2013年12月,我国工信部正式向三大运营商发放4G牌照,4G在中国正式走向商用。在4G技术刚刚走向商用,全球4G建设部署方兴未艾之时,5G的研发工作已经如火如荼,2013年2月,欧盟宣布,将拨款5000万欧元,加快5G移动技术的发展,计划到2020年推出成熟的标准。三星表示,其5G网络已成功在28千兆赫(GHz)波段下达到了1Gbps,相比之下,当前的第四代长期演进(4GLTE)服务的传输速率仅为75Mbps。2013年4月8日博鳌亚洲论坛,中国移动战略决策咨询委员会主任王建宙表示,从全球情况来看,4G快速发展已成为现实,5G的研究也在快速展开和成熟。
关键词5G、性能特点、发展动力、演进、无线传输、无线网络
1、简要介绍
二十一世纪以来,智能终端的普及以及移动业务应用的蓬勃发展,促使移动互联网呈现出爆炸式发展趋势,统计数据表明,无线业务流量以每年接近100%的速度增长,这意味着未来十年,无线数据流量将增长1000倍。数据表明,2020年后,现阶段正在部署的4G技术已经无法满足日益增长的移动互联
网和物联网业务的发展需求。这正是5G发展的主要驱动力,未来的5G将服务于人们日常学习工作生活的方方面面,如:无线支付、移动办公、智能家居、位置服务、远程医疗等等。同时,也将与电网、交通、医疗、家居等传统行业深度融合,衍生出大量以物为主体的终端。这些都对未来的5G的性能指标提出了更多,更高的要求,与4G相比,除了速率、时延等传统的空口性能指标需要进一步提升外,还需要考虑用户体验速率、连接数密度、频谱效率、能效以及成本等进一步体现5G系统的先进性的指标。
1.1频带利用率高
在5G移动通信技术中,高频段的频谱资源将被应用的更为广泛,但是在目前科技水平条件下,由于会受到高频段无线电波的穿透能力影响,高频段频谱资源的利用效率还是会受到某种程度的限制,但这不会影响光载无线组网、有线与无线宽带技术的融合等技术的普遍应用。
1.2.通信系统性能有很大提高
传统的通信系统理念,是将信息编译码、点点之间的物理层面传输等技术作为核心目标,而5G移动通信技术的不同之处在于,它将更加广泛的多点、多天线、多用户、多小区的相互协作、相互组网作为重点的研究突破点,以大幅度提高通信系统的性能。
1.3.设计理念先进
在通信业务中,占据主导地位的是室内通信业务的应用,5G移动通信系统的优先设计目标定位在室内无线网络的覆盖性能及其业务支撑能力上,这将改变传统移动通信系统的设计理念。
1.4.能耗和运营成本降低
5G无线网络的“软”配置设计,将是未来该技术的重要研究、探索方向,网络资源可以由运营商根据动态的业务流量变化而实时调整,这样,可以有效降低能耗和网络资源运营成本。
1.5主要的考量指标
5G通信网络技术的研究,将更为注重用户体验,交互式游戏、3D、虚拟实现、传输延时、网络的平均吞吐速度和效率等指标将成为考量5G网络系统
性能的关键指标。
1.65G移动通信技术的优点
5G移动通信技术,作为最新一代的移动通信技术,其应用必将大大提高频谱利用效率及其能效,在资源利用和传输速度效率方面较4G移动通信技术能提高至少一个等级,在系统安全、传输时延、用户体验、无线覆盖的性能等各个方面也将得到显著的提升。5G移动通信技术结合其他无线通信技术后,将构成新一代高效、完美的移动信息网络,可以满足未来十年的移动信息网络的发展需求。不久的将来,5G移动通信系统一定程度上还将具备较大的灵活性,实现自我调整、网络自感知等智能化功能,可以有充分的准备应对未来移动网络信息社会的不可预测的飞速发展。
2、主要推动力
2.1互联网的快速发展
移动互联网的快速发展是推动5G移动通信技术发展的主要动力,移动互联网技术是各种新兴业务的基础平台,目前现有的固定互联网络的各种服务业务将通过无线网络的方式提供给用户,后台服务及云计算的广泛应用势必会对5G移动通信技术系统提出较高的要求,尤其是在系统容量要求与传输质量要求上。5G移动通信技术的发展目标主要定位在要密切衔接其他各种无线移动通信技术上,为快速发展的网络通信技术提供全方位和基础性的业务服务。
