日常生活中大部分人都可能碰到过食用了不卫生或过期变质食物以及水源后,出现过恶心、腹痛,并伴有腹泻、食欲不振、呕吐等症状?如果有就要当心,这可能是病原体感染引起的胃肠道炎症。
但是,即使食用了同样食物水源,不同人表现不一样。有的人表现无严重症状,有的人却症状严重,那么是什么因素导致病原体进入肠道后定植或无法定植,什么因素影响其进一步的感染?
胃肠道感染,也称作胃肠炎,是指病毒、细菌或其他病原微生物侵入消化道,引起的一系列消化系统症状的疾病。
这些微生物主要是通过食物或水进入人体后,在胃肠内繁殖并产生毒素,导致黏膜损伤和免疫细胞浸润,进而引发一系列病理生理变化。胃肠道感染的症状包括腹泻、腹痛、恶心呕吐以及食欲减退等。严重时还可能出现脱水、电解质紊乱甚至死亡。
有人可能会问:我们胃肠道中有那么多的微生物,为什么稍微一点外来的微生物就会让我们生病呢?的确,人体肠道内栖息着大量微生物,包括数万亿细菌,统称为肠道微生物群。微生物群的各种细菌成员在多个复杂层面上参与合作和竞争的生理网络。在过去10年中,测序技术领域的进步极大地增进了我们对共生微生物群影响的各种生理和病理过程的理解。
正常、健康的肠道微生物群可以在肠道中产生不利于肠道病原体定植的条件,这被称为定植抗性。肠道微生物群通过多种机制提供针对感染的保护,包括抗菌物质的分泌、营养竞争、上皮屏障完整性的支持、噬菌体和免疫激活。这些机制共同有助于抵抗外源微生物的定植。
当微生物群稳态受到干扰时,定植抗性可能会暂时受到破坏,病原体就有机会生长到高水平。这种破坏可能是由接触抗生素、饮食变化、益生菌和药物的应用以及各种疾病引起的。定植抗性的减弱会促进内在病原体的定植或增加对感染的易感性。
除了肠道微生物外,宿主营养通过影响宿主免疫系统和病原体资源的可用性,进而影响感染结果。从宿主角度看,维持活跃的免疫反应需耗费大量精力。营养状况的降低可能削弱宿主抵抗感染的能力,并在其他条件不变的情况下增加病原体的危害。
另一方面,从病原体角度看,宿主营养的数量(食物量)和质量(特定营养成分)的变化可能影响感染期间病原体生长资源的可用性和类型。在此情况下,生长较快的病原体或更高的病原体适应性/负载量可能导致更大的毒力。
PikeVL,etal.ProcBiolSci.2019
如何区分病原菌和共生菌
在感染医学中,共生菌和致病菌之间的区分仍然是一个重要标准,有益的共生现象和对立的致病性代表了细菌行为范围的两个极端,尽管很少有细菌微生物组成员表现出真正的致病行为。多细菌物种或菌株可以根据其环境背景和宿主生理状态动态改变其作为共生体或病原体的能力。
例如,微生物组失调和宿主免疫缺陷,可以将肠球菌(Enterococcusfaecium)从一个几乎无害的肠道微生物组成员转变为血流感染的原因。
单个水平基因转移事件可以改变共生生活方式和致病生活方式之间的平衡,例如,当预测的编码毒素成为肠出血性大肠杆菌或皮肤定植和口咽定植的白喉杆菌的主要毒力因子时。这意味着,原本可能是相对无害的微生物,在获得某些特定基因后,其生物学性质和行为可能发生显著变化,从而增加了其致病潜力。这种基因的转移和表达可以使这些微生物在宿主体内表现出更强的侵袭性和病原性,从而对宿主健康构成更大的威胁。
扩展阅读:
微生物共生与致病性:动态变化与识别挑战
稳定的肠道共生菌对健康至关重要
而健康的肠道内有一个稳定的微生物群落,可以抵抗外来细菌和病原体的侵袭,这就是所谓的“定植抵抗”,这个概念至少从上世纪50年代就被认识到了。
不成熟的微生物群落(比如婴儿的微生物群落)或者受到抗生素或者饮食破坏的微生物群落可能会失去这种保护作用。
在健康个体中,共生稳定的肠道微生物群通过多种机制提供针对感染的保护,包括抗菌物质的分泌、营养竞争、上皮屏障完整性的支持、噬菌体和免疫激活。这些机制共同有助于抵抗外源微生物的定植。
肠道微生物介导的定植抵抗机制
DucarmonQR,etal.MicrobiolMolBiolRev.2019
肠道微生物群能产生各种具有抗菌作用的产物,包括短链脂肪酸、次级胆汁酸和细菌素。每一种都以特的方式抵抗外源微生物的定植。它们的作用机制如下所述。
//短链脂肪酸影响细胞内pH值和代谢功能来抑制细菌生长
短链脂肪酸(SCFA)主要由细菌通过不易消化的碳水化合物发酵产生。三种主要的SCFA是乙酸盐、丙酸盐和丁酸盐,占总量的90%至95%。在稳态条件下,丁酸盐是肠上皮细胞的主要营养物质,并通过β-氧化进行代谢,可以维持肠道内的厌氧环境。
短链脂肪酸已被确认为抑制鼠伤寒沙门氏菌(Salmonellatyphimurium)生长的关键因素,并且对致病性大肠杆菌和艰难梭菌具有抑制作用。这些SCFA主要由拟杆菌和梭菌等厌氧共生细菌产生,这些细菌是成年哺乳动物微生物群中的重要成员。
短链脂肪酸还可以影响病原体的毒力:例如,丙酸和丁酸可以抑制鼠伤寒沙门氏菌的毒力因子。短链脂肪酸还可以作用于宿主,降低氧气浓度,为病原体生长创造一个不利环境。
//胆汁酸具有抗菌作用,减少病原体定植
胆汁酸是分泌到小肠中的两亲性胆固醇衍生分子。它们的主要功能是乳化脂肪和脂溶性维生素以供吸收,但它们也具有抗菌特性。
大部分结合的初级胆汁酸(50%至90%)在远端回肠中被重吸收,而其余部分可以在结肠中进行细菌代谢。一些细菌(主要是梭状芽胞杆菌)通过复杂的生化途径进行7α-脱羟基作用,将解离的初级胆汁酸转化为两种主要的次级胆汁酸:脱氧胆酸和石胆酸。
一些胆汁酸对许多细菌具有杀菌作用,包括金黄色葡萄球菌、多形拟杆菌、艰难梭菌等。证据如下:
-使用HT-29细胞系,石胆酸已被证明可以增强肠上皮中抗菌肽LL-37的转录。
-此外,初级胆汁酸鹅去氧胆酸通过激活小肠FXR受体,间接启动先天防御机制,具有保护作用。
//细菌素通过多种机制发挥其抗菌作用
细菌素是由特定细菌物种产生的短有毒肽,能够抑制其他物种的定殖和生长。细菌素通过多种机制发挥其抗菌作用,主要方式包括直接杀死目标细菌或抑制其生长。这些机制具体如下:
-细胞膜破坏:许多细菌素可以通过插入到细菌的细胞膜中,形成孔洞。这些孔洞破坏了细胞膜的完整性,导致细胞内容物的泄漏,最终引起细菌细胞的死亡。
-干扰细胞壁合成:某些细菌素能够干扰细菌细胞壁的合成。例如,它们可能会抑制细胞壁的主要构建块(如肽聚糖)的形成,从而阻止细胞壁的正常建造和修复,导致细菌无法在分裂或生长过程中维持其结构的完整性。
-抑制核酸合成:直接或间接影响DNA和RNA的合成或功能。例如,它们可能会阻止核酸的复制或转录,或者干扰核酸的修复过程,从而抑制细菌的生长和繁殖。
-蛋白质合成抑制:细菌素还可能通过抑制蛋白质的合成来发挥作用。这通常是通过与细菌的核糖体结合,阻断蛋白质合成的关键步骤来实现的。
-代谢途径干扰:此外,一些细菌素可能会干扰细菌的代谢途径,如阻断能量产生的关键酶的活性,从而削弱细菌的生存能力。
细菌会在肠道中竞争营养物质,这对于同一物种的不同菌株尤为重要,因为它们通常需要相同的营养物。多项研究使用不同的大肠杆菌菌株已经证明了营养竞争在细菌定植抵抗中的重要性。以下是一些研究证据:
//利用相同营养物的菌株竞争有助于抑制病原菌
本土大肠杆菌菌株与致病性大肠杆菌O157:H7竞争氨基酸脯氨酸。在粪便悬浮液中,高脯氨酸利用率的菌株通过耗尽脯氨酸池抑制致病菌的生长,而添加脯氨酸可逆转此抑制效果,证实了菌株间的营养竞争。
除氨基酸外,不同的大肠杆菌菌株还利用肠粘液中的不同糖类。当小鼠肠道中存在两种大肠杆菌菌株共同利用与O157:H7相同的糖时,O157:H7无法在小鼠中定植。但若只有一种共生菌株存在,O157:H7则能成功定植,显示这两种共生体能共同耗尽所有致病菌所需的糖。
营养竞争还涉及微量营养素,如铁。已知鼠伤寒菌在感染过程中从发炎的肠道吸收大量铁。益生菌大肠杆菌Nissle能高效清除铁,单次给药可显著降低鼠伤寒菌的水平。对铁的竞争可能是大肠杆菌Nissle能够减少鼠伤寒沙门氏菌在小鼠体内定植的另一种解释。
总之,这些研究表明,通过营养竞争吸收病原体所需的关键营养物质,可以有效地抵抗病原体定植。因此,未来的策略可能会集中在培养能在特定营养素上胜过病原体的益生菌菌株,这在肠道微生物群紊乱时尤为重要,如抗生素治疗期间及其后,因为这是外源细菌最易定植的时期。
//对粘附位点的空间竞争可以预防感染
除了基于营养的功能性生态位外,细菌还必须竞争物理空间。有些物种更喜欢以内腔或外粘液层的食物为生,或更罕见的是上皮表面的食物。
与上皮细胞的密切身体接触是某些病原体生活方式的重要组成部分(例如弯曲杆菌、某些致病性大肠杆菌、鼠伤寒沙门氏菌),因此对粘附位点(通常是聚糖结构)的物理竞争有助于预防感染或病理。
定植抵抗的直接和间接机制
PickardJM,etal.ImmunolRev.2017
//缺乏可利用营养物质时粘液降解细菌会消耗外粘液层
共生肠道微生物居住在非附着的外粘液层中并代谢营养物。粘液层变薄会增加对病原体定植的敏感性,这可能由于西式饮食中缺乏微生物可利用的碳水化合物(MAC)引起。
当MAC稀缺时,粘液降解细菌如Akkermansiamuciniphila和Bacteroidescaccae会消耗外粘液层,使细菌更接近上皮层。宿主通过增加粘蛋白(MUC2)的表达来适应,但这种适应往往不足。
然而,内粘液层的损伤可以通过施用长双歧杆菌逆转,这可能因其刺激粘液生成。
//肠道微生物对于维持粘液屏障的完整性非常重要
一方面,有益的微生物如乳酸菌和双歧杆菌可以通过产生短链脂肪酸等代谢产物来增强粘液层的保护作用,这些代谢产物能刺激粘液的产生和分泌,从而增强屏障功能。
另一方面,某些条件下如不健康的饮食习惯导致有益微生物减少,而粘液降解细菌的比例增加,可能会导致粘液层被过度消耗,粘液屏障变薄,从而使肠道更容易受到病原体的侵袭。
总之,粘液层是抵御外源微生物定植的首要屏障。研究已证明饮食是维持屏障正常功能的重要因素,这表明通过饮食干预或特定的益生元和益生菌可能成为未来的治疗选择。
目前,肠道微生物影响全身免疫反应的最佳机制可能是其对适应性免疫系统T细胞的影响。
//肠道微生物影响T细胞的分化、影响炎症反应
研究表明,胃肠道微生物群可以影响T细胞群分化为辅助性T(Th)Th1、Th2和Th17细胞或具有调节表型的T细胞。具体来说,丁酸盐作为短链脂肪酸促进外周诱导的调节性T细胞的分化,并以这种方式能够抑制全身炎症的发展。
SCFA还能够重新编程细胞的代谢活动,从而诱导调节性B细胞并通过戊酸抑制Th17细胞的生成,这可能与炎症性肠病和自身免疫性疾病有关。
噬菌体是地球上最丰富的微生物,也在人类肠道中大量存在。噬菌体已被提议作为抗生素的潜在替代品,因其高度特异性,仅针对单一或少数细菌菌株,从而极大地减少对微生物群共生成员的影响。
//使用噬菌体有效减少了霍乱弧菌感染
在实验中,使用小鼠和兔子的预防性噬菌体混合物可以有效控制霍乱弧菌感染。这种预防性混合物在体外能够杀死霍乱弧菌,减少其在小鼠肠道中的定植,并预防兔子的霍乱样腹泻。
//噬菌体为肠道共生细菌提供竞争优势
噬菌体还可以提供共生体竞争优势。例如,粪肠球菌V583含有能够感染并杀死其他粪肠球菌菌株的噬菌体,为粪肠球菌V583创造了竞争优势。
噬菌体在排除特定肠道细菌方面发挥重要作用,对肠道健康具有潜在贡献。噬菌体的人类治疗应用尚未广泛进行,主要是因为缺乏足够的安全性和有效性证据。然而,最近的病例报告显示,噬菌体治疗在对抗多重耐药细菌方面展现出明显的潜力。
VI型分泌系统(T6SS)是在一些革兰氏阴性细菌中发现的蛋白质易位复合物,其与一些噬菌体蛋白质具有相似的机制,具有注射毒素到邻近细胞的能力,这一功能使其在微生物间的竞争以及宿主与病原体间的相互作用中发挥关键作用。
T6SS的结构类似于细菌噬菌体的尾部,能够将效应蛋白直接转运到靶细胞中,这些效应蛋白能够破坏靶细胞的细胞结构或功能,从而抑制或杀死竞争对手。
T6SS示意图
CherrakY,etal.MicrobiolSpectr.2019
//T6SS通过注射毒素杀死或抑制病原细菌
在抵抗病原体感染方面,T6SS可以被视为一种防御机制。一些非病原性或共生细菌利用T6SS对抗侵入的病原细菌,通过直接向病原体注射毒素来抑制其生长或直接杀死这些病原体。
注:这种机制不仅限于细菌间的相互作用,也可能影响更高级生物的细胞,如真核宿主细胞,进而影响病原体的感染能力和宿主的免疫反应。
//T6SS能够调节宿主的免疫系统
此外,T6SS还能够调节宿主的免疫系统。一些研究表明,T6SS可以通过调控炎症反应和影响免疫细胞的活性来影响宿主的免疫环境。例如,T6SS可以影响巨噬细胞的吞噬作用和炎症因子的释放,从而调节宿主的免疫反应。
因此,T6SS不仅是细菌间相互作用的武器,也是细菌与宿主互作的重要因素,对于维持微生物群落的平衡、抵抗病原体侵袭以及调节宿主免疫反应具有重要作用。
通过进一步研究T6SS的具体机制和作用,可以为开发新的抗感染策略提供理论基础和潜在靶点。
营养与感染之间存在密切的相互关系。首先,营养直接影响人体免疫系统的发展。此外,营养状况还会影响感染的发生,包括胃肠道感染、食物中毒、肠道疾病以及其他全身性传染病。
营养与感染的关系可分为以下几种:
(1)营养对人体免疫系统发育的影响;
(2)营养对感染(如胃肠道感染)、食物中毒、肠道疾病(如微生物性腹泻)和全身感染性疾病(如布鲁氏菌病、伤寒)发生的影响;
(3)营养不良与感染的关系;
(4)严重联合免疫缺陷患者的营养;
(5)暴饮暴食与感染的关系。
//营养对免疫系统的发育至关重要
营养从胚胎阶段起就对人体免疫系统的发育产生影响。怀孕期间,尤其是前三个月,如果母亲摄入足够的蛋白质、维生素和矿物质,胚胎组织将得到良好的发育。胎儿营养不良会对免疫系统的正常发育造成不利影响,如果免疫系统在这一关键时期未能有效发展,将来对抗病原体的能力会受到影响。
//营养不良抵抗病原体的能力会受到影响
母乳喂养是建立强健免疫系统的关键步骤。未经母乳喂养的营养不良婴儿,容易因缺乏蛋白质和维生素而易感染疾病,并且对疫苗的反应也不佳。因此,良好的营养是提高人体对环境病原体防御能力的基石。
广泛的研究已经证实了营养在增强抵抗感染能力方面的重要作用。例如,研究显示,相比仅接种结核疫苗的儿童,饮食充足的儿童患结核病的风险更低。同时保证营养健康和接种疫苗的人,患结核病的风险显著减少。
进行了一项研究来显示儿童感染与营养不良之间的关系。结果显示,营养不良的儿童经常出现腹泻。这些儿童的腹泻发生率和严重程度较高。结果表明,营养不良程度与腹泻风险之间存在直接关系。另一项研究评估了婴儿从出生到24个月大期间腹泻的影响。结果显示,腹泻发生率每增加5%,生长障碍就会增加(约16%)。
营养不良和菌血症风险之间存在可变关系,营养不良儿童更有可能患革兰氏阴性菌血症。在坦桑尼亚进行的一项血培养研究结果表明,假单胞菌属、肠杆菌属和金黄色葡萄球菌的患病率很高。
溶组织内阿米巴寄生虫引起的阿米巴病与营养不良儿童腹泻的发生率和严重程度增加之间存在密切关系。据观察,溶组织内阿米巴感染可导致发展中国家儿童腹泻的发生率为2%–10%。全球每年由阿米巴病引起的死亡率和感染率估计分别约为100000例和5000万例。分泌性抗体(免疫球蛋白A)可促进针对溶组织阿米巴腹泻的免疫保护。营养不良儿童中IgA分泌细胞的减少会增加溶组织内阿米巴感染的发生率。
//受污染的食物和水会导致人体发生感染
//受霍乱弧菌污染的食物会使人感染霍乱
其中霍乱是最危险的一种,霍乱是由一种叫做霍乱弧菌(Vibriocholerae)的细菌引起的急性肠道传染病。这种病主要通过饮用或食用被霍乱弧菌污染的水和食物传播。人们在卫生条件差、饮用水处理不当或个人卫生习惯不佳的环境中更容易感染霍乱。
//布鲁氏菌病
此外,通过水和食物传播的微生物污染可能导致儿童严重腹泻和传染病。布鲁氏菌病是通过摄入受布鲁氏菌(Brucella)污染的食物和水引起的传染病,这是人类和动物之间的常见疾病。
布鲁氏菌可感染绵羊、山羊、牛、猪和狗,人类则可能通过食用未经高温消毒的牛奶或未煮透的感染动物肉类而感染。密切接触受感染动物的分泌物也可能将病菌传播给人类。
//其他可能通过食物导致人体的感染
阿米巴原虫病主要通过摄入受污染的水和食物引起,而弓形虫病则是通过食用生或未煮熟的肉类传播。当寄生虫包囊进入人体胃部,胃酸作用下释放,通过肠粘膜传入肝脏和淋巴结。
蛲虫感染是一种通过食物传播的寄生虫病,在全球范围内普遍存在,儿童的感染率高于成人。其他如带虫病和钩虫感染也常由不良营养引起。
注:由于病原体可能具有抗生素耐药性,这给治疗带来了挑战。
1968年,世界卫生组织报告就指出,感染可能会加剧人类营养不良,这种现象被称为协同作用。感染通常会对人的营养状态产生负面影响,从而导致营养不良,反过来又可能加重感染。
//感染期间代谢和吸收功能会被削弱
多种因素可能削弱人体对抗感染的能力并引发营养不良。例如,厌食可能导致营养不良,从而削弱免疫系统。某些传统行为也会加剧营养不良和感染问题,如在一些文化中,发烧或腹泻的人被禁止进食。肠道感染可能导致肠道吸收功能降低,蛋白质、碳水化合物和脂肪的吸收量可能分别减少43%、42%和72%,具体数值取决于感染类型。
感染期间,如蛋白质丢失等代谢损伤会增加膳食蛋白质的需求。脂质和碳水化合物的代谢紊乱(如脂肪酸自身代谢紊乱、酮体和甘油三酯的变化)在各种感染中可见。此外,感染期间,通过糖异生途径,氨基酸可转化为葡萄糖。在呼吸道感染期间,血液中的维生素A浓度可能降低,肝炎、急性扁桃体炎、类风湿性关节炎等疾病也会降低血清维生素A浓度。
//感染时体内许多营养素过低
感染时,血液中维生素C浓度降低,而尿液中维生素C浓度增加,即使是接种过麻疹和天花疫苗的人也会出现。感染后,体内维生素B2(核黄素)含量会减少,这种减少具有统计学意义。
铁是感染期间体内减少的另一种营养素,铁的有效利用有助于降低病原体活性并治疗感染。锌和铜是感染时浓度可能降低的其他元素,研究显示感染中铜和锌的平衡呈负值,尽管血液中铜浓度可能增加,但感染者体内铜水平可能显著降低。
有人说,营养不良会增加感染的风险,那我尽量多吃行不行,其实这也是不可取的。
//暴饮暴食会降低抗感染能力
暴饮暴食可能会对人体的免疫系统造成负面影响,从而降低抗感染的能力。当人体摄入过量的食物,尤其是高脂肪、高糖的食物时,可能会导致炎症反应增强,肠道微生物失衡,这些都可能削弱身体的免疫功能。
因此,暴饮暴食不仅对健康有害,还可能增加感染的风险,包括消化系统的感染如胃肠炎等。合理的饮食习惯和适量的食物摄入对维护免疫系统和预防感染至关重要。
此外,肥胖的人有患糖尿病的潜力,所有糖尿病人都对感染敏感。一些研究还表明,超重的人患呼吸道感染的风险更大。
炎症和感染之间存在密切的关系,炎症通常是身体对感染的一种防御反应。当病原体如细菌、病毒或寄生虫侵入人体时,免疫系统会激活,产生炎症反应以抵抗感染。这种反应包括血液中的白细胞和其他免疫分子到达感染部位,以消灭病原体。
人类肠道微生物群的组成表现出很大的个体差异。而感染和肠道炎症可导致肠道微生物群组成发生改变,称为生态失调。
关于微生物群如何参与肠道炎症发病机制,人们提出了不同的理论:
(1)导致粘膜屏障功能缺陷(例如粘液层、先天杀伤、抗菌肽)的突变涉及共生细菌的过度易位和促炎信号的触发;
(2)宿主免疫调节异常会引起针对内在共生菌的过度免疫反应;
(3)不明病原体的存在会导致疾病的诱发;
(4)失调的微生物群,其特征是“有益”和“潜在有害”共生细菌之间的不平衡,是疾病的触发因素或驱动因素。
慢性结肠炎或肠道病原体感染过程中的炎症可能会破坏正常的微生物群组成,诱发生态失调,并有利于病原体和共生菌的过度生长,并增加毒力潜力。因此,菌群失调不仅被认为是肠道炎症的原因,而且也是肠道炎症的结果。
这些研究使用分子、独立于培养的技术,如16SrRNA基因测序和宏基因组学。
事实上,远端肠道的生态失调通常以特定专性厌氧革兰氏阳性菌(如瘤胃球菌科、毛螺菌科)的丰度降低,同时兼性厌氧菌(如肠球菌和链球菌)以及革兰氏阴性变形菌(特别是肠杆菌科成员)也随之增加。
已提出将人类肠道中丰富的丁酸盐生产菌——普氏栖粪杆菌(F.prausnitzii)的减少作为活动性疾病的微生物标志物。
//肠杆菌的大量增加可能是肠道炎症的一个重要标志物
肠杆菌科(Enterobacteriaceae)是革兰氏阴性兼性厌氧菌的一个大家族,由于它们对从上皮屏障扩散的氧气具有相对较高的耐受性,因此通常位于靠近肠道上皮的位置。事实上,肠杆菌科仅占远端肠道微生物群落的一小部分,大约为0.1%。然而,它们在各种肠道炎症环境中过度生长,例如炎症性肠病、乳糜泻和结肠癌。
肠道炎症是由病原体感染后产生的,炎症引起的环境和营养变化可能赋予肠杆菌科细菌生长优势。例如在克罗恩病(CD)和溃疡性结肠炎(UC)(炎症性肠病的两种主要形式)患者中观察到肠杆菌科细菌(包括粘附性侵袭性大肠杆菌)的患病率增加。
//许多肠道病原体利用炎症环境来促进自身生长
许多肠道病原体能够利用炎症反应来谋取自身利益。在健康的肠道中,复杂的厌氧微生物群有效地阻止主要人类肠道病原体的定植和感染。这种“定植抵抗”在肠道炎症存在时会减弱,从而使病原体过度生长。
一个典型的例子是啮齿类柠檬酸杆菌(Citrobacterrodentium),一种引起鼠类传染性结肠增生的病原体;空肠弯曲杆菌;以及引起人类小肠结肠炎的鼠伤寒沙门菌(S.Typhimurium)。
细菌转录组的分析揭示了炎症对微生物功能及其在炎症环境中生存能力的影响。
//病原菌粘附能力的增强使之持续存在并诱导肠道炎症
最近的DNA序列分析表明,AIEC菌株主要表达带有新近氨基酸突变的FimH。这些新突变显著增强了AIEC对表达CEACAM的肠上皮细胞的粘附能力,使其能在遗传易感宿主中持续存在并诱导肠道炎症。
//在不同炎症条件下表达特定的蛋白来促进生存
这些结果表明,在特定的选择压力下,FimH蛋白会发生选择性氨基酸突变以维持细菌的生存,并暗示大肠杆菌在不同炎症条件下(如CD和UC)采用独特的生存策略。
因此,可以想象,炎症环境可能会选择表达特定的微生物蛋白,从而促进细菌存活并进一步维持炎症。
许多文献已经提出了导致发炎肠道中一些有害细菌大量繁殖的机制,包括营养变化、粘蛋白利用、抗菌剂的产生、无氧/有氧呼吸和金属利用。我们这里主要以肠道炎症中的标志物种肠杆菌(Enterobacteriaceae)为例来介绍。
//炎症下的营养变化使病原菌更具竞争优势
居住在远端肠道的微生物群落竞争有限的食源性碳水化合物或宿主粘液源性聚糖。因此,饮食对肠道微生物群的组成起着关键作用,饮食的变化可能导致肠道微生物群落结构的扰动。
在健康肠道中,专性厌氧梭菌和拟杆菌仍然保持对兼性厌氧肠杆菌科的主导地位。在正常情况下,梭状芽胞杆菌和拟杆菌利用糖苷水解酶分解复杂的碳水化合物,并通过结合蛋白质增加其表面的碳水化合物浓度,最终通过主动转运系统将碳水化合物转运穿过梭状芽胞杆菌的细胞质膜和拟杆菌的外膜。相比之下,肠杆菌科因缺乏糖苷水解酶,其分解复杂碳水化合物的能力较差,只能通过外膜扩散通道被动运输寡糖。
因此,在健康状态下肠杆菌科细菌在与专性厌氧菌竞争高能营养物质时处于劣势,这种竞争性生长劣势解释了健康远端肠道中梭状芽胞杆菌和拟杆菌对肠杆菌科细菌的优势。
而在炎症过程中,肠上皮损伤导致死亡上皮细胞脱落增加,增强了上皮细胞膜衍生磷脂(如磷脂酰胆碱和磷脂酰乙醇胺)的可用性。特别是,乙醇胺可被变形菌门中的某些细菌及病原菌(如沙门氏菌和假单胞菌)作为唯一的碳或氮源利用。这种利用乙醇胺的能力有助于这些细菌在肠道中成功定植并维持其致病机制。
//粘蛋白的分解促进发炎肠道中病原菌的定植
肠杆菌科细菌在发炎肠道中扩张的另一个机制是利用粘蛋白。粘液层覆盖肠上皮,分为两层;外层可移动,被细菌定殖,通常限制共生菌的定殖,而内层牢固地附着在上皮上,基本上无细菌。
分泌的凝胶形成粘蛋白MUC2是人结肠粘液的主要成分。值得注意的是,MUC2缺陷小鼠表现出细菌对表面上皮的粘附增强、肠道通透性增加以及发生自发性或DSS诱导的结肠炎和结直肠癌的易感性增加。
最近的一篇论文强调了粘蛋白衍生的唾液酸在DSS治疗诱导小鼠肠道炎症期间促进肠杆菌科细菌扩张的作用。唾液酸是粘蛋白中的主要碳水化合物之一,可以被无法从头合成这些糖的细菌(如大肠杆菌)摄取,并掺入细菌荚膜和脂寡糖中。
此外,鼠伤寒沙门氏菌和艰难梭菌在肠道内扩张期间,采用了一种常见策略来分解代谢微生物群释放的粘膜糖,如岩藻糖和唾液酸。这些观察结果表明,唾液酸的分解代谢可能为发炎肠道中肠杆菌科细菌的生长提供优势。
//肠杆菌产生大肠杆菌素来抑制其他细菌
肠杆菌科细菌还可以通过产生抗菌分子来战胜其他细菌,更利于自身在肠道中的繁殖。例如,大肠杆菌素是由某些大肠杆菌菌株产生的细菌素,对系统发育上的近亲致命。在发炎肠道中,大肠杆菌素Ib(col1B)的产生赋予鼠伤寒沙门氏菌相对于敏感大肠杆菌菌株的竞争优势。
col1B的表达受到低铁可用性和SOS反应的正向调节,这两种情况通常由中性粒细胞募集和氧化应激诱导的DNA损伤在发炎肠道中引发。
因此,肠道中的炎症环境似乎创造了一种有利的条件,可以增强大肠杆菌素的作用,大肠杆菌素作为适应因素,为肠杆菌科细菌的大量繁殖提供竞争性生长优势。
//肠杆菌科的呼吸灵活性使其在炎症条件下更好地生长
导致肠杆菌科细菌在发炎的远端肠道中扩张的进一步机制是宿主在这种基本上厌氧的环境中诱导的生长条件的变化。
炎症期间血流量和血红蛋白升高而产生的高水平氧气,可以为兼性厌氧菌(如肠杆菌科)提供比专性厌氧菌(如梭菌属和拟杆菌属)更有利的生长优势。肠道炎症期间产生的新呼吸电子受体可能通过无氧呼吸(包括硝酸盐呼吸)支持细菌生长。
已经证明硝酸盐是作为宿主炎症反应的副产物而产生的。这种源自宿主的硝酸盐的富集可以为肠杆菌科(例如大肠杆菌和鼠伤寒沙门氏菌)带来适应性优势,因为编码硝酸还原酶的基因存在于大多数肠杆菌科细菌中,但在属于梭菌属和拟杆菌属的专性厌氧菌中基本上不存在。
由宿主炎症反应产生的活性氧(ROS)可以与内源性硫化合物(即硫代硫酸盐)反应,产生一种新的呼吸电子受体,称为四硫酸盐。这种新产生的电子受体为伤寒沙门氏菌提供了选择性生长优势,而不是发炎肠道中竞争的发酵肠道微生物。这些观察结果表明,病原体可以利用宿主反应来超越肠道微生物群。
肠杆菌科的呼吸灵活性使它们能够对肠道内不同的氧气供应量做出反应。例如,在没有氧气的情况下,大肠杆菌可以使用硝酸盐、亚硝酸盐、三甲胺-N-氧化物(TMAO)、二甲基亚砜(DMSO)和富马酸盐作为电子受体,而在氧气存在下,大肠杆菌表达使用氧作为电子受体的末端氧化酶。
此外,链霉素治疗导致小鼠体内产生丁酸的共生梭状芽孢杆菌的耗竭,导致丁酸水平降低,上皮氧合升高,伤寒沙门氏菌有氧繁殖。鼠类柠檬酸杆菌(C.rodentium)使用III型分泌系统(T3SS)促进小鼠结肠隐窝增生,这反过来增加了表面上皮的氧化,并促进了C.rodentim在结肠中的有氧扩张。
鼠类柠檬酸杆菌(C.rodentium)感染是常用的模型之一。
//许多病原体进化出了高亲和力的金属摄取机制
肠杆菌科细菌在肠道炎症中大量繁殖的另一机制是金属获取。铁是宿主和病原菌重要的营养物质,大部分储存在细胞内,使得病原体难以获取。
然而,为了克服这种铁限制,许多病原体已进化出高亲和力的铁摄取机制,与宿主的限制性铁环境竞争。这些机制包括释放铁螯合铁载体、血红素获取系统和转铁蛋白/乳铁蛋白受体。
例如,大肠杆菌能产生肠杆菌素,一种儿茶酚铁载体,有效抑制中性粒细胞的杀菌髓过氧化物酶,使大肠杆菌在发炎肠道中具有明显的生存优势。因此,大肠杆菌释放的铁载体既能获取铁,也能抵御宿主源性氧化应激。
总体来看,这些研究突显了铁获取在促进发炎肠道中毒性更强的肠杆菌科细菌扩张的关键作用。肠杆菌科细菌也进化出了获取其他金属(如锌和锰)的策略,以利于它们在发炎肠道中的生长。
!
注意
肠道炎症通常会促进毒性更强的肠杆菌科细菌的出现,这些细菌已进化出多种策略来逃避宿主免疫反应、战胜共生细菌,并在发炎的肠道中茁壮成长。
众所周知,营养对肠道微生物群和免疫系统具有显著影响,在健康与疾病的发展中扮演着关键角色。例如,西方饮食通过诱导骨髓祖细胞的表观遗传和转录重编程,与炎症反应的增强有关,这直接影响了多种疾病的发展。
增强对肠道微生物群、宿主反应及其他微生物间关系的理解,为通过营养调节这三者之间的互动提供了可能,帮助维护肠道稳态和抵抗感染。
应考虑到不同的饮食成分,如矿物质、碳水化合物、维生素、脂质和蛋白质,它们具有特定的功能特性,能够以直接或通过微生物组间接的方式影响宿主与病原体的相互作用。在这些营养素之间建立机制联系为影响健康提供了多种可能。
因此,饮食干预应视为一种调节感染风险、预防病原微生物入侵、减轻感染严重程度及支持感染治疗的重要手段。尽管已知多种营养化合物对宿主微生物组和免疫系统有影响,但膳食纤维、益生元和益生菌仍然是研究的热点。
益生元是不易消化的食物成分,通过选择性刺激结肠中一种或有限数量的细菌的生长或活性,对宿主产生有益影响。典型的益生元是人乳低聚糖、菊粉、低聚果糖和低聚半乳糖。
膳食纤维不是典型的益生元,但具有益生元特性,例如,β-葡聚糖、阿拉伯木聚糖、果胶和抗性淀粉。益生元和特定的膳食纤维通过充当发酵底物促进肠道中有益细菌的生长,同时通过生态位排除抑制病原体的生长。
//益生元与膳食纤维的代谢产物具有抗菌活性有助于预防胃肠道感染
主要发酵产物是短链脂肪酸,如上所述,它对免疫系统具有重大影响,因此可以抑制感染的发展。除短链脂肪酸外,益生元和膳食纤维还可以通过排除和抗菌活性直接预防胃肠道感染。
//与免疫细胞作用预防感染、并减轻感染后的炎症
此外,益生元和膳食纤维与上皮细胞和免疫细胞的直接相互作用也有助于预防感染。β-葡聚糖和阿拉伯木聚糖等膳食纤维已被证明可以激活CLRdectin-1,这是一种参与诱导训练免疫的重要受体,可增强针对继发感染的免疫反应。
人乳低聚糖、阿拉伯木聚糖和果胶还与Toll样受体(TLR)相互作用,从而提高树突状细胞(DC)的功效,通过肠上皮细胞诱导耐受性DC,并保护胃肠道免受过度的TLR信号传导影响,而且还支持解决胃肠道感染后的炎症。
LobiondaS,etal.Microorganisms.2019
许多研究探讨了益生菌在预防和治疗感染方面的潜在作用,包括以下几种机制:
//竞争性抑制
益生菌可以与病原菌竞争肠道黏膜的结合位点。通过占据这些位点,益生菌阻止病原菌的附着和进一步的入侵。此外,益生菌还能竞争肠道内的营养资源,限制病原菌的生长和繁殖。
//产生抗菌物质,营造病原菌生存不利的环境
许多益生菌能产生抗菌物质,如细菌素、过氧化氢等。这些物质能直接杀死或抑制病原菌的生长,帮助清除肠道中的感染。
乳酸菌(LAB)可以通过产生抗菌肽(例如细菌素)来防止病原体入侵,抗菌肽可以通过在细菌细胞壁上形成孔并抑制细胞壁合成来消灭病原菌。此外,益生菌通过产生乳酸和乙酸来降低pH值,创造酸性环境,具有抗菌作用,不利于细菌病原体的生长。
//增强肠道屏障功能
肠道完整性的损害可以解释胃肠道感染的发展。因此,益生菌增强肠道屏障的能力可能会对感染提供一些保护。
据报道,乳酸杆菌通过调节参与紧密连接信号传导的基因表达来改善肠道屏障功能。VSL3(益生元和益生菌的混合物)治疗可促进MUC2的表达和粘液分泌,有助于增强肠道屏障。这种屏障的增强有助于减少病原体的侵袭和内毒素的吸收,从而减轻感染的严重程度。
乳杆菌(尤其是L.reuteri)和动物双歧杆菌亚群,通过乳酸产生促进粘液粘附的蛋白质,称为粘液结合蛋白(MUBs),增强益生菌与宿主之间的相互作用。
//调节免疫系统
Toll样受体2(TLR2)是一种跨膜受体,可在多种细胞类型(包括小胶质细胞、单核细胞、巨噬细胞和树突状细胞)中表达,在先天免疫反应中起着重要作用
益生菌还可以刺激肠道免疫系统产生特定的抗体(如IgA),这些抗体能够中和病原体,减少其感染性。
//调节炎症反应
益生菌能够调节宿主的炎症反应,减少由过度免疫反应引起的组织损伤。它们通过产生抗炎细胞因子(如IL-10)和降低促炎细胞因子(如TNF-α)的水平来实现这一点。
除了单独使用益生元和益生菌外,还有将益生元和益生菌组合成合生元混合物的营养概念。考虑到上述临床研究的局限性,合生元已显示出临床成功,因此有望成为未来的治疗选择。
通过营养治疗感染需要注意的
与药物化合物的靶向作用相比,饮食治疗可能更加多因素。个体对营养化合物的反应受到个体遗传特征的影响。例如,炎症基因(如IL-1B、IL-6和TNF-α)中的单核苷酸多态性(SNP)会导致不同的炎症反应,这可以部分解释观察到的对营养化合物反应性的差异。
此外,越来越多的证据表明,每个人的肠道微生物群都是独一无二的,这种多样性使得个体对营养和治疗感染的反应存在显著差异。
研究显示,肠道微生物的组成可以影响营养物质的吸收和代谢,同时也会影响宿主的免疫系统功能。因此,了解个体的肠道微生物组成对于制定个性化的营养和治疗策略至关重要。
通过针对特定肠道微生物群优化的营养干预,可以更有效地预防和治疗各种感染,提高治疗的精准性和效果。这一新兴领域的研究不仅有助于推动精准医疗的发展,同时也为临床实践提供了新的视角和方法。
肠道感染仍然在全世界范围内造成沉重的疾病和经济负担。如何更好的预防和治疗胃肠道感染成了许多百姓和临床工作者关心的问题。
大量研究表明营养不良与感染之间存在双向作用。总体而言,营养影响人体免疫系统发育,而某些因素会导致营养不良并削弱人体抵抗感染的能力。包括厌食、肠道吸收减少、代谢损伤、脂质和碳水化合物代谢紊乱、维生素、铁、锌、铜减少。需要注意的是暴饮暴食可能也会增加感染风险。
主要参考文献
StecherB.TheRolesofInflammation,NutrientAvailabilityandtheCommensalMicrobiotainEntericPathogenInfection.MicrobiolSpectr.2015Jun;3(3).
PikeVL,LythgoeKA,KingKC.Onthediverseandopposingeffectsofnutritiononpathogenvirulence.ProcBiolSci.2019Jul10;286(1906):20191220.
CristoforiF,DargenioVN,DargenioC,MinielloVL,BaroneM,FrancavillaR.Anti-InflammatoryandImmunomodulatoryEffectsofProbioticsinGutInflammation:ADoortotheBody.FrontImmunol.2021Feb26;12:578386.
DucarmonQR,ZwittinkRD,HornungBVH,vanSchaikW,YoungVB,KuijperEJ.GutMicrobiotaandColonizationResistanceagainstBacterialEntericInfection.MicrobiolMolBiolRev.2019Jun5;83(3):e00007-19.
WiertsemaSP,vanBergenhenegouwenJ,GarssenJ,KnippelsLMJ.TheInterplaybetweentheGutMicrobiomeandtheImmuneSystemintheContextofInfectiousDiseasesthroughoutLifeandtheRoleofNutritioninOptimizingTreatmentStrategies.Nutrients.2021Mar9;13(3):886.
LobiondaS,SittipoP,KwonHY,LeeYK.TheRoleofGutMicrobiotainIntestinalInflammationwithRespecttoDietandExtrinsicStressors.Microorganisms.2019Aug19;7(8):271.
Farhadi,Sedigheh1;Ovchinnikov,RomanS.2,.TheRelationshipbetweenNutritionandInfectiousDiseases:AReview.BiomedicalandBiotechnologyResearchJournal(BBRJ)2(3):p168-172,Jul–Sep2018.
CherrakY,FlaugnattiN,DurandE,JournetL,CascalesE.StructureandActivityoftheTypeVISecretionSystem.MicrobiolSpectr.2019Jul;7(4).
PickardJM,ZengMY,CarusoR,NúezG.Gutmicrobiota:Roleinpathogencolonization,immuneresponses,andinflammatorydisease.ImmunolRev.2017Sep;279(1):70-89.
一些生物活性营养素,如长链多不饱和脂肪酸(LC-PUFA)、铁、维生素、蛋白质或碳水化合物,已被确定在婴儿出生后的前1000天对婴儿生长、神经发育发挥重要作用,以及肠道菌群的建立和成熟。LC-PUFA是中枢神经系统(CNS)的结构成分,对视网膜发育或海马可塑性至关重要。最近,乳脂球膜(MFG)的成分被添加到婴儿配方奶粉中,因为它们在婴儿发育中起着关键作用。
从历史上看,重点一直放在早期营养对生长模式和儿童体脂成分的影响上。证据表明,生命早期摄入过多的能量和快速或缓慢的生长模式与不良的发育结果有关;事实上,婴儿期体重快速增加是晚年肥胖的重要预测指标。
肠道菌群与营养失调与多种儿科疾病有关,营养素的摄入和肠道微生物群的定植和成熟是相互关联的,因此通过饮食干预来促进健康的肠道微生物群是一种有前途的方法,可以改善儿童健康结果。
脂肪酸是许多脂质的主要成分,必须通过婴儿饮食提供必需的脂肪酸,以实现健康成长、神经发育、免疫系统和胃肠功能。
婴儿的脂肪摄入量占比
在生命的头几个月,多不饱和脂肪酸(PUFAs)的需求增加,因为快速生长和神经发育。婴儿的脂肪摄入量在母乳喂养期间很高,从开始添加辅食后的第一年下半年逐渐减少。脂肪营养需求量占每日总能量摄入:
细分各类脂肪酸的摄入量
最近,不同的国家确定亚油酸的摄入量应占总能量的4%,而α亚麻酸应占总能量的0.5%。
长链多不饱和脂肪酸(LC-PUFAs)、n-3二十二碳六烯酸(DHA,22:6n-3)和花生四烯酸(ARA,20:4n-6)是中枢神经系统细胞膜的功能成分,在神经传递具有关键作用。
欧洲食品安全局(EFSA)委员会已确定:
0~24个月的DHA摄入量为100毫克/天;
0~不到6个月的ARA摄入量为140毫克/天;
ARA和DHA由母乳提供
婴儿的DHA状态是通过母乳提供的,它取决于母亲的DHA状态;尽管如此,母乳中的ARA浓度始终接近总脂肪酸的0.5%,通常高于DHA,与DHA相比更稳定。
已经表明,ARA的延伸产物肾上腺酸(ADA,22:4n-6)是细胞膜中的重要成分。ADA构成了大脑中近一半的n-6LC-PUFA,n-6LC-PUFA的含量远远超过n-3LC-PUFA。
均衡摄入DHA和ARA对大脑功能和发育至关重要
在脂肪酸摄入量和线性生长之间建立关系的研究得出了不同的结论。其中一些人认为必需脂肪酸对于婴儿期的最佳线性生长很重要,也有研究人员没有发现任何关联。
乳脂球膜蛋白的健康益处
另一方面,脂肪的研究工作表明,乳脂球膜(MFGM)蛋白代表母乳的生物活性部分,可提供一些健康益处。这种膜组分由不同的生物活性成分(磷脂酰胆碱、鞘磷脂、胆固醇和脑苷脂、神经节苷脂等)组成,它们对大脑发育和免疫功能有积极影响并保护新生儿胃肠道调节肠道菌群组成。
饮食中脂肪酸的分布与肠道菌群的关联
我们通常认为饮食中脂肪过多会造成肥胖,实际上,饮食中脂肪酸的分布也可能改变肠道微生物群的组成和肥胖状况。最近,表明人乳中的sn-2脂肪酸与婴儿肠道微生物群之间存在显着关联;ARA和DHA与拟杆菌属(Bacteroides)、肠杆菌科(Enterobacteriaceae)、韦荣球菌属(Veillonella)、链球菌属(Streptococcus)和梭菌属(Clostridium)有关,参与短链脂肪酸(乙酸盐、丙酸盐和丁酸盐)生产的细菌,具有重要的免疫调节功能,在抵抗肠道病变的发展等方面发挥着关键作用,并且在母乳喂养后13-15天显着增加。
扩展阅读:脂肪毒性的新兴调节剂——肠道微生物组
如何通过喂养菌群产生丁酸调节人体健康
蛋白质在生命的前1000天非常重要,因为它们在细胞结构中发挥着重要作用,并且是酶和神经递质的组成部分。
蛋白质推荐量
在出生后的头6个月内,每公斤体重/天的蛋白质推荐量为:
0至6个月大时为0.58克;
6至36个月大时为0.66克。
母乳中蛋白质种类多,有多种功能
使用婴儿配方奶粉喂养的婴儿在生命的前四个月内表现出正常的婴儿生长模式,婴儿的总蛋白质减少1.0g/dl(类似于母乳)。
辅食中蛋白质影响婴儿生长及肠道菌群组成
扩展阅读:肠道菌群与蛋白质代谢
认识变形菌门,变形菌门扩张的原因和健康风险
碳水化合物需求量
每日总能量摄入中的总碳水化合物需求量占比如下:
0~6个月为40-45%
6至12个月以下为45-55%
12至36个月以下为45-60%(接近成年人)
葡萄糖
母乳低聚糖
母乳低聚糖(HMO)构成了婴儿无法消化的母乳碳水化合物的重要部分。母乳低聚糖具有益生元功能,可喂养胃肠道微生物群,并促进有益菌的生长;此外,它们还与多种生物学功能有关,例如对胃肠道发育和全身免疫的影响、双歧杆菌生成活性和抗感染、炎症调节、肠神经元激活和肠道运动,以及中枢神经系统功能的增强。
岩藻糖基聚糖是母乳中最丰富的母乳低聚糖形式(80–90%)。
聚糖
几个临床前模型已经证明母乳低聚糖对认知功能的影响,但人类的临床数据尚未公布。
关于糖没有特定推荐量,2岁以下避免添加糖
关于糖,没有针对婴儿期糖的特定的每日参考摄入量。ESPGHAN营养委员会建议,避免在2岁以下儿童的饮食中添加糖分。还建议避免饮用果汁或含糖饮料,因为过早摄入这些饮料会增加日后患1型糖尿病的风险。
为什么婴儿在6个月左右时需要添加辅食?与铁等营养素的需求有关
在婴儿出生前,胎儿会从母体中吸收铁元素,积累在肝脏中,以备出生后使用。然而,母乳中的铁含量相对较低,因此在婴儿6个月左右时,需要从饮食中摄取外源性铁以满足营养需求。
铁的需求量
0~6个月为0.3毫克/天;
6~12个月以下为6-11毫克/天;
12~36个月以下的需求量为3.9-9毫克/天。
缺铁有哪些影响?
缺铁会影响大脑、神经和精神运动发育,因为铁是神经递质所需酶的组成部分。缺铁会导致携氧能力降低,从而导致生长发育所需的葡萄糖转化受限;这些限制可能导致生长迟缓、体重减轻和年龄增长,但与神经发育不同的是,它们可以通过补铁治疗来克服。
缺铁影响肠道菌群组成
Coriobacteriaceae被确定为一个潜在的生物标志物,将运动与健康改善联系起来。
扩展阅读:人与菌对铁的竞争吸收|塑造并控制肠道潜在病原菌的生长
纯母乳喂养的婴儿摄入的维生素D低于最低推荐摄入量,远低于每日参考摄入量。
维生素D推荐摄入量
为避免因维生素D而可能出现的病症,例如骨矿化不足或软骨病,母亲每天补充400至2000IU可以增加母乳中的维生素D水平;建议纯母乳喂养的婴儿接受阳光照射和补充维生素D。
0至36个月以下的婴儿维生素D营养需求为:
10微克/天。
缺乏维生素D会引起什么?
维生素D诱导神经生长因子,促进神经突生长,抑制海马神经元凋亡。关键神经发育时期的缺陷会导致生命后期的行为、记忆和学习障碍。
低水平的维生素D会导致肠道通透性增加,产生慢性低度炎症状态。
维生素D与肠道菌群之间存在关联,在3-6个月大的不同种族婴儿的肠道微生物群组成中观察到一些差异,这些婴儿的母亲在怀孕期间补充了维生素D以预防其后代的哮喘和过敏症。
扩展阅读:维生素D与肠道菌群的互作
维生素B12的需求量
0~6个月为0.4微克/天,
6~不到12个月为0.5至0.8微克/天,
12~36个月以下为0.6至1微克/天。
叶酸的需求量
EFSA推荐:
0~6个月的叶酸营养需求为65微克/天,
6~12个月婴儿的叶酸摄入量为80微克/天,
12~36个月以下的需求量为100微克/天;
叶酸和维生素B12的作用
叶酸和维生素B12(钴胺素)作为参与广泛生物过程的辅助底物和辅助因子发挥着重要作用,例如核酸合成、糖酵解、糖异生和氨基酸代谢。
此外,叶酸和维生素B12以及单碳代谢循环所需的其他微量营养素辅助因子的状况可能会影响DNA甲基化,从而对健康产生长期影响。
叶酸——必须,但不要过量
众所周知,怀孕期间缺乏叶酸会导致后代出现神经管缺陷的风险更高。然而,高剂量的叶酸与更好的状态无关,与母亲或后代无关;事实上,怀孕期间摄入量高于400微克/天并没有明显的好处。母乳喂养期间补充叶酸可导致母乳总叶酸适度增加。
过量摄入叶酸可能会产生潜在的不利影响,包括几种疾病(例如癌症、神经系统疾病、生长综合征、呼吸系统疾病和多发性硬化症)的发病率增加。
目前,由于食用补充剂或强化食品,很多欧洲儿童摄入大量叶酸;目前尚不清楚这些摄入量是否会造成伤害,尤其是在早期发育过程中,而许多组织中正在发生大量表观遗传变化。
缺乏维生素B12有什么影响?
当母亲的维生素B12状况不佳时,母乳中的含量会降低,会影响后代维生素B12的状态。维生素B12对中枢神经系统的代谢和维持至关重要,与叶酸一起在同型半胱氨酸代谢和髓磷脂的保护中起着关键作用。因此,维生素B12缺乏会导致覆盖颅神经、脊神经和周围神经的髓鞘受损,从而导致神经精神疾病的发展。
B族维生素缺乏影响肠道菌群
通过基因组重建和预测,针对几种B族维生素,预测整个微生物群落的代谢表型,发现微生物群落中有相当一部分是辅助营养物种(它们无法自己合成某些生命所需的化学物质,需要从外部环境中获取这些物质才能生存),它们的生存完全依赖于从饮食和/或原养型微生物中获取一种或多种B族维生素,通过特定的拯救途径(一种代谢途径,通过这种途径,微生物可以从外部环境或其他微生物的代谢产物中回收利用某些生命所需的化学物质,以满足自身生存所需)来实现。
膳食摄入影响:
细菌合成影响:
在体外结肠模型中,研究发现补充甲钴胺和乳清可以提高厚壁菌门和拟杆菌属的比例,同时减少变形杆菌属的数量,其中包括一些病原体,如大肠杆菌(Escherichia)和志贺氏菌属(Shigella)等,以及假单胞菌属(Pseudomonas)。此外,研究还发现甲钴胺可以促进肠道细菌对脂质、萜类化合物和聚酮化合物的代谢,诱导外源性物质的降解,抑制转录因子和次级代谢产物(如维生素B12)的合成。
扩展阅读:如何解读肠道菌群检测报告中的维生素指标?
B族维生素与肠道菌群互作
新生儿肠道菌群的建立及发育
新生儿的肠道菌群既直接来自母亲,也来自分娩后的环境。微生物组在生命的头几个月经历动态演替和成熟,这一过程伴随着身体指标以及器官和神经认知发育的快速变化。
新研究结果强调母乳喂养和婴儿饮食会影响肠道微生物组成和功能。一项使用宏基因组鸟枪法测序的综合研究表明,停止母乳喂养(而不是引入固体食物),可以推动婴儿肠道微生物组的功能成熟,使其接近成人状态。
新生儿肠道菌群的影响因素
母乳对婴儿的发育和成熟起着重要作用,微生物组在断奶时进入过渡阶段,此时微生物组会发生其他变化。
儿童营养不良和生长障碍是由膳食摄入不足和炎症之间复杂的相互作用驱动的,炎症通常是持续和/或反复感染和慢性疾病(包括镰状细胞病、艾滋病毒、先天性心脏病、心理障碍和内分泌或代谢疾病)的结果。
肠病是营养不良的一个重要驱动因素
肠道通透性增加也会对发育产生负面影响
肠屏障功能障碍和肠道通透性增加可能导致微生物和/或微生物产物易位,从而激活先天免疫反应并促进全身炎症,从而对生长产生负面影响。
扩展阅读:什么是肠漏综合征,它如何影响健康?
肠道菌群失调可能影响儿童生长发育
由于疾病、环境或药物暴露或其他损害而破坏微生物组的正常多样性和组成,可能导致生态失调,这是一种以致病菌大量繁殖、共生体丧失和多样性丧失为特征的状态。在一些人群中,生态失调与肥胖、2型糖尿病、肝脂肪变性和肠道疾病有关。在儿童和部分人群中,生态失调与生长和神经认知发育不良以及反复感染、免疫力改变和炎症增加有关。
与营养良好的儿童相比,营养不良的儿童拥有“不太成熟”的肠道菌群,其多样性较低。生态失调导致营养提取效率低下、吸收不良、易患肠杆菌科等侵袭性疾病和肠道炎症,从而影响生长。
肠道微生物群与发育迟缓之间存在密切关联,表明存在因果机制
谷禾健康与长沙妇幼儿童保健中心实验室合作发表的临床研究,揭示了肠道微生物群对患有严重急性营养不良(SAM)等严重儿科病理状况的儿童的重要性;临床诊断为生长发育迟缓(FTT)的受试者和正常生长正常的早产受试者(NFTT-pre)在不同年龄段表现出明显的肠道菌群发育轨迹中断,并且其α多样性的发展以及观察到的OTU和Shannon指数不足,尤其是在具有FTT的受试者中。
此外,与正常相比,FTT组中细菌如拟杆菌、双歧杆菌、链球菌和大多数年龄歧视性细菌分类群的顺序定殖和富集及其微生物功能紊乱。我们的研究结果表明,发育迟缓的婴儿肠道菌群发育不全,具有潜在的临床和实践意义。
肠道菌群失调还与共生微生物的易位和系统传播以及对病原体的易感性有关。此外,共生细菌抵抗肠道炎症的功能能力降低,如产生短链脂肪酸和色氨酸分解代谢配体(驱动芳烃受体激活),可导致肠道炎症。
恢复肠道菌群稳态,可促进儿童生长发育
确定肠道微生物群落结构和功能的变化(包括确定它们与疾病的因果关系)以制定有效的干预措施,对恢复肠道微生物群落结构并改善健康生长发育至关重要。
确定可以在怀孕、婴儿期和儿童期实施的干预措施,以预防或改善这些导致生长发育不良的驱动因素,对于改善短期和长期健康与发育至关重要。
发育迟缓/营养不良不容忽视,问题很有可能在肠道
真实案例|儿童发育迟缓肠道菌群检测的应用
最近对来自刚果、印度、巴基斯坦和危地马拉的孕妇进行的一项纵向研究表明,怀孕期间肠道微生物群的个体属和α多样性(丰富度)有所减少。
妊娠期肠道菌群与新生儿生长关联
最近进行了一项研究,以了解津巴布韦农村地区妊娠期肠道微生物群分类群与代谢功能对胎龄、出生体重和新生儿生长的关联。
结果证明,抗性淀粉降解细菌,主要是瘤胃球菌科、毛螺菌科和真细菌科,是主要的肠道类群,并且是出生体重、新生儿生长和胎龄的重要预测因子。
扩展阅读:肠道核心菌属——毛螺菌属(Lachnospira)
肠道菌群变化分别与妊娠糖尿病和高脂血症有关
扩展阅读:肠道重要基石菌属——普雷沃氏菌属Prevotella
人类肠道核心菌属——韦荣氏球菌属(Veillonella)
母体微生物群的干预:益生菌
一些数据表明,益生菌对孕妇或哺乳期妇女在治疗妊娠糖尿病(GDM)、B族链球菌定植和乳腺炎方面具有有益作用。
鉴于已知的安全性,益生菌作为妊娠干预措施特别有吸引力。然而,迄今为止的研究还没有定论。在新西兰、芬兰、丹麦、瑞典、澳大利亚、伊朗和我国的女性中,补充各种益生菌和混合物(包括乳酸杆菌、链球菌和双歧杆菌菌株)对出生人体测量没有影响。但有一些数据表明益生菌单独或联合使用可能与低收入国家早产儿死亡率、坏死性小肠结肠炎和/或新生儿败血症的降低有关。
新生儿和婴儿是考虑针对微生物组进行干预的关键人群,因为婴儿微生物组在出生后经历快速进化。此外,婴儿期是生长和神经认知发育的关键时期,也是发病率和死亡率最高的时期。
婴儿肠道菌群的定植
来自拟杆菌门和放线菌门的专性厌氧菌会迅速定植婴儿肠道,主要是双歧杆菌属、拟杆菌属和梭菌属,在生命的前6个月内,其特点是多样性低。
婴儿肠道菌群->免疫系统->宿主
婴儿肠道微生物群为免疫系统的发育提供信息,而免疫系统又协调维持宿主-微生物共生的关键特征。因此,肠道微生物组成和代谢的异常可能会破坏正在发育的免疫系统。
母乳喂养->断奶,肠道菌群变化
婴儿期的母乳喂养还通过母乳中微生物种类的直接转移和其他主要成分的调节影响婴儿生长和塑造肠道微生物群,例如人乳低聚糖(HMO–人类酶无法消化的复合糖),分泌IgA和抗菌因子。
断奶,即逐渐将固体食物引入婴儿饮食,是婴儿发育的一个重要里程碑。断奶也是肠道菌群快速扩张的时期,包括双歧杆菌、乳杆菌、韦荣球菌(Veillonella)、柯林氏菌(Collinsella)、普雷沃氏菌、粪杆菌属和大肠杆菌属以及参与复杂多糖代谢的其他物种的多样化和扩张。
断奶期微生物群受干扰,可能导致肠道感染的易感性
断奶期过后,肠道菌群高度依赖于饮食习惯
农村地区的儿童表现出拟杆菌门的显着富集和厚壁菌门的枯竭,普雷沃氏菌属的细菌数量独特丰富,显示出利用富含多糖的营养素的能力。
然而,在工业化国家,这些普氏菌肠型不太常见,断奶后微生物组的特征是拟杆菌和瘤胃球菌肠型的存在。
在试图了解微生物群落是如何共同配置的,包括描述组成成员之间的相互作用以及这些群落随着年龄的增长而成熟时,需要较大的样本人群队列,这也是谷禾一直推进的事情。
微生物群是否有一个稳定的架构?
综合众多的研究结果确定了一个由几十个细菌分类群组成的核心“生态群”,这些分类群在孟加拉国、印度和秘鲁的出生队列的健康成员中,在20个月及以后表现出一致的协变。研究得出结论,生态群网络是微生物群组织的一个保守的一般特征,建议这样的生态群可以提供一个框架来描述营养不良儿童的生态失调。
我们建议这样的生态群可以用作定量指标,用于定义旨在重新配置肠道微生物群落的靶向干预措施的功效。
婴儿绞痛、反流和便秘常常引起父母的痛苦也是儿科就诊的主要原因。如前所述,母乳喂养婴儿的微生物群通常被认为富含双歧杆菌和乳杆菌等“有益”细菌,以及梭菌等产气细菌的生长减少。
益生菌:罗伊氏乳杆菌DSM17938减少哭闹
同样对于绞痛的预防,使用L.reuteriDSM17938似乎是有效的,但这需要在其他研究环境中得到证实。
扩展阅读:认识罗伊氏乳杆菌(Lactobacillusreuteri)
为了促进“有益”细菌的生长,婴儿配方奶粉中添加了特定的益生元,并在临床试验中进行了评估。
益生元:低聚半乳糖降低绞痛和反流的风险
在最近的一项双盲随机对照试验中,摄入补充低聚半乳糖的配方奶显示出与母乳喂养参照组相似的双歧杆菌和乳杆菌发育趋势,并且与接受不含低聚半乳糖的配方奶粉的婴儿相比,降低了绞痛和反流的风险。
合生元:减少哭闹、减轻疾病发作
人们对合生元提供“有益”细菌及其底物的兴趣也越来越大。
在另一项前瞻性双盲随机对照试验中,评估了含有嗜热链球菌(Streptococcusthermophilus)、保加利亚乳杆菌(L.bulgaricus)和动物双歧杆菌(B.animalisssp.lactis)的合生酸奶饮料的效果。
与安慰剂相比,乳糖和菊糖对疾病发作(腹泻、上呼吸道感染和发热性疾病)的影响减少了发烧天数。干预组大便稀便的频率更高,需要照顾孩子的次数也更多,但差异无统计学意义。
注意:
作者强调益生菌的干预并不是适合所有有症状的婴儿,婴儿的肠道菌群变化较快,益生菌及其组合的干预需要充分评估肠道菌群及其功能,了解其肠道菌群网络结构下,选择对应症状的干预方式才能确保安全和发挥干预的效果。
总的来说,在得出任何确定的结论之前,需要更多的研究来评估益生元和合生元在这些在不同类型儿童及其整体肠道微生态条件下的作用。
如何调节肠道菌群?常见天然物质、益生菌、益生元的介绍
肠道微生物群与健康:探究发酵食品、饮食方式、益生菌和后生元的影响
肠道菌群&过敏性疾病
据报道,在基于人群的加拿大健康婴儿纵向发育(CHILD)出生队列研究中,婴儿粪便中低肠道微生物群丰富度和升高的肠杆菌科/拟杆菌比率与随后食物致敏的风险增加有关。
瘤胃球菌科↓
他们还发现食物敏感的婴儿在1岁时瘤胃球菌科的丰度下降。这可能与过敏性疾病高风险婴儿的病例对照研究结果一致,发现瘤胃球菌科的相对丰度较低与未出现任何过敏表现的婴儿相比,随后出现特应性湿疹的婴儿的粪便样本中。
值得注意的是,瘤胃球菌属的相对丰度较低也与炎症性先天免疫反应过度有关。
总的来说,这些发现进一步支持了这样一种假设,即缺乏潜在的免疫调节细菌可能会增加发生过敏表现的风险。由于瘤胃球菌能够降解纤维,并且是成人“核心”微生物组的一部分,未来的研究应该检验其重要性。
扩展阅读:瘤胃球菌属——消化降解关键菌?炎症标志菌?
益生菌&肠道菌群
丁酸盐是一种已知的结肠细胞底物,与增强肠道完整性有关。与单独使用EHCF相比,接受EHCF+LGG治疗的婴儿在治疗6个月后的丁酸产量呈双峰分布。
已知的丁酸盐生产者,Faecalibacterium,Blautia,Ruminococcus,Roseburia在高丁酸盐样本中富集,而拟杆菌显着减少。与牛奶不耐受的孩子相比,牛奶耐受的孩子Blautia和Roseburia富集。正如作者推测的那样,这些物种可能导致丁酸盐产量增加和肠道完整性增加。
肠道重要基石菌属——罗氏菌属(Roseburia)
肠道核心菌属——普拉梭菌(FaecalibacteriumPrausnitzii),预防炎症的下一代益生菌
母亲摄入益生菌降低孩子发病率
在该团队随后的2份研究中,其中在一项随机对照试验中,与无菌安慰剂牛奶相比,孕妇在围产期摄入含益生菌的低脂发酵牛奶可降低其孩子2岁和6岁时的湿疹发病率。然而,临床益处似乎与3个月或2岁时对肠道微生物多样性的影响无关。
由于益生菌仅给予母亲,另一种解释可能是通过影响母乳成分。在婴儿期益生菌随机对照试验的另一项后续研究中,对长期肠道微生物群的建立没有影响,这与之前的报道一致。
虽然说荟萃分析报告,怀孕期间、母乳喂养期间和/或给婴儿服用益生菌可降低婴儿湿疹的风险,但证据仍然薄弱。因此,专家机构未能推出具体的指导方针。然而,在考虑所有关键结果时,世界过敏组织现在建议使用益生菌预防有过敏孩子高风险的孕妇和哺乳期母亲以及有高风险患过敏性疾病的婴儿(基于家族史)。
肠易激综合症
在一项更大的、双盲、随机、交叉研究中,同一组使用16S测序研究了低发酵低聚糖、二糖、单糖和多元醇(FODMAP)饮食对肠易激综合症儿童的临床结果和肠道微生物组成的影响。
低FODMAP饮食减少了腹痛,并且对饮食有反应的儿童的微生物群具有更强的糖分解能力。作者建议,鉴定具有更强糖分解能力的微生物群可能作为预测对低FODMAP饮食反应的生物标志物。
克罗恩病
肠道微生物群环境的变化被认为是克罗恩病患者纯肠内营养治疗特性的中介。令人惊讶的是,与没有炎症性肠病家族史的健康对照相比,克罗恩病患儿在纯肠内营养过程中肠道微生物多样性、普拉梭菌和丁酸盐浓度有所降低。
乳糜泻
在乳糜泻中,坚持严格的无麸质饮食(GFD)有时很困难,患者可能仍会出现临床症状和营养缺乏,随后持续发炎和肠道菌群失调。
在另一项评估两种益生菌短双歧杆菌菌株对GFD患儿影响的随机对照试验中,与安慰剂相比,干预减少了炎性细胞因子TNFα的产生。
总的来说,这些研究表明益生菌对患有乳糜泻的儿童可能有益,但需要在更大规模的试验中验证。
扩展阅读:双歧杆菌:长双歧杆菌
青年糖尿病环境决定因素(TEDDY)研究最近的一份报告中,该研究包括芬兰、瑞典、德国和美国患1型糖尿病的高风险儿童,肠道的组成和多样性都存在很大差异。即使在这个具有同源人类白细胞抗原(HLA)II类基因型并因此具有相似遗传风险的人群中,根据地理区域也存在显着差异。
这些差异的根本原因尚不清楚,因为即使在对早年生活和饮食变量进行调整后,差异仍然存在。
人们一直对肠道菌群失调在影响儿科人群的大量疾病中的作用感兴趣。
儿童时期的肠道微生物组成高度依赖于饮食习惯。在营养不良的儿童中,与标准营养干预措施(如RUSF)相比,含有当地可用成分的低热量密度MDCF可改善微生物组的成熟度和生长。未来我们需要努力探究不同地理环境和不同饮食习惯下中婴儿期微生物群的多样性,更深入地了解它们与免疫发育和生长的联系。
鉴定具有更高定植效率和临床有效性的适合当地的菌株可能提供巨大的潜力来优化可在怀孕、婴儿期和儿童期实施的干预措施,这可能会导致针对肠道微生物群的治疗和预防策略得到改进,并且也可能成为安全和具体指南的基础。
主要参考文献:
NjungeJM,WalsonJL.Microbiotaandgrowthamonginfantsandchildreninlow-incomeandmiddle-incomesettings.CurrOpinClinNutrMetabCare.2023Mar6.
VidehultFK,WestCE.Nutrition,gutmicrobiotaandchildhealthoutcomes.CurrOpinClinNutrMetabCare.2016May;19(3):208-13.
CerdóT,DiéguezE,CampoyC.Infantgrowth,neurodevelopmentandgutmicrobiotaduringinfancy:whichnutrientsarecrucialCurrOpinClinNutrMetabCare.2019Nov;22(6):434-441.
GizawZ,YalewAW,BitewBD,etal.Stuntingamongchildrenaged24-59monthsandassociationswithsanitation,entericinfections,andenvironmentalentericdysfunctioninruralnorthwestEthiopia.SciRep2022;12:19293.
WestCE,RenzH,JenmalmMC,etal.Thegutmicrobiotaandinflammatorynoncommunicablediseases:associationsandpotentialsforgutmicrobiotatherapies.JAllergyClinImmunol2015;135:3–13.
TroeschB,BiesalskiHK,BosR,etal.Increasedintakeoffoodswithhighnutrientdensitycanhelptobreaktheintergenerationalcycleofmalnutritionandobesity.Nutrients2015;7:6016–6037.
HiltunenH,LyttyniemiE,IsolauriE,RautavaS.Earlynutritionandgrowthuntilthecorrectedageof2yearsinextremelypreterminfants.Neonatology2018;113:100–107.
ZhengM,LambKE,GrimesC,etal.Rapidweightgainduringinfancyandsubsequentadiposity:asystematicreviewandmeta-analysisofevidence.ObesRev2018;19:321–332.
传染病,肠道微生物,营养
传染病和感染目前是许多地区尤其是低收入国家主要死亡原因,也是婴儿和老年人等弱势群体的主要风险。免疫系统在这些感染的易感性、持续性和清除中起着至关重要的作用。由于70-80%的免疫细胞存在于肠道中,肠道微生物群、肠上皮层和局部黏膜免疫系统之间存在着错综复杂的相互作用。除了肠道中的局部黏膜免疫反应外,目前越来越多的证据证实:肠道微生物组也会影响全身免疫。
临床医生未来可能会更多地利用关于免疫系统、肠道微生物组和人类病原体之间复杂相互作用的更多知识。现在公认的营养对肠道微生物群组成和免疫系统的影响阐明了营养在改善健康方面可以发挥的作用。
本文将综合介绍维持微生物群、肠道健康、局部免疫反应和全身免疫之间复杂平衡的机制,并将其与一生中的传染病联系起来,并讨论营养在传染病预防和治疗中的影响。
由于卫生条件的改善、疫苗接种和抗生素的使用,传染病的发病率在过去几十年中显着降低。然而,仍有近三分之一的死亡仍与传染病有关,尤其像新冠病毒这样的传播。
此外,感染仍然对婴儿和老年人等弱势群体构成重大风险。上呼吸道感染是医疗保健中的最常见疾病,在老年人中,流感和肺炎仍然是常见的死亡原因。
世界卫生组织指出,传染性肠道疾病是导致死亡的主要原因之一,根据2015年全球疾病负担、伤害和风险因素研究,感染性腹泻是全球主要的死亡原因,尤其是5岁以下儿童。
病原体需要克服三个主要障碍,才能在胃肠道中引起感染:
本小节主要介绍前两个:肠道微生物群和肠上皮层。
肠道微生物群由多物种微生物群组成,由细菌、真菌和病毒组成,它们生活在与宿主协同作用的特定生态位中。肠道微生物和哺乳动物共同进化,因此在微生物获得栖息地繁衍的同时,微生物调节宿主的各种生理功能,包括调节对病原体的保护性免疫。
肠道微生物群的组成受许多因素影响,例如遗传、性别、年龄、社会经济因素、营养、压力、疾病和环境因素(污染物、抗生素等)。
扰乱微生物群落结构和功能的因素,如抗生素的使用,为机会性病原体提供了定殖、生长和持续存在的空间。有几种机制可以确保微生物群防止定植、过度生长、病原体引起的损害以及随后的宿主感染。
定殖抗性
一种机制被称为定殖抗性,其中共生微生物群和入侵微生物在营养或功能空间方面竞争资源可用性或生态位机会。
群体感应
为了允许这种竞争,细菌细胞使用细菌复制过程中积累的信号分子不断地感知环境,从而监测种群密度并相应地调整它们的基因表达,这种机制称为群体感应。
化学信号导致细菌的表型变化,这些变化与粘附、运动和肠道密度或保护性化合物的排泄有关。
群体感应机制被共生体用来确保肠道内稳态,但也被病原体用来最小化宿主免疫反应并增加致病性。可能由饮食、压力、抗生素和药物治疗引起的微生物群落结构或非有益微生物群组成的改变会改变微生物群与宿主之间的整体动态,从而导致低度炎症、降低定植抗性和改变感染易感性。
肠道菌群会影响各种炎症和传染病
vandenElsenLWetal.,ClinTranslImmunology.2017
除了肠道微生物群,肠道上皮屏障在保护宿主免受病原体感染方面起着至关重要的作用。
这种将肠道中的共生细菌与下层组织分开的物理屏障是通过紧密连接的蛋白质复合物连接的单层细胞。紧密连接复合物的组装是一个动态过程,某些细菌会通过释放毒素来破坏该过程。
此外,上皮细胞层由一层粘液加强。这种上皮屏障的粘液“衬里”是肠道上皮细胞抵抗细菌入侵的首要防御机制之一,通过防止管腔和粘膜微生物直接与上皮细胞相互作用。
微生物群和抵御感染威胁的肠道屏障
IacobS,etal.,2019,FrontMicrobiol.
粘液和微生物之间存在相互关系,宿主炎症状态的变化和微生物群组成的变化都可能导致粘液产生和组成的改变,从而导致感染易感性增加。
短链脂肪酸在抗感染防御中的作用
过敏性炎症与特定细菌属的丰度较低有关。耗尽肠道微生物群已被证明会增加IgE的产生,这与Treg反应减少一起会导致过敏性炎症。
耗尽肠道微生物群会导致肠腔内缺乏微生物竞争已被证明会增加IgE的产生,这与Treg反应减少一起会导致过敏性炎症。
肠腔内缺乏微生物竞争会导致艰难梭菌定植。
最后,缺乏微生物信号也会降低对微生物的先天免疫和适应性免疫反应,使宿主更容易受到感染。
肠道微生物群和肠道上皮细胞之间的持续相互作用导致持续的免疫信号传导。在共生细菌和入侵病原体存在的情况下,这种免疫反应的调节以及上皮屏障的完整性和通透性对于维持肠道稳态至关重要。如果这个过程受损,可能会导致炎症和感染。
免疫反应在感染的易感性、持续性和清除率中起着至关重要的作用。
免疫系统由两部分组成:
先天免疫系统通过多种防御机制提供非特异性保护,包括:
适应性免疫系统的细胞,T和B淋巴细胞,识别并响应特定的外来抗原。T细胞识别已进入宿主细胞的感染因子。这种类型的适应性免疫依赖于细胞的直接参与,因此被称为细胞免疫。
此外,T细胞在调节B细胞功能方面发挥重要作用,B细胞分泌识别特定抗原的抗体和蛋白质。因为抗体通过体液(即体液)循环,所以由B细胞诱导的保护称为体液免疫。
这方面的证据来自比较年龄和性别匹配的没有肠道微生物群的无菌饲养小鼠、相同品系的常规饲养动物和具有特定微生物群的无菌小鼠,即所谓的无菌小鼠。特别是,使用无菌小鼠提高了我们对单一细菌菌株、菌株联合体、特定微生物表达基因和微生物产生的代谢物对肠道稳态以及局部和全身免疫的影响的理解。
这些研究的见解强调,先天免疫在首次识别和响应微生物衍生产物中起着关键作用。
肠道中的先天免疫始于直接暴露于肠腔内容物和微生物产物的单层肠上皮细胞(IEC)。宿主和微生物之间的关键平衡通过模式识别受体(PRR)识别微生物得到安全保护。
MyD88是PRR信号传导下游的重要衔接分子,将PRR激活与转录因子NF-B的激活联系起来,后者是炎症的主要调节因子。因此,MyD88的缺乏会导致免疫反应受损和对感染的易感性增加。
然而,PRRs的不当激活可能导致过度的免疫反应,甚至导致炎症性疾病和自身免疫;因此,PRR反应通过正负反馈回路和交叉调节受到严格调节。
此外,IEC分泌抗菌肽(AMP),这是一种具有杀菌、抗炎和抗内毒素特性的先天免疫效应分子。
AMP是先天免疫防御的重要组成部分,可限制病原体与上皮的相互作用。它们的表达可以被某些病原体下调,并因特定微生物的存在而增强,因此,微生物群的组成是形成先天免疫反应的关键。
微生物群控制免疫反应的另一种机制是通过肠道微生物群从饮食成分、宿主产物或其他微生物代谢物产生的代谢物的形成。
种类繁多的微生物代谢产物介导了共生细菌的许多保护功能。
具有免疫保护能力的代谢产物包括:
短链脂肪酸、色氨酸代谢物、胆汁酸衍生物等。
短链脂肪酸
短链脂肪酸通过特殊的肠上皮细胞增强抗菌肽和粘液的产生,并刺激结肠调节性T细胞的成熟和扩增,从而抑制对微生物群的局部炎症反应。
短链脂肪酸通过调节上皮屏障来支持结肠内的肠道稳态,并通过诱导这些细胞的增殖和分化来支持肠道细胞的修复。
短链脂肪酸在先天淋巴细胞(ILC3)的增殖中很重要,ILC3会释放IL22,这对上皮细胞诱导抗菌分子很重要。
色氨酸代谢物
胆汁酸衍生物
胆汁酸衍生物通过激活法尼醇X受体(FXR)和G蛋白偶联胆汁酸受体(TGR5)来支持肠道稳态并影响大量宿主功能。胆汁酸衍生物是通过特定细菌门表达的细菌胆汁盐水解酶(BSH)的作用从胆汁酸代谢而来的,而BSH基因丰度的丧失与炎症性肠病的发生有关。
以上表明肠道中的粘膜稳态是肠道微生物群、微生物代谢物和宿主因素之间的微妙平衡。这种持续的相互作用导致严格调节的生理低度炎症状态,维持最佳的宿主防御,从而影响对感染的易感性。
人们越来越认识到,肠道微生物群除了调节局部粘膜免疫系统外,还通过多种机制影响先天性和适应性细胞介导的全身免疫反应。
肠道菌群释放微生物可溶性产物,影响外周免疫细胞的激活
一种机制涉及释放微生物可溶性产物,这些产物转移到循环中并影响外周免疫细胞的激活。事实上,肠道远端器官中的常驻免疫细胞可以直接感知循环微生物衍生因子,而微生物群衍生信号分子的缺失会导致免疫功能发生改变,从而导致对全身感染的易感性。
肠道菌群对适应性免疫系统(T细胞)的影响
目前,肠道微生物组影响全身免疫反应的最佳表征机制可能是其对适应性免疫系统的T细胞室的影响。已经表明,胃肠道微生物群可以影响T细胞群分化为Th1、Th2和Th17细胞或具有调节表型的T细胞。
具体而言,丁酸盐作为一种短链脂肪酸可促进外周部位诱导的调节性T细胞的这种分化,并且以这种方式能够抑制全身炎症的发展。短链脂肪酸还能够重新编程细胞的代谢活动,从而诱导调节性B细胞,并通过戊酸抑制Th17细胞的产生,这可能与炎症性肠病和自身免疫性疾病有关。
宿主-病原体相互作用的研究:
结果表明,记忆T细胞的共生激活及其向发炎部位的运输,对于防止细菌病原体感染是必要的。
此外,通过共生菌主动控制IL10介导的抗炎反应对于防止感染性损伤很重要。这种效应可以使用特定的toll样受体(TLR)激动剂来重现,这会减少IL10的产生,通过增加细菌清除率使小鼠对感染具有更强的抵抗力,并使适当的炎症反应成为可能。
细菌在造血过程中影响调节免疫系统
微生物群释放的信号分子进入循环的能力,也使肠道中的常驻细菌在造血过程中影响免疫细胞发育,调节免疫系统,从而影响对感染的反应。
事实上,短链脂肪酸丁酸盐被证明可以促进骨髓单核细胞从炎症表型分化为更具耐受性的表型。
骨髓细胞也表达多种PRR(受体),并且对循环中的MAMP敏感,其影响由PRR表达和MAMP可用性决定。例如,在造血干细胞和祖细胞(HSPCs)上激活CLRdectin-1会导致诱导已经对单核细胞和巨噬细胞进行过训练的免疫。相反,在HSPCs上激活TLR2会产生具有高抗原呈递共刺激能力的耐受巨噬细胞。已显示通过AhR配体激活HSPC可导致产生能够免疫抑制的髓源性抑制细胞。
肠道微生物群衍生的信号调节先天免疫防御
除了影响T细胞发育和功能外,肠道微生物群衍生的信号被证明还可以通过脾脏中的淋巴刺激、中性粒细胞迁移和功能的调节、巨噬细胞的诱导和活化以及调节自然杀伤(NK)细胞的功能来调节先天免疫防御。
特定菌群降低皮质酮水平,从而调节炎症反应
最近,研究表明,特定的细菌种类还通过降低血浆皮质酮(肾上腺分泌的皮质醇激素控制炎症“关闭”过程。皮质醇也是身体的减压激素,这个我们下次单独讲)水平来调节炎症反应,这是一种抗炎类固醇,在控制对粘膜损伤的炎症反应中很重要。
综上所述,很明显,肠道微生物群的失调会导致诱导适当的局部和全身免疫反应的能力降低,从而导致局部炎症性疾病,但也会导致远端疾病。
一个远端部位是气道,这两个部位之间的这种特定的直接关系被称为:肠-肺轴。
肠道菌群影响肺部:哮喘、过敏性气道疾病、呼吸道感染等,益生菌可改善
事实上,在动物和人类研究中,已经表明抗生素引起的肠道微生物群改变可能与特应性表现、过敏性气道疾病和患哮喘的风险增加有关。
除了影响过敏性气道疾病的发展,已经表明肠道微生物群在防止细菌和病毒呼吸道感染方面发挥着至关重要的作用,因为肠道微生物群直接控制先天性和适应性免疫反应。
事实上,多项人体临床试验表明,使用益生菌可降低呼吸道感染的发生率并改善其健康结果。
肠道菌群影响肺部:通过粘膜免疫系统
肠道事件影响肺部疾病的另一种机制是通过常见的粘膜免疫系统,其中在肠道中引发的抗原特异性B细胞可以通过胸导管迁移到远端有效部位。
在肠-肺微生物群研究中,确定肠道微生物群变化是疾病的原因还是结果是具有挑战性的。此外,还需要进行纵向研究,以更好地了解肠道微生物群对已确诊肺部疾病的严重程度和病程的影响。
在人群中可以看到,年幼的婴儿和老年人特别容易受到感染。这两个人群的共同点是,在这两个人群中,免疫系统都没有发挥最佳功能。接下来的两个章节,主要介绍婴儿和老年人的免疫系统与肠道菌群的关联。
婴儿的免疫系统在出生时受到了极大的抑制,母体抗体提供保护
婴儿的免疫系统在出生时并没有完全发挥作用,这意味着他们的先天和适应性免疫反应都受到了极大的抑制。子宫内环境要求胎儿的免疫系统主动下调并耐受来自母亲的抗原,以避免可能导致终止妊娠的免疫反应。
然而,出生后,暴露于环境抗原,其中许多来自肠道微生物群,需要快速改变免疫反应,以保护婴儿免受病原体入侵。
在生命的最初几个月,母体IgG抗体提供了对许多感染的保护,该抗体从母亲转移到婴儿身上;然而,当这些抗体水平下降时,婴儿变得更容易受到感染。
幸运的是,先天免疫细胞提供了抵御入侵病原体的早期第一道防线,在胎儿期就已经发育成熟。但是,这种情况发生在不同的时期,与生命后期相比,新生儿先天免疫所有成分的功能仍然较弱。在抗原暴露的驱动下,适应性免疫系统也在生命的最初几个月迅速发展,从而导致免疫记忆的发展。
婴儿最初可能会在子宫内接触细菌,出生后会迅速出现肠道定植。定植模式受以下因素的影响:
有人提出,生命的前24个月是建立微生物组的关键发育窗口,甚至可能决定整个生命过程中肠道微生物群的组。由于部分免疫系统发育或成熟需要某些细菌,这两个过程密不可分。
实际上,需要共生微生物来训练免疫系统以区分成为耐受抗原的共生细菌和致病细菌。有缺陷的免疫耐受会加剧自身免疫和炎症性疾病,例如过敏。研究表明,特应性儿童和健康儿童的肠道微生物群组成不同,细菌多样性降低和生态失调与特应性疾病的发展有关。
在年龄范围的另一端,免疫系统也处于次优状态。这种以先天免疫和适应性免疫逐渐下降为特征的免疫系统生物老化是不可逆转的,被称为“免疫衰老”。
此外,这些变化会导致吞噬作用降低和呈递抗原的能力受损,并对树突状细胞的迁移能力产生负面影响。同样,研究表明,来自老年人的循环单核细胞、巨噬细胞和迁移性中性粒细胞显示出吞噬功能受损。
在单核细胞、树突状细胞和中性粒细胞中,TLR的表达和功能随着年龄的增长而下降。此外,TLR的定位受损可诱导细胞因子产生的变化。一个例外是老年人单核细胞上的TLR5表达,与年轻人单核细胞中的TLR5表达水平相比,它实际上有所增加,并导致老年人中细胞因子的产生增加。
此外,随着年龄的增长,T细胞会发生复杂的变化,包括表观遗传和代谢变化,这些变化会影响初始T细胞、记忆T细胞和效应T细胞。
Th17与调节性T细胞的比例似乎也有所增加,这被认为与老年人对感染的反应降低有关。除了T细胞区室的变化之外,老年人的B细胞库多样性较少,这可能导致老年人更容易受到感染。
免疫系统伴随炎症,共同导致慢病
免疫衰老伴随着一种慢性、无菌、低度炎症。有几种先天免疫系统的激活剂会导致炎症。此类刺激包括持续的病毒和细菌感染、细胞分解产物和错误折叠的蛋白质。免疫衰老和炎症共同导致感染、癌症、自身免疫和慢性疾病的患病率增加,以及老年人对疫苗接种的反应不佳。
衰老影响肠道菌群稳态
尽管老年人的肠道微生物群存在很大差异,但健康的成人肠道微生物群被认为是相当稳定的,直到衰老过程开始影响微生物群的稳态。由此导致的生物多样性减少,尤其是产生抗炎短链脂肪酸的细菌减少,以及肠道微生物群的稳定性受损,通常与感染易感性增加有关。
设计饮食干预实验时,应考虑免疫状态
最近的证据表明,衰老从根本上改变了营养对免疫功能的影响。因此,对调查饮食对免疫功能影响的研究数据的解释在很大程度上取决于受试者的年龄。
在调查膳食成分的功效时,研究设计至关重要,大多数涉及老年人的研究都包括基于病史、实验室测试的严格纳入/排除标准,一般健康状况,通常还有营养状况。
传统上,传染病专家的重点是识别和治疗个体病原体。最有效的治疗策略之一是使用抗生素。然而,抗生素耐药病原体的增加,突出了对替代策略的需求。
抗生素破坏肠道菌群结构和功能,给病原体生长的空间
肠道菌群与传染病之间关系最突出的例子是:抗生素使用后的艰难梭菌感染
在抗生素治疗期间,抗生素敏感细菌被杀死,导致微生物群的信号减少和对艰难梭菌的免疫反应减弱。
肠道菌群影响病毒感染
同样,多种肠道病毒,包括轮状病毒、诺如病毒(在我们的临床菌群检测报告中也会判别这两种病毒)和脊髓灰质炎病毒,已被证明利用细菌微生物组进行免疫逃避,支持进入肠道并在肠道中复制,从而增加感染率。
肠道菌群也可能影响疫苗反应和药物代谢
这是目前有一个非常有意义的领域;然而,这可能也是药物或疫苗特异性的。
在2017年一项调查益生元和益生菌对疫苗免疫原性和有效性影响的随机对照试验(RCT)的系统评价和荟萃分析中,比较了13项使用益生菌的试验和6项使用益生元的试验。
然而,应该谨慎解释这项荟萃分析的总体结果,因为它结合了使用不同益生元和益生菌菌株后疫苗反应的数据。查看个别研究中的效果,有时显示没有效果,有时显示干预的积极效果,强调结果高度依赖于干预。
众所周知,营养对肠道微生物群的组成和免疫系统有很大影响,因此可以在健康和疾病的发展中发挥重要作用。
例如,西方饮食通过诱导骨髓祖细胞的表观遗传和转录重编程与炎症反应增强有关,从而直接影响几种非传染性疾病的发展。
增加对肠道微生物群、宿主反应和其他微生物之间关系的理解甚至进一步提供了调节这个三元组的机会。
例如通过营养来帮助维持肠道稳态和抗感染性。应该考虑到不同的膳食成分,如矿物质、碳水化合物、维生素、脂质和蛋白质,都具有特定的特性,它们以不同的方式直接或间接地通过微生物组影响宿主与病原体之间的相互作用。在这些营养素之间建立机制联系,为影响健康提供了多种机会。
饮食干预——
“操纵宿主-微生物轴的宝贵工具”,以帮助维持肠道稳态和感染抵抗力
碳水化合物、脂质、蛋白质、植物化学物质、矿物质和维生素等膳食成分都具有独特的结构和化学(物理化学)特性,可通过微生物组直接或间接影响宿主病原体抵抗力。弥合饮食、宿主和微生物组之间的差距,因为它们与免疫和抗病性有关,是一个多方面的领域,需要了解它们对肠道稳态的综合影响。
饮食促成了微生物群、宿主和病原体之间相互交织的机制的黑匣子
因此,饮食干预应被视为调节传染病风险、防止病原微生物入侵、减轻感染严重程度和支持传染病治疗的宝贵工具;然而,需要在这个迅速兴起的领域进行进一步的研究。
★益生元
益生元是一种不易消化的食物成分,通过选择性地刺激结肠中一种或有限数量的细菌的生长和/或活性来对宿主产生有益的影响。这意味着并非所有的膳食纤维都是益生元,除非有证据表明该纤维被宿主有机体选择性地利用,从而对健康有益。
典型的益生元是人乳低聚糖(HMO)、菊粉和低聚果糖,以及低聚半乳糖。
★膳食纤维
膳食纤维不是典型的益生元,但具有益生元特性,例如,β-葡聚糖、阿拉伯木聚糖(AX)、果胶和抗性淀粉。益生元和特定的膳食纤维通过充当发酵底物来促进肠道中有益细菌的生长,同时通过排除生态位来抑制病原体的生长。
主要的发酵产物是短链脂肪酸,它们对免疫系统有重大影响,如上所述,因此可以抑制传染病的发展。除了短链脂肪酸,正如Asadpoor等人最近审查的那样,益生元和膳食纤维还可以通过排除和抗菌活性直接预防胃肠道感染。
★益生元和膳食纤维
益生元和膳食纤维与上皮细胞和免疫细胞的直接相互作用也有助于预防感染。已证明DFs,如β-葡聚糖和AX可激活CLRdectin-1,这是一种参与训练免疫诱导的重要受体,可增加对继发感染的免疫反应。
HMO、AX和果胶还与TLR相互作用,从而提高DC(树突细胞)的功效,通过肠上皮细胞诱导产生耐受性树突系报告,并保护胃肠道免受过度的TLR信号传导,但也支持在胃肠道感染后消退炎症。
★益生菌
益生菌是活细菌,当以足够的量给药时,可为宿主提供健康益处。使用益生菌的基本原理主要是基于它们改变肠道微生物群的能力,支持共生细菌的生长超过病原菌的生长。
益生菌通过与病原体竞争营养和功能资源以及产生抗菌物质来塑造微生物群
许多研究调查了益生菌在预防和治疗传染病中的潜在作用;然而,并非所有数据都一致。
积极作用
在一项关于益生菌在急性腹泻中的疗效的Cochrane系统评价中,作者得出结论,益生菌通过缩短急性感染性腹泻的持续时间和减少平均排便频率具有明显的积极作用。
关于呼吸道感染,研究表明,使用益生菌的儿童在出生后第一年的呼吸道感染复发率较低,肺炎和严重急性下呼吸道感染的发生率也有所降低。
○单种益生菌未发现积极作用,联合治疗产生效果
一些研究并未发现对下呼吸道感染发病率的影响。例如,一项研究发现接受鼠李糖乳杆菌GG(LGG)组和对照组之间的中耳炎(OM)发生率没有差异。
然而,另一项针对72名婴儿的试验表明,与对照组相比,接受LGG和乳酸双歧杆菌联合治疗的儿童发生OM的几率显著降低。
为什么会出现不同的结果?
数据的异质性,主要是由于菌株、剂量、研究环境和测量结果的变化,限制了广泛使用益生菌预防感染的循证建议。
对营养成分(例如益生菌)的影响产生矛盾结果的原因之一,可能是调查营养影响的临床研究通常与调查药物化合物影响的研究类似。这种类似药物的方法可能不适合识别个体对饮食治疗的反应,与药物化合物的靶向作用相比,这可能是多因素的。
如果不报告个体对营养干预的反应,可能会错过对于更好地了解营养、微生物组和宿主之间的相互作用至关重要的信息,而这些信息对于设计个性化的营养方法是必需的。
有没有什么方法可以深入了解特定营养素对个体特定健康结果的影响?
网络分析、系统生物学和基于机器的学习技术可以整合基于预先存在的大型队列数据集的多个特征(通过多年的积累和持续迭代,谷禾健康已经构建了超过60万例肠道样本数据),可以深入了解特定营养素对个体特定健康结果的影响。
例如,提出了一种机器学习算法来预测对现实生活中膳食摄入反应。然而,由于个人的整体健康结果取决于许多过程和反应,未来还需要调查血液、血糖反应以获得个人健康状况的更多整体情况。
为什么不同人对营养化合物的反应不同?
个体对营养化合物的反应受个体遗传特征的影响。例如,炎症基因(如IL1B、IL6和TNFA)中的单核苷酸多态性(SNP)会导致不同的炎症反应,这可以解释观察到的对营养化合物的反应性差异的部分原因。
还有越来越多的证据表明,个体的遗传特征对于使肠道内的有益细菌定植至关重要,这会影响免疫系统、宿主的整体健康和传染病。
★合生元
除了分别使用益生元和益生菌外,还有一些营养概念将益生元和益生菌组合成混合物:合生元。考虑到上述临床研究的局限性,合生元已显示出部分临床上的成功,未来可能有望成为治疗选择之一。
这一点在最近在印度农村进行的一项随机、双盲、安慰剂对照试验中得到印证,该试验显示,在接受为期7天的合生元概念干预的新生儿中,败血症和随后的死亡显着减少。
注:败血症是发展中国家新生儿发病率和死亡率的主要原因,这一概念对促进全球儿童健康很有希望。
随着我们更多地了解肠道微生物群影响局部、先天和全身免疫的复杂机制,以及科学家,企业和临床医生开始利用这些信息来开发针对这些过程的方法,以支持改进预防和治疗策略为最终目标的传染性疾病。
这种干预策略应考虑到个体之间微生物组和免疫反应的显着差异,因此需要个性化的方法。饮食干预能够引起微生物组功能和下游免疫反应的快速变化,这一事实可用于开发量身定制的营养概念,从而影响传染病的发展和治疗成功。主要参考文献:
vandenElsenLW,PoyntzHC,WeyrichLS,YoungW,Forbes-BlomEE.Embracingthegutmicrobiota:thenewfrontierforinflammatoryandinfectiousdiseases.ClinTranslImmunology.2017Jan20;6(1):e125.
VandenElsenL.W.,PoyntzH.C.,WeyrichL.S.,YoungW.,Forbes-BlomE.E.Embracingthegutmicrobiota:Thenewfrontierforinflammatoryandinfectiousdiseases.Clin.Transl.Immunol.2017;6:e125.
IacobS,IacobDG,LuminosLM.IntestinalMicrobiotaasaHostDefenseMechanismtoInfectiousThreats.FrontMicrobiol.2019Jan23;9:3328.doi:10.3389/fmicb.2018.03328.PMID:30761120;PMCID:PMC6362409.
KirkM.D.,PiresS.M.,BlackR.E.,CaipoM.,CrumpJ.A.,DevleesschauwerB.,DpferD.,FazilA.,Fischer-WalkerC.L.,HaldT.,etal.WorldHealthOrganizationEstimatesoftheGlobalandRegionalDiseaseBurdenof22FoodborneBacterial,Protozoal,andViralDiseases,2010:ADataSynthesis.PLoSMed.2015;12:e1001921.
TroegerC.,ForouzanfarM.,RaoP.C.,KhalilI.,BrownA.,ReinerR.C.,Jr.,FullmanN.,ThompsonR.L.,AbajobirA.,AhmedM.,etal.Estimatesofglobal,regional,andnationalmorbidity,mortality,andaetiologiesofdiarrhoealdiseases:AsystematicanalysisfortheGlobalBurdenofDiseaseStudy2015.LancetInfect.Dis.2017;17:909–948.
IacobS.,IacobD.G.,LuminosL.M.IntestinalMicrobiotaasaHostDefenseMechanismtoInfectiousThreats.Front.Microbiol.2018;9:3328.doi:10.3389/fmicb.2018.03328.
LazarV.,DituL.-M.,PircalabioruG.G.,GheorgheI.,CurutiuC.,HolbanA.M.,PicuA.,PetcuL.,ChifiriucM.C.AspectsofGutMicrobiotaandImmuneSystemInteractionsinInfectiousDiseases,Immunopathology,andCancer.Front.Immunol.2018;9:1830.
SlackE.,HapfelmeierS.,StecherB.,VelykoredkoY.,StoelM.,LawsonM.A.E.,GeukingM.B.,BeutlerB.,TedderT.F.,HardtW.-D.,etal.Innateandadaptiveimmunitycooperateflexiblytomaintainhost-microbiotamutualism.Science.2009;325:617–620
随着一日三餐米面肉蛋菜等一些列食物的食用,数百种化学成分会进入我们的消化道。在那里,它们被肠道微生物组进一步代谢,这是数千种微生物物种的独特集合。
因此,肠道微生物组在决定营养如何影响健康方面发挥着重要作用。然而到目前为止,微生物组中的许多微生物的代谢能力仍然是未知的。这意味着我们不知道它们以什么物质为食,以及它们是如何处理这些物质的。
“Gutbacterialnutrientpreferencesquantifiedinvivo”,研究人员使用同位素追踪定量研究了小鼠肠道微生物群的输入和输出。
微生物碳水化合物发酵的主要输入是膳食纤维,支链脂肪酸和芳香代谢物的主要输入为膳食蛋白质。此外,循环宿主乳酸、3-羟基丁酸和尿素(但不是葡萄糖或氨基酸)为肠道微生物群提供食物。
肠道菌群拥有巨大的酶多样性,超过哺乳动物基因组的数量100多倍。这些酶的能力能使摄入的膳食营养物质加工成一些列微生物代谢物。
为了复制自身和释放代谢产物,肠道细菌需要营养输入。这些形式包括摄入的食物、宿主合成的肠道粘液和宿主循环代谢物。
//
在本文中,研究人员通过对肠道菌群及其进入宿主循环系统的代谢物进行了大规模的定量评估。
研究了膳食淀粉、纤维和蛋白质的贡献以及宿主粘液的贡献,也研究了大多数主要的循环宿主营养素,发现乳酸、3-羟基丁酸和尿素在从宿主传递到肠道微生物群中表现突出。基于对细菌特异性肽序列的测量,评估了不同细菌属的营养偏好,并表明这些偏好与响应改变饮食的微生物组分变化一致。
同位素追踪能够定量测量代谢物和生物量的输入。与质谱检测相结合的稳定同位素示踪剂,使得能够测量特定下游产物的标记。通过注入氮标记的苏氨酸来标记宿主粘液,研究人员能够比较饮食和粘液蛋白对肠道微生物群的贡献,并观察到喂食低蛋白饮食的小鼠中粘液贡献的变化。
从小鼠尾部静脉抽取血样;
使用注射器从小鼠膀胱采集尿液;
所有血清样品在没有抗凝剂的情况下置于冰上15分钟,并在4°C下以16,000xg离心15分钟。
用预冷的Wollenberger钳在液氮中快速分离并快速冷冻(<5秒)获得组织;夹紧前取出肠内容物;盲肠内容物取样时,先将小鼠盲肠取出并在表面切开,然后用镊子将盲肠内容物挤出。
取新鲜粪便,轻揉小鼠腹部诱导排便。将血清、组织和粪便样本保存在-80oC直至进一步分析。
为了测定血清和组织样本中的代谢物浓度,进行了同位素标配(isotopespike-in)或标准标配(standardspike-in)。
对于前者将已知浓度的同位素标记标准品加入血清或组织提取液中,通过标记与未标记代谢物的比值计算浓度。
当没有同位素标准品时,加入连续稀释的非标记标准品,测量的总离子计数与加入的标准品浓度之间产生线性拟合。然后通过拟合线的x截距确定内源代谢物的浓度;蛋白质氨基酸组成采用酸水解法测定。
首先,使用13C同位素标记的不同营养物质,通过口服管饲法对小鼠进行灌胃采集小鼠的血清、组织和粪便样本。对粪便和肠内容物进行16SrRNA测序获得细菌分类。
首先使用代谢组学方法测定盲肠内容物中游离氨基酸13C-或15N标记。
然后,对于每个肽,模拟了未标记(Iunlabeled)和由游离盲肠氨基酸(Ifree)合成的肽的同位素包膜模式。标量γ可以通过将测量的肽同位素分布(Imeasured)与Iunlabeled和Ifree的线性组合拟合来确定。
注意,当一个菌属使用的特定营养素超过该营养素对盲肠游离氨基酸的贡献时,γ将大于1。
具体来说,测量的每个肽的γ如下:
对于细菌属水平的原料贡献程度的测量,分析中只保留测量超过3个肽的属,多肽的中位数为γ-genus。
对于细菌科水平,仅分析在蛋白质组学中始终检测到的属,以及在16SrRNA基因扩增子测序中检测到(>0.5%)的属的上一级科。
每种营养物质对菌属的贡献程度的定量公式如下:
LAA_avg-nutrient为各营养物质对细菌蛋白质的贡献程度,其计算公式如下:
1微生物组消耗较少的可消化膳食成分
微生物群影响宿主生理学的主要机制是通过分泌代谢产物。研究人员在门静脉和体循环以及盲肠内容物中测量了微生物衍生的50多种代谢产物的绝对浓度。
门静脉血中主要排泄产物是短链脂肪酸。
其他相对丰富的微生物群产物是芳香族氨基酸发酵产物(苯酚、吲哚硫酸盐和3-苯丙酸盐)和支链脂肪酸(戊酸盐、异戊酸盐,4-甲基戊酸、异丁酸盐和2-甲基丁酸盐)。
探索肠道微生物产物的膳食输入:淀粉、菊粉
研究人员通过口服管饲法、淀粉(易消化葡萄糖聚合物)和菊粉(易消化果糖聚合物,即可溶性纤维)喂养小鼠:
13C淀粉灌胃后,标记的葡萄糖、乳酸和丙氨酸迅速出现在门脉循环中,并占大多数淀粉碳(约75%)。
13C菊粉和13C淀粉有什么不同?
13C菊粉灌胃后,没有观察到大量标记的果糖、葡萄糖、乳酸和丙氨酸,取而代之的是标记的门静脉代谢产物以短链脂肪酸的形式缓慢出现,约40%的菊粉碳成为短链脂肪酸,其余未消化并随粪便排出。
膳食菊粉,而不是淀粉,在盲肠内容物中广泛标记糖酵解和TCA中间体和氨基酸。
藻类蛋白大量标记了微生物群衍生的门静脉代谢物:短链脂肪酸、支链脂肪酸和芳烃(吲哚、吲哚-3-丙酸盐和3-苯丙酸盐)。
“难以消化的碳水化合物和蛋白质直接为微生物组提供营养,并通过微生物产物间接为宿主提供营养。”
研究中发现宿主循环系统中的乳酸,3-羟基丁酸以及尿素能为肠道细菌提供营养。
如图A,将同位素标记的营养物质通过静脉输注到小鼠的全身血液循环中。2.5小时后收集血清和粪便以量化每种营养物质对相应菌群代谢物的碳贡献。
图BCD表示了13C标记的各种营养物质在小鼠的血液和粪便中的含量,可见乳酸和3-羟基丁酸有进入肠道菌群中,而其余大部分营养物质如柠檬酸盐、葡萄糖、氨基酸等都没有进入到肠道菌群中。
图F为15N标记的营养物质,可见尿素也同样被菌群大量利用。
为了说明循环营养输入,研究人员还注入了13C乳酸或3-羟基丁酸。
这些研究确定了大多数微生物群中心代谢物中的碳供给:
接下来,研究人员检查了微生物组游离氨基酸的输入,并用15N标记的膳食蛋白和注入的尿素进行追踪。
与哺乳动物不同,大多数肠道细菌具有合成所有20种蛋白质氨基酸的生物合成能力。
“非必需氨基酸”主要在肠道微生物群中合成,使用膳食菊粉和循环乳酸作为碳源。
抗生素或无菌小鼠中的微生物群消耗有利于盲肠中氨基酸的积累(基于同位素追踪研究),这些氨基酸主要来自膳食蛋白质和微生物合成的氨基酸的消耗。
膳食蛋白质是必需氨基酸和非必需氨基酸的主要氮源,宿主尿素对非必需氨基酸也有很大贡献。
研究人员的发现如下:
【1】必需氨基酸,尽管能够由微生物群合成,但主要来自饮食,不经历任何碳重排;
【2】与TCA连接最紧密的非必需氨基酸基本上由微生物群合成,使用来自纤维的碳,通过中心代谢反应与其他碳争夺;
【3】转氨反应部分地将来自饮食衍生氨基酸的氮与来自宿主尿素的氮混合。
为了控制这一点,研究人员给小鼠喂食的食物中,一部分蛋白质(酪蛋白,部分到达结肠微生物群)被游离氨基酸(基本上在小肠中完全吸收)取代。
2周后对全身血液进行代谢组学研究。含有较少完整蛋白质和更多游离氨基酸的饮食往往会增加循环氨基酸水平。
重要的是,蛋白质衍生的循环微生物代谢物(酚类、吲哚类和酰基甘氨酸)串联下降。
研究人员通过结合13C营养标记和蛋白质组学来定量不同微生物的碳原料。
每种13C标记的营养素(膳食菊粉、膳食藻蛋白或循环乳酸)提供24小时,这足以在肠道细菌中实现稳态标记。
如同B-D,分别计算了在膳食中使用的菊粉和蛋白质以及乳酸在各细菌内的喜好程度,这个喜好程度也就是将在细菌特异性肽上被同位素标记的程度进行了量化。
结果可见:
拟杆菌属和梭状芽胞杆菌利用菊粉的程度是Akkermansia、Muribaculum或Alistipes的4倍多。
总体而言,厚壁菌门下的菌属比拟杆菌门的使用膳食中的蛋白质(厚壁菌0.237±0.052;拟杆菌0.175±0.031,p=0.02)。
Akkermansia通常被认为是一种促进健康的肠道微生物,使用的菊粉和蛋白质最少。相比之下,它使用了来自宿主的循环乳酸最多。
为了知晓这些细菌的营养偏好是否能预测饮食变化后的肠道菌群的组成变化。研究人员给小鼠喂食富含菊粉或藻类蛋白的饮食2天,并通过16SrRNA测序测量微生物组的组成。
结果如图F和I:
利用最多菊粉的拟杆菌属在高菊粉饮食后增加了4倍;
另一种利用较多菊粉的梭状芽胞杆菌也增加了2倍;
利用较少菊粉的菌属要么没有变化,要么略有下降;
富含藻类蛋白饮食的实验结果同理。
“不同肠道细菌的营养偏好有助于解释饮食操作后微生物组分的变化。”
最后,研究人员转向不同肠道细菌的氮源偏好,比较15N标记的膳食蛋白喂养和15N尿素输注。
高度利用膳食蛋白质中碳的细菌属也高度利用膳食蛋白中的氮,这与细菌蛋白质组中完整吸收的膳食蛋白质中的氨基酸一致。
厚壁菌喜欢从膳食蛋白质获取氮
在厚壁菌门成员中,偏好尿素氮的属往往是菊粉的疯狂使用者,即使用菊粉和尿素合成自己的氨基酸。这包括一些脲酶阴性菌属,它们可能通过交叉喂养获得尿素氮。
此外,在厚壁菌中也看到了一些属更喜欢从膳食蛋白质中获得氮,而其他属更喜欢循环尿素。
静脉注射尿素以提高循环尿素浓度后,偏好尿素的厚壁菌以及阿克曼菌的丰度大幅增加。
拟杆菌喜欢从宿主分泌的蛋白质中获取氮
与厚壁菌相比,拟杆菌对膳食蛋白质和循环尿素氮的利用率较低,这提出了一个关键问题:
拟杆菌如何获得氮?
肠道微生物群的一些成员(如拟杆菌和阿克曼菌)能够消化宿主分泌的蛋白质,如粘蛋白。
尽管没有直接给微生物组喂食,但在36小时输注后,赖氨酸和精氨酸确实起作用,这与通过宿主蛋白进行的标记一致。这种标记优先发生在拟杆菌和阿克曼菌中。
“膳食蛋白质和循环尿素是厚壁菌的主要氮原料,而分泌的宿主蛋白质为拟杆菌提供氮。”
研究人员开发了定量同位素追踪方法来测量肠道细菌的营养偏好。除了膳食纤维和分泌的宿主蛋白外,还将膳食蛋白和循环宿主乳酸、3-羟基丁酸和尿素确定为喂养肠道细菌的重要营养素。排除了其他循环宿主营养素(如葡萄糖和氨基酸)对结肠微生物群的直接贡献。
一项关键技术成就是能够从不同碳源和氮源追踪到细菌特异性肽,从而揭示复杂和竞争性肠腔环境中不同细菌的营养偏好。
厚壁菌门倾向于从膳食蛋白质获得氨基酸,而拟杆菌门更多地依赖宿主分泌蛋白。同样,一些厚壁菌门(如梭菌属)大量利用纤维(菊粉),而其他厚壁菌门则不利用纤维。
动物饮食干预实验发现,拟杆菌属和梭菌属是转化纤维最活跃的菌属。宿主循环代谢物水平也可能影响微生物组的营养获取和最终组成。
本文提供了关于哪些营养素喂养肠道微生物群以及哪些细菌更喜欢哪些营养素的基础知识。
文中所开发的方法具有广泛的应用前景,最终将有助于全面和定量地了解饮食-微生物-健康的关系。
参考文献:ZengX,XingX,GuptaM,KeberFC,LopezJG,LeeYJ,RoichmanA,WangL,NeinastMD,DoniaMS,WührM,JangC,RabinowitzJD.Gutbacterialnutrientpreferencesquantifiedinvivo.Cell.2022Sep1;185(18):3441-3456.e19.doi:10.1016/j.cell.2022.07.020.PMID:36055202;PMCID:PMC9450212.
