数据分析之客户价值模型(RFM)技术总结数据分析案例

管理学中有一个重要概念那就是客户关系管理(CRM),它核心目的就是为了提高企业的核心竞争力,通过提高企业与客户间的交互,优化客户管理方式,从而实现吸引新客户、保留老客户以及将已有客户转化为忠实客户的运营机制。

从而使得我们可以有针对性的对不同用户进行个性化运营和营销。

针对上述3个维度,我们的预期:

消费频次(F)体现了客户的购买频率,那么购买频次越高,越能体现用户的消费活跃程度,因此,客户价值也就越高。

消费金额(M)这个从字面意思即可知道,用户的消费金额越高,用户的消费能力越强,那么自然用户的价值也就越高。

为了解决现存方法的缺陷,作者首次提出了将MCL、SSL和Excel是实现RFM模型的一个重要且十分直接的工具,只需要灵活使用Excel自带的函数就可以实现数据的汇总计算,得到RFM模型的三个指标值,从而将用户的价值类型提取出来,让我们有针对性的进行业务推广策略。

接下来我们给大家演示一个用Excel实现的RFM模型:

某淘宝店铺的月份销售数据

【分析目标】

根据现有订单数据,构建店铺用户价值模型,从而为后续的精细化运营不同的客户群体打下基础

【数据预处理】

数据量大概有3989条,可以在excel内处理,也可以使用python对大批量的数据进行处理。

3.1提取关键词字段:

3.2计算Recency,Monetary,Frequency

Monetary:对总金额下的客户不同消费进行平均值运算,即可获得该客户的M值

3.3客户RFM模型建立

计算完客户的R、F、M值后,接下来就可以实现客户RFM模型的评估了。

【简单实现】

此时可以先计算出来R、F、M三个值的平均值,然后对客户的每个维度与该维度的平均值进行比较,如果超出平均值就是高,否则就是低。

然后将三列字段通过’&’连接符链接起来,生成RFM辅助列。

然后通过我们预先准备好的价值模型参考表,生成用户价值模型。

最后通过excel的vlookup函数提取客户类型字段到计算表中,就实现了我们的最终结果。

【计分法】

通过用户的R、F、M值与对应值的极差(最大值与最小值的差),来确定R-Score,F-Score,M-Score。

因此首先计算R、F、M的最大值、最小值、极差三等分距

最大值:通过“=max(B5:B1204)”计算,(计算F时B换成C,M时B换成D即可)

最小值:通过“=min(B5:B1204)”计算(计算F时B换成C,M时B换成D即可)

极差:通过“=(F1-F2)/3”计算(计算F时F换成G,M时F换成H即可)

R-Score计算方式:在E5单元格输入:

“=IF(ROUNDUP((B5-$F$2)/$F$3,0)=0,1,ROUNDUP((B5-$F$2)/$F$3,0))”

F-score和M-score计算方式类似:

“=IF(ROUNDUP((C5-$G$2)/$G$3,0)=0,1,ROUNDUP((C5-$G$2)/$G$3,0))”

“=IF(ROUNDUP((D5-$H$2)/$H$3,0)=0,1,ROUNDUP((D5-$H$2)/$H$3,0))”

RFM-Score计算采用将R、F、M以百分位、十分位、个位组成三位数的方式实现,共有3*3*3=27种组合方式。

H5单元格的公式:“=E5*100+F5*10+G5”

下拉填充柄应用于整个列表,得到最后结果:

然后对数据表区域A4到H3996进行数据透视:汇总不同的RFM-Score对应的客户群体。

可以采用数据条的方式直观显示客户分布情况。

4.1熟悉数据源

常用于初步了解数据的方法有很多比如:shape(了解数据的大小,几行几列),head(显示其中的前几条数据),tail(显示数据源最后几条数据),sample(随机提取几条数据),info(显示数据源的各字段数据类型),describe(对数据源进行数学描述)。

显示结果如下:

通过上图我们发现交易记录里面会有一些无效订单,那么我们首先就要排除这类订单,那么就可以通过pandas的布尔索引来进行数据的筛选:

结果如下:

4.2选取字段

缺失值处理:

4.3RFM建模:

A.计算R值

运行结果如下:

B.计算R、F、M值

通过聚合函数,对买家昵称进行计数运算获得消费频次F值,计算天数字段的最小值获得客户的R值,通过实付金额的求和运算获得客户的M值。

C.用户价值评分

通过上述计算,我们可以根据不同的分数段来对客户R、F、M值进行打分,就本案例来讲:

R值:我们得出的最小值是660,以30天作为间隔,660-690天,打5分;690-720,打4分;720-750打3分;750-780打2分;>780,打1分。

依据上述标准建立程序方法:

运行结果:

D.用户标签设定:

第一步:计算用户R、F、M平均值:

运行结果

第二步:验证用户各项指标是否超出平均值,是则计一分,否则不计分。

第三步:生成用户标签列:

E.可视化呈现:

柱状图:

通过以上数据分析工具的分析,我们可以发现在实现RFM模型的方法中,Python具有更为强大的可用性和灵活性,且拥有完备的数据分析手段,从数据预处理、分析到最后的数据呈现。

THE END
1.大数据分析案例用RFM模型对客户价值分析(聚类)简介:大数据分析案例-用RFM模型对客户价值分析(聚类) 1.项目背景 随着行业竞争越来越激烈,商家将更多的运营思路转向客户。例如,购物时,常常被商家推荐扫码注册会员;各种电商平台也推出注册会员领优惠券等推销政策,而这些做法都是为了积累客户,以便对客户进行分析。 https://developer.aliyun.com/article/1123824
2.用户画像分析的数据可视化应用RFM模型分析可视化效果: 可视化分析教程: 1、首先制作R模型:用户最近一次消费。 在BDP工作表界面,点击右上角的“创建合表”--“数据聚合”: (注:订单时间务必为日期格式,付款金额为数值) 在执行函数操作时,BDP非常人性化的加上了函数说明和示例,使用MAX_DATE这个函数就可以将最近消费的时间统计出来了。在左侧字段...https://www.niaogebiji.com/article-81275-1.html
1.案例(一)利用RFM模型做用户价值分析在产品迭代过程中,通常需要根据用户的属性进行归类,也就是通过分析数据,对用户进行归类,以便于在推送及转化过程中获得更大的收益。 本案例是基于某互联网公司的实际用户购票数据为研究对象,对用户购票的时间,购买的金额进行了采集,每个用户用手机号来区别唯一性。数据分析人员根据用户购买的时间和金额,通过建立RFM模型,...https://www.jianshu.com/p/bd173958fc11
2.RFM模型案例分析指標介紹如何應用RFM做顧客用戶分析經營RFM模型一直以來都是操作會員經營時候非常重要的模型參考,而在網路時代,行動網路的改變讓RFM模型也做了一些變化修正,搭配上數位科技的發展,RFM已經轉為RFM數位策展術 ,除了消費頻次以外,也需要考量到如何在消費者心中有心佔率,而這篇則將介紹RFM模型的最基礎概念。https://jerrywangtc.blog/rfm-case-introduce/
3.数据挖掘应用案例:RFM模型分析与客户细分资源浏览查阅154次。数据挖掘应用案例:RFM模型分析与客户细分,最近正好刚帮某电信行业完成一个数据挖掘工作,其中的RFM模型还是有一定代表性,就再把数据挖掘RFM模型的建模思路细节与大家分享一下吧!手机充值业务是一项主要电信业务形式,客户的充值行为记录正好满足RFM模https://download.csdn.net/download/weixin_38698018/14964417
4.数据分析八大模型:详解RFM模型腾讯云开发者社区数据分析八大模型:详解RFM模型 大家好,我是爱学习的小xiong熊妹。 今天跟大家分享的是一个经常被提及,但是价值被严重低估的模型:RFM模型。 一、RFM的基本思路 RFM模型由三个基础指标组成: R:最近一次消费至今的时间 F:一定时间内重复消费频率 M:一定时间内累计消费金额...https://cloud.tencent.com/developer/article/1938429
5.用户运营一定要懂RFM分析,带你找到高价值用户钱要花在刀口上,利用RFM 模型可以提早发掘即将流失的重要顾客,并将行销预算费用重点花在高价值黄金客。 知名品牌都在用RFM 分析,实际应用案例3 步骤快速制定熟客策略 品牌进行顾客分众,并不是分群越细越好,品牌可根据自身需求与资源,执行专属品牌的顾客经营计画,Ocard 建议品牌优先把握三种客群,分别为:黄金客、一般...https://www.linkflowtech.com/blogs/rfm-model-find-vip-users
6.傅一航:Python实现大数据挖掘技术培训汇师经纪8、 贝叶斯分析 ? 条件概率 ? 常见贝叶斯网络 第七部分: 聚类分析(客户细分)实战 1、 客户细分常用方法 2、 聚类分析(Clustering) ? 聚类方法原理介绍及适用场景 ? 常用聚类分析算法 ? 聚类算法的评价 案例:使用SKLearn实现K均值聚类 案例:使用TSNE实现聚类可视化 3、 RFM模型分析 ? RFM模型,更深...http://m.huishi365.com/course/content/18812.html
7.澳门今晚九点30分开奖,创新策略设计RFM10.457活现版RFM10.457指的是一种将RFM模型与实际业务结合的新策略设计,具体地讲,它能够通过数据分析,识别最优客户并针对性地进行营销。在今天的开奖活动中,我们可以运用这个策略,吸引更多的玩家参与。 案例分析:用户细分与个性化营销 以某澳门赌场为例,该赌场在使用RFM10.457策略后,通过数据分析发现,最近参与活动的客户(Recency)和...http://blmsaf.com/post/27069.html
8.五个Pandas实战案例带你分析操作数据python当数据量足够大,用户足够多的时候,就可以只用RFM模型来将用户分成8个类型 用户复购周期分析 复购周期是用户每两次购买之间的时间间隔:以xiaoming用户为例,前2次的复购周期分别是4天和22天 下面是求解每个用户复购周期的过程: 1、每个用户的购买时间升序 2、将时间移动一个单位: 3、合并后的差值: 出现空值是每个用...https://www.jb51.net/article/235878.htm
9.实战案例,手把手教你构建电商用户画像1# 查看其中是否有缺失值,统计各字段缺失值23df.isnull().any().sum()45# 发现只有user_geohash有缺失值,且缺失的比例很高,无统计分析的意义,将此列删除67df.drop('user_geohash',axis=1,inplace=True)89# 将time字段拆分为日期和时段1011df['date']=df['time'].str[0:10]1213df['time']=df['...https://www.51cto.com/article/700483.html
10.RFM分析及其在业务中的重要性RFM 分析案例研究:服装零售商 这里的RFM分析可能有助于确定他们最有价值的客户。 事实上,对于任何零售企业而言,了解高价值客户所在的位置对于企业的长期生存至关重要。 在这里,它首先定义谁是高价值客户。 例如,对于一家平均价格为 50-100 美元的服装店,公司可能会将高价值客户定义为在上个月购买过商品(新近度)...https://fourweekmba.com/zh-CN/%E5%B0%84%E9%A2%91%E5%88%86%E6%9E%90/
11.O2O研究以阿里降APP为例聊聊会员积分运营体系设计一、会员与积分案例分析 会员体系和积分体系是传统行业和互联网行业广泛应用的运营方式。两者均是通过制定规则/设立权益来引导用户产生特定行为,提高用户活跃度,增加用户粘性。但是两者也有不一样的地方。会员体系的建立区分用户等级,用初级到高级是培养核心用户的过程,而积分体系的设立是“网络虚拟货币”的形式之一,可以...https://maimai.cn/article/detail?fid=823250089&efid=1Q5Wcxj5ADlN0LMqv7XUrQ
12.APP运营:如何高效召回用户,ROI超过500%?青瓜传媒RFM模型是众多客户关系管理(CRM)分析方法中的一种,能够方便快速有效地量化用户价值和创利能力。 RFM模型有三个要素,分别是:Recency(最近一次交易距今时间), Frequency(交易频率), Monetary(交易金额)。 R值(最近一次交易距今时间)用户最近一次交易距今的时间,间隔时间越短,值越大。这类客户也是最有可能对活动产生反应...https://www.opp2.com/126628.html