DFD冻干技术的发展始于对传统FD冻干工艺的改进和优化。传统的FD冻干工艺主要注重冷冻和脱水过程,但在一些冻干工艺中,机器会进行不恰当的升温,使产品温度高于共融点,物料中的冰晶消失,原先为冰晶所占据的空间成为空穴,因此干燥层呈多孔蜂窝状海绵体结构。当蜂窝状结构体的固体基质温度较高时,其刚性降低。当温度达到某一临界值时,固体基质的刚性不足以维持蜂窝状结构,空穴的固形物基质壁发生塌陷,原先蒸气扩散的通道被封闭,从而导致样品结构的破坏,影响冻干品质,冻干表面会呈现出均匀的褐色,产生焦脆感。为了解决这个问题,科研人员逐渐引入极冷速冻和零度以下脱水的概念,并发展出DFD冻干技术。
二、工艺要点:
1.极冷速冻:DFD冻干技术中,极冷速冻是关键步骤之一。通过迅速将样品降至极低温度,使得样品达到共晶点,制品预冻过程中,对于结晶体系,随着温度降低,当制品达到冰点以下时,体系中形成冰核,冰核逐渐增长,其余溶液中溶质的浓度逐渐提高,并在达到过饱和时析出结晶,温度持续降低直至剩余溶液完全固化为冰和溶质的结晶混合体,此时的温度即为共晶点,但有些物质的共晶点不是一个具体的温度值,而是一个温度范围。从而减少对样品结构的破坏。常用的速冻方法包括液氮冷冻、液氮喷雾冷冻等。
2.零度以下脱水:与传统的FD冻干工艺不同,DFD冻干技术在脱水过程中采用零度以下的条件。这种脱水方式会减慢水分的蒸发速度,降低对样品结构的冲击,有利于保持样品的形态和活性物质的稳定性。常用的零度以下脱水方法包括真空冷冻干燥、减压冷冻干燥等。
三、DFD冻干工艺的重要参数
一、共晶点、玻璃转化温度、共熔点、塌陷温度的测量方法
1、共晶点(共熔点)的测定方法
电阻法、差示扫描量热仪(DSC)法、差示热分析仪(DTA)法、低温显微镜直接观察法和数学公式模拟法等,其中最常用的是电阻法和DSC法。
2、玻璃转化温度的测定方法
DSC法、DTA法、低温显微镜直接观察法。最常用方法是DSC法。
3、塌陷温度的测定方法有低温显微镜直接观察法
电阻法是根据S.A.Arrhenius(阿仑尼乌斯)电离学说原理:当水中含有杂质时,部分杂质就分解成电离子,这时水是导电的,当温度下降溶液电阻会逐渐增大,当溶液全部凝固成固体时,溶液中离子就完全失去自由活动能力,电阻会突然增大,此时温度即为共晶点;完全冻结的制品在升温过程中,电阻突然减小时的温度即为共熔点。
DSC法是比较两种不同的热流:一种流向或者来自制品,另一种流向来自测量范围内没有相变的物质,根据比较这两种不同的热流得出物料的共晶点或共熔点。
差热分析法(DAT)法是利用制品在冻结(或融化)时,因放热(或吸热)而使其自身温度发生变化。根据物料的这种物理现象,测得制品的共晶点(共熔点)。
低温显微镜直接观察法是用低温显微镜测量制品的结晶过程,根据所拍摄的图像来得出共晶点、共熔点、塌陷温度、玻璃转化温度。这种方法的优点就是可以显示制品组织结构变化过程的照片,缺点就是所需的低温显微镜昂贵。
数学公式模拟法就是根据物料本身的物理性质,用数学公式推导制品的共晶点(或共熔点),因影响共晶点(共同点)温度的因素有很多,数学公式推导时并不能考虑所有影响因素,所以这种方法得出的温度只是一个理论值。
三、共晶点、玻璃转化温度、共熔点、塌陷温度的相互关系
1、共晶点与共熔点
共晶点发生在制品降温预冻过程,共熔点发生在冻干机制品升温干燥过程,它们是两个相反的物理变化过程,从概念上来看这两个温度应该是相同的。但由于制品在冻结和熔化过程中其热量传递的具体途径和方式不同,相变潜热不同,所以共晶点温度和共熔点温度并不完全相同,同一物料的共熔点温度要稍高于共晶点温度。
2、共晶点温度与玻璃转化温度
在预冻过程中,有些物料没有或者不需要研究玻璃转化温度,有些物料没有共晶点温度,同一制品可能同时存在共晶点温度和玻璃转化温度。制品在玻璃转化温度以上,共晶点以下预冻,则形成晶体结构;制品以较高的降温速度越过共晶点温度,达到玻璃转化温度以下进行预冻,则形成无定型结构。
晶型体系的冻干制剂,晶体粒度大,易干燥,稳定性好,而无定型结构的制品干燥速度慢,稳定性差,因此,在无定型体系的保温阶段也可能出现无定型结构向晶体结构转化的现象。
3、塌陷温度与共晶点及玻璃转化温度
一般情况下,塌陷温度要稍高于共晶点温度,共晶点温度高于玻璃转化温度(即塌陷温度>共晶点>玻璃转化温度)。多数情况下,塌陷温度要比玻璃转化温度高20K左右。
四、共晶点、玻璃转化温度、共熔点、塌陷温度的对冻干曲线的指导作用
根据制品的共晶点或玻璃化转变温度可确定预冻温度。在冻干机预冻过程中,若样品预冻温度过高,预冻不完全,在升华干燥阶段易发生“喷瓶”和“起泡”现象。预冻温度过低,则造成能源浪费,延长生产周期,提高生产成本。因此,在实际冻干操作时,预冻温度一般低于制品的凝固点(共晶点或玻璃转化温度)10℃-20℃,但并不是所有制品均适用,在实际操作中可根据实际情况对预冻温度进行优化。
在冻干机升华干燥过程中,为防止制品塌陷,对于塌陷温度要稍高于共晶点温度的制品,应控制制品温度低于共晶点温度,而对于少数情况下,塌陷温度低于共晶点温度的制品,应控制制品温度低于塌陷温度。
1.应用领域:DFD冻干技术广泛应用于食品、药品、生物制品等领域。在食品行业,DFD冻干技术可以制备出口味鲜美、口感良好的速冻食品。在药品和生物制品领域,DFD冻干技术可以保持生物活性物质的稳定性,延长产品的保质期。
2.优点:相比传统的FD冻干工艺,DFD冻干技术具有以下优点: