梯度。

以M为例,通过建立不同发布数量的作者占比趋势图,寻找曲线的断档处以确定分值的梯度。

下图中,曲线明显的几个断档处分别为:1-2条,3-6条,7-11条,12-15条,16条及以上。

因此可将F值分为5档,分别为1分:1-2条;2分:3-6条;3分:7-11条;4分:12-15条;5分:16条及以上。

根据上述方法依次计算出R、M的5个梯度。需要特别注意的是,R值越大则间隔天数越长,对应的分值越小。最终结果如下图所示:

3)第三步

依次计算出每个用户的R、F、M三个值,结果如下:

4)第四步

计算出所有用户的R、F、M三个值的均值,并将用户的每个值与均值进行比较以判断用户R、F、M值的高低,大于等于均值记为高,小于均值记为低。结果如下:

5)第五步

根据RFM的用户分层表,对每个用户的类型进行匹配,结果如下图:

6)第六步

针对不同类型的创作者制定不同的策略,以提升作者的内容发布数量。具体的策略这里不做阐述,因为需要结合业务的实际情况而来。

上述分析中,在计算用户R、F、M每个值的高低时采用了目前最为广泛的一种方法:打分法。打分法的好处是可以对用户的价值进行量化。但其实在不量化用户价值的情况下,可以采用更简便的一种方法:将所有用户的R、F、M曲线依据帕累托法则(二八法则)进行划分来确定值的高低。

作者价值分=-a*R值+b*F值+c*M值

(其中a、b、c为对应指标的权重,“-a”表示R与作者价值成反比,R值、F值、M值为去量纲后的数值)

计算出对应的分值后再依据分值进行作者的分层,目前该方法有较多的应用场景,后续将专门进行探讨。

RFM模型更重要的是提供了一种用户分层的思路,而不只是方法。基于RFM模型的分层思路可以进行更多延伸,比如:基于RFM其中的两个指标进行二维象限的分析、根据业务特征对RFM的三个指标进行替换以寻找适合自己业务的分层方法、将RFM中量化用户价值的方式由评分替换为算法等更科学的方式。

方法重在活学活用,我个人是方法论的推崇者,但推崇的是在了解方法论局限性的前提下,以合适的方法解决问题,而不要胡乱套用,成为方法论的受害者。

毕竟解决问题的方法有很多种,不必痴迷于用的是哪一种,达成目的即可。

THE END
1.大数据分析案例用RFM模型对客户价值分析(聚类)简介:大数据分析案例-用RFM模型对客户价值分析(聚类) 1.项目背景 随着行业竞争越来越激烈,商家将更多的运营思路转向客户。例如,购物时,常常被商家推荐扫码注册会员;各种电商平台也推出注册会员领优惠券等推销政策,而这些做法都是为了积累客户,以便对客户进行分析。 https://developer.aliyun.com/article/1123824
2.用户画像分析的数据可视化应用RFM模型分析可视化效果: 可视化分析教程: 1、首先制作R模型:用户最近一次消费。 在BDP工作表界面,点击右上角的“创建合表”--“数据聚合”: (注:订单时间务必为日期格式,付款金额为数值) 在执行函数操作时,BDP非常人性化的加上了函数说明和示例,使用MAX_DATE这个函数就可以将最近消费的时间统计出来了。在左侧字段...https://www.niaogebiji.com/article-81275-1.html
1.案例(一)利用RFM模型做用户价值分析在产品迭代过程中,通常需要根据用户的属性进行归类,也就是通过分析数据,对用户进行归类,以便于在推送及转化过程中获得更大的收益。 本案例是基于某互联网公司的实际用户购票数据为研究对象,对用户购票的时间,购买的金额进行了采集,每个用户用手机号来区别唯一性。数据分析人员根据用户购买的时间和金额,通过建立RFM模型,...https://www.jianshu.com/p/bd173958fc11
2.RFM模型案例分析指標介紹如何應用RFM做顧客用戶分析經營RFM模型一直以來都是操作會員經營時候非常重要的模型參考,而在網路時代,行動網路的改變讓RFM模型也做了一些變化修正,搭配上數位科技的發展,RFM已經轉為RFM數位策展術 ,除了消費頻次以外,也需要考量到如何在消費者心中有心佔率,而這篇則將介紹RFM模型的最基礎概念。https://jerrywangtc.blog/rfm-case-introduce/
3.数据挖掘应用案例:RFM模型分析与客户细分资源浏览查阅154次。数据挖掘应用案例:RFM模型分析与客户细分,最近正好刚帮某电信行业完成一个数据挖掘工作,其中的RFM模型还是有一定代表性,就再把数据挖掘RFM模型的建模思路细节与大家分享一下吧!手机充值业务是一项主要电信业务形式,客户的充值行为记录正好满足RFM模https://download.csdn.net/download/weixin_38698018/14964417
4.数据分析八大模型:详解RFM模型腾讯云开发者社区数据分析八大模型:详解RFM模型 大家好,我是爱学习的小xiong熊妹。 今天跟大家分享的是一个经常被提及,但是价值被严重低估的模型:RFM模型。 一、RFM的基本思路 RFM模型由三个基础指标组成: R:最近一次消费至今的时间 F:一定时间内重复消费频率 M:一定时间内累计消费金额...https://cloud.tencent.com/developer/article/1938429
5.用户运营一定要懂RFM分析,带你找到高价值用户钱要花在刀口上,利用RFM 模型可以提早发掘即将流失的重要顾客,并将行销预算费用重点花在高价值黄金客。 知名品牌都在用RFM 分析,实际应用案例3 步骤快速制定熟客策略 品牌进行顾客分众,并不是分群越细越好,品牌可根据自身需求与资源,执行专属品牌的顾客经营计画,Ocard 建议品牌优先把握三种客群,分别为:黄金客、一般...https://www.linkflowtech.com/blogs/rfm-model-find-vip-users
6.傅一航:Python实现大数据挖掘技术培训汇师经纪8、 贝叶斯分析 ? 条件概率 ? 常见贝叶斯网络 第七部分: 聚类分析(客户细分)实战 1、 客户细分常用方法 2、 聚类分析(Clustering) ? 聚类方法原理介绍及适用场景 ? 常用聚类分析算法 ? 聚类算法的评价 案例:使用SKLearn实现K均值聚类 案例:使用TSNE实现聚类可视化 3、 RFM模型分析 ? RFM模型,更深...http://m.huishi365.com/course/content/18812.html
7.澳门今晚九点30分开奖,创新策略设计RFM10.457活现版RFM10.457指的是一种将RFM模型与实际业务结合的新策略设计,具体地讲,它能够通过数据分析,识别最优客户并针对性地进行营销。在今天的开奖活动中,我们可以运用这个策略,吸引更多的玩家参与。 案例分析:用户细分与个性化营销 以某澳门赌场为例,该赌场在使用RFM10.457策略后,通过数据分析发现,最近参与活动的客户(Recency)和...http://blmsaf.com/post/27069.html
8.五个Pandas实战案例带你分析操作数据python当数据量足够大,用户足够多的时候,就可以只用RFM模型来将用户分成8个类型 用户复购周期分析 复购周期是用户每两次购买之间的时间间隔:以xiaoming用户为例,前2次的复购周期分别是4天和22天 下面是求解每个用户复购周期的过程: 1、每个用户的购买时间升序 2、将时间移动一个单位: 3、合并后的差值: 出现空值是每个用...https://www.jb51.net/article/235878.htm
9.实战案例,手把手教你构建电商用户画像1# 查看其中是否有缺失值,统计各字段缺失值23df.isnull().any().sum()45# 发现只有user_geohash有缺失值,且缺失的比例很高,无统计分析的意义,将此列删除67df.drop('user_geohash',axis=1,inplace=True)89# 将time字段拆分为日期和时段1011df['date']=df['time'].str[0:10]1213df['time']=df['...https://www.51cto.com/article/700483.html
10.RFM分析及其在业务中的重要性RFM 分析案例研究:服装零售商 这里的RFM分析可能有助于确定他们最有价值的客户。 事实上,对于任何零售企业而言,了解高价值客户所在的位置对于企业的长期生存至关重要。 在这里,它首先定义谁是高价值客户。 例如,对于一家平均价格为 50-100 美元的服装店,公司可能会将高价值客户定义为在上个月购买过商品(新近度)...https://fourweekmba.com/zh-CN/%E5%B0%84%E9%A2%91%E5%88%86%E6%9E%90/
11.O2O研究以阿里降APP为例聊聊会员积分运营体系设计一、会员与积分案例分析 会员体系和积分体系是传统行业和互联网行业广泛应用的运营方式。两者均是通过制定规则/设立权益来引导用户产生特定行为,提高用户活跃度,增加用户粘性。但是两者也有不一样的地方。会员体系的建立区分用户等级,用初级到高级是培养核心用户的过程,而积分体系的设立是“网络虚拟货币”的形式之一,可以...https://maimai.cn/article/detail?fid=823250089&efid=1Q5Wcxj5ADlN0LMqv7XUrQ
12.APP运营:如何高效召回用户,ROI超过500%?青瓜传媒RFM模型是众多客户关系管理(CRM)分析方法中的一种,能够方便快速有效地量化用户价值和创利能力。 RFM模型有三个要素,分别是:Recency(最近一次交易距今时间), Frequency(交易频率), Monetary(交易金额)。 R值(最近一次交易距今时间)用户最近一次交易距今的时间,间隔时间越短,值越大。这类客户也是最有可能对活动产生反应...https://www.opp2.com/126628.html