就世界各国的初步估计,包括5G移动通信技术在内的无线移动网络,其在网络业务能力上的提升势必会在三个维度上同步进行:第一,引进先进的无线传输技术之后,网络资源的利用率将在4G移动通信技术的基础上提高至少10倍以上;第二,新的体系结构(如高密集型的小区结构等)的引入,智能化能力在深度上的扩展,有望推进整个无线网络系统的吞吐率提升大概25倍左右;第三,深入挖掘更为先进的频率资源,频谱资源是推动移动通信与信息产业发展的核心资源,4G时代频谱资源已经很紧缺,未来的5G不得不考虑这个严峻的问题,故需要深入挖掘更为先进的频率资源,比如可见光、毫米波、高频段等,使得未来的无线移动通信资源较4G时代扩展4倍左右。
为了提升5G移动通信技术的业务支撑能力,其在网络技术方面和无线传
输技术方面势必会有新的突破。在网络技术方面,将采用更智能、更灵活的组网结构和网络架构,比如采用控制与转发相互分离的软件来定义网络架构、异构超密集的部署等。在无线传输技术方面,将会着重于提升频谱资源利用效率和挖掘频谱资源使用潜能,比如多天线技术、编码调制技术、多址接入技术等等。
2.2商业发展
技术与商业发展是相辅相成的关系有时候是技术推动商业发展,有时候是商业竞争推动技术进步。在韩国,引入5G的一个主要原因就是助推经济发展,通过5G,韩国政府希望能够加大韩国运营商与制造商的投资和合作,实现国家基础设施设备业的发展。而在国内,运营企业和知名设备制造商对此也是摩拳擦掌,以期取得市场先机。据了解,华为早在2009年就启动了5G研究,并表示将在2013年~2018年间至少投资6亿美元进行5G研发。3、5G的演进路线
目前,4G已经进入规模商用阶段,5G是继4G后新一代的移动通信技术,从移动通信发展现状以及技术、标准与产业的演进趋势来看,未来5G移动通信技术的演进存在三条重要的演进路线,分别为以LTE/LTE-Advanced为代表的蜂窝演进路线、WLAN演进路线和革命性演进路线。3.1LTE/LTE-Advanced
更好的LTE版本完善。随着更多的先进技术融入到LTE/LTE-Advanced技术标准中,给蜂窝移动通信带来了强大的生命力和发展潜力。
3.2WLAN
目前,IEEE已经启动了下一代WLAN标准“High-efficiencyWLAN”的研究,将进一步提升运营商业务能力,推动WLAN技术与蜂窝网络的融合。
3.3革命性技术
4、5G关键性技术
为提升其业务支撑能力,5G在无线传输技术和网络技术方面将有新突破。在无线传输技术方面,将引入能进一步挖掘频谱效率提升潜力的技术,如先进的多址接入技术、多天线技术、编码调制技术、新的波形设计技术等;在无线网络方面,将采用更灵活、更智能的网络架构和组网技术,如采用控制与转发分离的软件定义无线网络的架构、统一的自组织网络(SON)、异构超密集部署等。5G移动通信标志性的关键技术主要体现在超高效能的无线传输技术和高密度无线网络(highden-sitywirelessnetwork)技术。其中基于大规模
MIMO的无线传输技术将有可能使频谱效率和功率效率在4G的基础上再提升一个量级,该项技术走向实用化的主要瓶颈问题是高维度信道建模与估计以及复杂度控制。全双工(fullduplex)技术将可能开辟新一代移动通信频谱利用的新格局。超密集网络(ultradensenetwork,UDN)
体系结构变革将是新一代无线移动通信系统发展的主要方向.现有的扁平化SAE/LTE(systemarchitectureevolution/longtermevolution)体系结构促进了移动通信系统与互联网的高度融合,高密度、智能化、可编程则代表了未来移动通信演进的进一步发展趋势,而内容分发网络(CDN)向核心网络的边缘部署,可有效减少网络访问路由的负荷,并显著改善移动互联网用户的业务体验。
1)超密集组网:未来网络将进一步使现有的小区结构微型化、分布化,并通过小区间的相互协作,化干扰信号为有用信号,从而解决小区微型化和分布化所带来的干扰问题,并最大程度地提高整个网络的系统容量。
2)智能化:未来网络将在已有SON技术的基础上,具备更为广泛的感知能力和更为强大的自优化能力,通过感知网络环境及用户业务需求,在异构环境下为用户提供最佳的服务体验.
3)可编程:未来网络将具备软件可定义(SDN)能力,数据平面与控制平面将进一步分离,集中控制、分布控制或两者的相互结合,将是网络演进发展中需要解决的技术路线问题。基站与路由交换等基础设施具备可编程与灵活扩展能力,以统一融合的平台适应各种复杂的及不同规模的应用场景。
4)内容分发边缘化部署:移动终端访问的内容虽然呈海量化趋势,但大部分集中在一些热点内容和大型门户网站,在未来的5G网络中采用CDN技术将是提高网络资源利用率的重要潜在手段。
4.1无线传输技术
(1)大规模MOMI技术
多天线技术作为提高系统频谱效率和传输可靠性的有效手段,已经应用于多种无线通信系统,如3G系统、LTE、LTE-A、WLAN等。根据信息论,天线数量越多,频谱效率和可靠性提升越明显。尤其是,当发射天线和接收天线数量很大时,MIMO信道容量将随收发天线数中的最小值近似线性增长。
之后,众多的研究人员在此基础上研究了基站配置有限天线数量的情况.在大规模MIMO中,基站配置数量非常大(通常几十到几百根,是现有系统天线数量的1~2个数量级以上)的天线,在同一个时频资源上同时服务若干个用户。在天线的配置方式上,这些天线可以是集中地配置在一个基站上,形成集中式的大规模MIMO,也可以是分布式地配置在多个节点上,形成分布式的大规模MIMO。值得一提的是,我国学者在分布式MIMO的研究一直走在国际的前列。
(2)基于滤波器组的多载波技术
由于在频谱效率、对抗多径衰落、低实现复杂度等方面的优势,OFDM(orthogonalfrequencydi-visionmultiplexing)技术被广泛应用于各类无
线通信系统,如WiMaX、LTE和LTE-A系统的下行链路,但OFDM技术也存在很多不足之处。比如,需要插入循环前缀以对抗多径衰落,从而导致无线资源的浪费;对载波频偏的敏感性高,具有较高的峰均比;另外,各子载波必须具有相同的带宽,各子载波之间必须保持同步,各子载波之间必须保持正交等,限制了频谱使用的灵活性。此外,由于OFDM技术采用了方波作为基带波形,载波旁瓣较大,从而在各载波同步不能严格保证的情况下使得相邻载波之间的干扰比较严重。在5G系统中,由于支撑高数据速率的需要,将可能需要高达1GHz的带宽。但在某些较低的频段,难以获得连续的宽带频谱资源,而在这些频段,某些无线传输系统,如电视系统中,存在一些未被使用的频谱资源(空白频谱).但是,这些空白频谱的位置可能是不连续的,并且可用的带宽也不一定相同,采用OFDM技术难以实现对这些可用频谱的使用。灵活有效地利用这些空白的频谱,是5G系统设计的一个重要问题。
(3)全双工技术
4.2无线网络技术
(1)超密集异构网络技术
由于5G系统既包括新的无线传输技术,也包括现有的各种无线接入技术的后续演进,5G网络必然是多种无线接入技术,如5G,4G,LTE,UMTS(universalmobiletelecommunicationssystem)和WiFi(wirelessfidelity)等共存,既有负责基础覆盖的宏站,也有承担热点覆盖的低功率小站,如Micro,Pico,Relay和Femto等多层覆盖的多无线接入技术多层覆盖异构网络在这些数量巨大的低功率节点中,一些是运营商部署,经过规划的宏节点低功率节点;更多的可能是用户部署,没有经过规划的低功率节点,并且这些用户部署的低功率节点可能是OSG(opensubscribergroup)类型的,也可能是CSG(closedsubscribergroup)类型的,从而使得网络拓扑和特性变得极为复杂。
(2)自组织网络技术
在传统的移动通信网络中,网络部署、运维等基本依靠人工的方式,需要投入大量的人力,给运营商带来巨大的运行成本。根据分析各大运营商的运营成本基本上占各自收入的70%左右。并且,随着移动通信网络的发展,依靠人工的方式难以实现网络的优化.因此,为了解决网络部署、优化的复杂性问题,降低运维成本相对总收入的比例,使运营商能高效运营、维护网络,在满足客户需求的同时,自身也能够持续发展,由NGMN(nextgenerationmobilenetwork)联盟中的运营商主导,联合主要的设备制造商提出了自组织网络(SON)的概念自组织网络的思路是在网络中引入自组织能力(网络智能化),包括自配置、自优化、自愈合等实现网络规划、部署、维护、优化和排障等各个环节的自动进行,最大限度地减少人工干预。目前,自组织网络成为新铺设网络的必备特性,逐渐进入商用,并展现出显著的优势。
5G将是融合、协同的多制式共存的异构网络。从技术上看,将存在多层、多无线接入技术的共存,导致网络结构非常复杂,各种无线接入技术内部和各种覆盖能力的网络节点之间的关系错综复杂,网络的部署、运营、维护将成为一个极具挑战性的工作。为了降低网络部署、运营维护复杂度和成本,提高网络运维质量,未来5G网络应该能支持更智能的、统一的SON功能,能统一实现多种无线接入技术、覆盖层次的联合自配置、自优化、自愈合。目前,针对LTE、LTE-A以及UMTS、WiFi的SON技术发展已经比较完善,逐渐开始在新部署的网络中应用。但现有的SON技术都是面向各自网络,从各自网络的角度出发进行独立的自部署和自配置、自优化和自愈合,不能支持多网络之间的协同.因此,需要研究支持协同异构网络的SON技术,如支持在异构网络中的基于无线回传的节点自配置技术,异系统环境下的自优化技术,如协同无线传输参数优化、协同移动性优化技术,协同能效优化技术,协同接纳控制优化技术等,以及异系统下的协同网络故障检测和定位,从而实现自愈合功能。
5、结束语
当代科学技术的飞速发展,尤其是网络通信技术的迅猛发展,将有力推动5G移动通信技术的发展进程,依据移动通信技术的发展规律,在2020年后,5G移动通信技术将有望实现商用,能够满足未来移动互联网业务的发展需求,并带给移动互联网用户一种前所未有的全新体验。目前,5G移动通信技术的科研尚处于起步阶段,并即将迈入发展的关键时期,其关键指标和技术需求都会在未来几年内陆续出台,届时将引领我国移动通信行业的新一轮变革。参考文献--------------------------------------------------
1.5GSIGwhitepaper
2.尤肖虎,潘志文,高西奇等.5G移动通信发展趋势与若干关键技术.中国科学:信息科学.2014年第44卷第5期
3.张筵,彭景乐.浅析5G移动通信技术及未来发展趋势
4.潘志文等.5G移动通信发展趋势与若干关键技术[J].中国科学信息技术.2014,11,(6):155-156
5.HuaYB,LiangP,MaYM,etal.Amethodforbroadbandfull-duplexMIMOradio.IEEESignalProcessLett,2012,19:793–796
6.METIS.Mobileandwirelesscommunicationsenablersforthe2020informationsociety.