细菌
单一细菌,是一种微观的单细胞微生物,生活在地球上的几乎每个角落,从深海喷口到地表以下再到人类的消化道,都存在于其中。
结核分枝杆菌
图源:CentersforDiseaseControlandPrevention
革兰氏阳性结核分枝杆菌细菌(结核病的原因)的扫描电子显微照片
细菌细胞
其他细菌是植物和无脊椎动物的共生体,它们对宿主起着重要的作用,如固氮和纤维素降解。没有原核生物,土壤就不会肥沃,死去的有机物腐烂的速度也会慢得多。一些细菌被广泛用于食品、化学品和抗生素的制备。对不同细菌群之间关系的研究,不断为地球生命起源和进化机制提供新的见解。
细菌——原核生物
地球上所有的生物都是由两种基本类型的细胞中的一种组成:一种是真核细胞,其遗传物质被包裹在核膜内;另一种是原核细胞,其遗传物质不与细胞的其他部分分离。传统上,所有的原核细胞都被称为细菌,被归为原核生物界。但是,它们的分类为Monera,在分类学上与其他王国(植物界,动物界,真菌和原生生物)相当,这低估了原核细胞相对于真核细胞表现出的显着遗传和代谢多样性。
1970年代后期,美国微生物学家卡尔·沃斯(CarlWoese)率先在分类上进行了重大变革,将所有生物分为真核生物、细菌(原名真细菌)和古细菌(原名古细菌)三个领域,以反映三条古老的进化路线。原核生物以前被称为细菌,然后被分为两个领域,细菌和古细菌。细菌和古细菌在表面上是相似的;例如,它们没有细胞内的细胞器,它们有环状DNA。但是,它们在本质上是截然不同的,它们的分离是基于其古老而又独立的进化谱系的遗传证据,以及其化学和生理学的根本差异。这两个原核域的成员彼此之间的区别与它们与真核细胞中的区别一样。
细菌,动物和植物细胞的比较
细菌细胞在几个方面不同于动物细胞和植物细胞。一个根本的区别是细菌细胞缺乏动物细胞和植物细胞中都存在的细胞内细胞器,例如线粒体,叶绿体和细胞核。
原核细胞(即细菌和古细菌)与构成其他生命形式的真核细胞有根本的不同。原核细胞的定义比真核细胞要简单得多。最明显的简化是缺乏细胞内的细胞器,这是真核细胞的特征。所有由细胞器执行的活动也发生在细菌中,但它们不是由专门的结构执行的。此外,原核细胞通常比真核细胞小得多。细菌体积小,设计简单,代谢能力强,使它们能够迅速生长和分裂,并在几乎任何环境中生存和繁衍。
杆菌型细菌细胞
典型的芽孢杆菌属细菌细胞的结构示意图
原核和真核细胞在许多其他方面有所不同,包括脂质组成,关键代谢酶的结构,对抗生素和毒素的反应以及遗传信息的表达机制。真核生物包含多个线性染色体,这些染色体的基因比编码蛋白质合成所需的基因大得多。遗传信息的核糖核酸(RNA)副本(脱氧核糖核酸或DNA)的大部分被丢弃,剩余的信使RNA(mRNA)在被翻译成蛋白质之前已被充分修饰。相反,细菌具有一个包含所有遗传信息的环形染色体,它们的mRNA是其基因的精确副本,不会被修饰。
细菌结构的多样性
尽管细菌细胞在结构上比真核细胞小得多,也简单得多,但细菌是一个在大小、形状、生境和代谢上都有差异的极其多样化的有机体群体。许多关于细菌的知识来自对致病细菌的研究,这些细菌比许多自由生活的细菌更容易在纯培养中分离出来,也更容易被研究。必须注意的是,许多自由生活的细菌与适应作为动物寄生虫或共生体生活的细菌有很大的不同。因此,关于细菌的组成或结构没有绝对的规则,任何一般的说法都会许多例外。
单个细菌可以呈现三种基本形状之一:球形(球菌)、棒状(芽孢杆菌)或弧形(弧菌、螺旋体或螺旋体)。在细菌的实际形状中可以看到相当大的变化,细胞可以在一维中拉伸或压缩。细胞分裂后不分离的细菌形成有助于鉴定的特征性簇。
此外,有些球菌呈方形或立方形。杆状杆菌通常单独出现,但有些菌株形成长链,如棒状杆菌的杆状杆菌,通常以任意角度彼此相连。有些杆菌的末端是尖的,而有些杆菌的末端是方的,有些杆菌的杆弯曲成逗号形状。这些弯曲的杆状病毒通常被称为弧菌,包括霍乱弧菌,它能引起霍乱。
其他形状的细菌包括弯曲和弯曲的螺旋形螺线管和螺旋形螺线管,螺旋形螺线管类似于开瓶器,其中细胞体包裹在称为轴向细丝的中央纤维周围。
变形链球菌
图源:DavidM.Phillips/VisualsUnlimited
变形链球菌细菌是球形(球菌)细菌的一个例子。这种细菌通常会聚集成对和短链。
细菌是最小的生命体。一种细菌的平均大小,如杆状大肠杆菌,是人类和动物肠道的“正常居民”,长约2微米(μm;百万分之一米),直径0.5μm,金黄色葡萄球菌的球形细胞直径可达1μm。
少数细菌种类甚至更小,如肺炎支原体是最小的细菌之一,其宽度约为0.1至0.25μm,长度约为1至1.5μm;百日咳的病原体为棒状百日咳杆菌,其直径为0.2至0.5μm,长度为0.5至1μm;梅毒病原体螺旋形梅毒螺旋体直径仅0.1~0.2μm,长度6~15μm。蓝藻聚球藻平均直径约0.5~1.6μm。有些细菌相对较大,例如固氮菌,其直径为2至5μm或更大;无色菌,其最小宽度为5μm,最大长度为100μm,视物种而定。用肉眼可以看到巨大的细菌,例如平均直径为750μm的Thiomargaritanamibiensis和长度在30到600μm之间的杆状Epulopisciumfishelsoni。
细菌是单细胞微生物,因此通常不会组织起来。每个细菌的生长和分裂都独立于其他任何细菌,尽管常会发现细菌的聚集体,有时包含不同物种的成员。许多细菌可以形成称为生物膜的聚集结构。
生物膜中的生物通常表现出与处于个体状态或浮游状态的同一生物基本不同的特性。聚集到生物膜中的细菌可以传达有关种群大小和代谢状态的信息。这种类型的通信称为群体感应,通过产生称为自动诱导剂或信息素的小分子来进行操作。
群体感应分子(最常见的是肽或酰化高丝氨酸内酯(AHL;特殊的信号化学物质))的浓度与生物膜中相同或不同物种的细菌数量有关,有助于协调生物膜的行为。
革兰氏染色
细菌如此之小,直到1677年才被首次发现,当时荷兰科学家安东尼·列文虎克借助原始显微镜(在设计上与现代放大镜比现代显微镜更相似)在各种物质中看到了微生物,其中一些能放大200倍以上。现在细菌通常在能放大1000倍以上的光学显微镜下进行检查;然而,只有借助更强大的透射电子显微镜才能观察到其内部结构的细节。除非使用特殊的合适的显微镜,否则细菌必须用有色染料染色,以使它们从背景中脱颖而出。
肺炎克雷伯菌
图源:AWRakosy/Encyclopdia
从肺炎患者的肺脓肿中分离出的革兰氏阴性杆菌肺炎克雷伯菌。
对细菌最有用的染色反应之一叫革兰氏染色,由医生汉斯·克里斯蒂安·格兰姆(HansChristianGram)于1884年开发。
悬浮液中的细菌通过短暂加热固定在玻片上,然后暴露在两种染料中,这些染料会在每个细胞内结合形成大的蓝色染料复合物。当用酒精溶液冲洗载玻片时,革兰氏阳性菌会保留蓝色,而革兰氏阴性菌会失去蓝色。然后用一种较弱的粉红色染料将玻片染色,这种粉红色的染料会使革兰氏阴性菌变成粉红色,而革兰氏阳性菌则保持蓝色。革兰氏染色剂对细菌细胞表面结构的差异起反应,当在电子显微镜下观察细胞时,这种差异是显而易见的。
金黄色葡萄球菌
实验室培养中的革兰氏阳性球菌金黄色葡萄球菌
细胞包膜
细菌细胞表面(或包膜)的结构变化很大,它在细胞的性质和能力中起着核心作用。所有细胞的一个特征是细胞质膜,它将细胞内部与外部环境分开,调节营养物质的流动,维持适当的细胞内环境,并防止细胞内容物的丢失。细胞质膜执行许多必要的细胞功能,包括能量产生、蛋白质分泌、染色体分离和有效的营养物质主动运输。它是一种典型的由蛋白质和脂类组成的单位膜,与包围所有真核细胞的膜基本相似。在电子显微照片中,它是由脂质和蛋白质组成的三层结构,完全包围细胞质。
水螺螺旋藻的肽聚糖层
革兰氏阴性细菌蛇形藻(Aquaspirillumserpens)具有薄的肽聚糖层,位于细胞膜和外膜之间。
肽聚糖只存在于细菌中(没有细胞壁的细菌除外,如支原体)。肽聚糖是两个重复糖(N-乙酰氨基葡萄糖和N-乙酰壁酸)的长链聚合物,其中相邻的糖链通过肽桥相互连接,从而提供刚性稳定性。
肽桥的性质在不同种类的细菌之间有很大差异,但一般由四种氨基酸组成:L-丙氨酸与D-谷氨酸相连,在革兰氏阴性细菌中与二氨基丙酸相连,或在革兰氏阳性细菌中与赖氨酸、L-鸟氨酸或二氨基丙酸相连,最后与D-丙氨酸相连。
在革兰氏阴性菌中,肽桥将一条链上的D-丙氨酸连接到另一条链上的二氨基丙酸。在革兰氏阳性细菌中,可以有一个额外的肽链延伸交叉连接的范围;例如,在金黄色葡萄球菌中有一个额外的五个甘氨酸桥。
肽聚糖的合成是许多有用的抗菌剂的目标,包括阻断肽桥交联的β-内酰胺类抗生素(如青霉素)。动物合成的一些蛋白质作为天然抗菌防御因子攻击细菌的细胞壁。例如,一种名为溶菌酶的酶分解肽聚糖分子的主链糖链。这些药物中的任何一种都会削弱细胞壁并破坏细菌。
在革兰氏阳性细菌中,细胞壁主要由一层厚的肽聚糖网状结构组成,该网状结构与被称为磷壁酸(来自希腊单词teichos,意思是“壁”)的其他聚合物以及一些蛋白质或脂质交织在一起。相反,革兰氏阴性菌有一个复杂的细胞壁,由多层组成,其中一个外膜层位于一个薄肽聚糖层的顶部。这种外膜由磷脂和脂多糖组成,磷脂是一种含有磷酸盐分子的复合脂质,脂多糖是一种复合脂质,通过脂质末端锚定在细胞外膜上,并有一长链糖从细胞延伸到培养基中。
脂多糖,通常被称为内毒素,对动物和人类是有毒的;它们在血液中的存在会导致发烧、休克,甚至死亡。
对于大多数革兰氏阴性细菌来说,外膜形成了一道屏障,阻碍了许多对细菌有害的化学物质的通过,例如通常溶解细胞膜的染料和洗涤剂。对油溶性化合物的不渗透性在其他生物膜中是不存在的,这是由于膜中存在脂多糖和外膜蛋白的不寻常特性造成的。作为外膜抵抗恶劣环境的能力的证据,一些革兰氏阴性细菌在浮油、喷气燃料箱、酸性矿井排水甚至是瓶装消毒剂中生长良好。
古细菌的表面结构与细菌明显不同。它们没有肽聚糖;相反,它们的膜脂是由支链类异戊二烯通过乙醚键与甘油相连组成的。一些古菌的壁材料与肽聚糖相似,只是与氨基酸桥相连的特定糖不是壁酸而是塔罗糖胺酸。许多其他古细菌使用蛋白质作为其细胞壁的基本组成部分,有些则缺乏坚硬的细胞壁。
胶囊和粘液层
许多细菌细胞以荚膜或粘液层的形式分泌一些细胞外物质。黏液层松散地与细菌结合在一起,很容易被洗掉,而胶囊则紧紧地附着在细菌上,并有明确的边界。通过将细胞置于印度墨水的悬浮液中,在光学显微镜下可以看到胶囊。胶囊排除了墨汁,在细菌细胞周围出现了清晰的光晕。
胶囊通常是单糖(多糖)的聚合物,尽管炭疽杆菌的胶囊是由聚谷氨酸制成的。大多数胶囊都是亲水的,可以通过防止水分流失帮助细菌避免干燥(脱水)。胶囊可以保护细菌细胞免受白细胞的吞噬和破坏。虽然逃避吞噬作用的确切机制尚不清楚,但可能是因为胶囊使细菌表面成分更光滑,帮助细菌逃避吞噬细胞的吞噬。肺炎链球菌中存在的胶囊是导致肺炎的最重要因素。肺炎链球菌的突变株失去了形成荚膜的能力,很容易被白细胞吸收,不会引起疾病。在许多其他种类的细菌中也发现了毒力和荚膜形成的联系。
醋酸钙不动杆菌
图源:T.J.Beveridge
这些细菌周围的荚膜材料(钙不动杆菌)显示在印度墨水的悬浮液中,并通过光学显微镜(放大约2500倍)观察。
胞外多糖材料的包膜层可以将许多细菌包裹成一个生物膜,并具有多种功能。引起龋齿的变形链球菌Streptococcusmutans,会分解食物中的蔗糖,并利用其中一种糖类来构建它的荚膜,使之紧紧地附着在牙齿上。被困在胶囊中的细菌利用其他糖来促进新陈代谢,并产生一种强酸(乳酸),攻击牙釉质。当铜绿假单胞菌定植于囊性纤维化患者的肺部时,它会产生一种厚的海藻酸囊膜聚合物,从而导致根除细菌的困难。Zoogloea属的细菌分泌纤维素纤维,将细菌缠绕成漂浮在液体表面的絮状物,使细菌暴露在空气中,这是该属新陈代谢的需要。一些杆状细菌,如Sphaerotilus,分泌长而复杂的管状鞘,这些鞘包围了大量的细菌。这些细菌和许多其他环境细菌的外壳会被铁或锰氧化物包裹。
图源:KaterynaKon/Shutterstock
变形链球菌是一种在口腔中发现的细菌,可导致蛀牙。
鞭毛、菌毛
许多细菌是运动的,能够在液体介质中游动,或在固体表面滑动或聚集。游动和成群的细菌拥有鞭毛,鞭毛是运动所需的细胞外附属物。
鞭毛是由单一类型的蛋白质组成的长而螺旋的细丝,位于杆状细胞的末端,如霍乱弧菌或铜绿假单胞菌,或遍布细胞表面,如大肠杆菌。鞭毛可以在革兰氏阳性和革兰氏阴性杆菌上找到,但在球菌上很少见,并且被困在螺旋体的轴向丝中。
鞭毛在其基部附着在细胞膜的基体上。在膜上产生的原动力被用来转动鞭毛丝,就像涡轮一样,由氢离子流通过基体进入细胞。当鞭毛以逆时针方向旋转时,细菌细胞以直线游动;顺时针方向旋转导致以相反方向游动,或者,如果每个细胞有多个鞭毛,则随机翻滚。趋化性使细菌能够调整自己的游泳行为,使其能够感觉到并向不断增加的引诱性化学物质或远离排斥性化学物质的方向迁移。
细菌不仅能够游向或滑向更有利的环境,而且它们还有附属物,使它们能够粘附在表面,防止被流动的液体冲走。有些细菌,如大肠杆菌和淋病奈瑟菌,会产生笔直、坚硬的尖刺状突起,称为菌毛,它们从细菌表面延伸出来,附着在这些菌株的其他细胞上的特定糖上,肠上皮细胞或泌尿道上皮细胞。菌毛只存在于革兰氏阴性菌中。某些菌毛是用来让一个细菌识别和坚持另一个在有性交配过程中称为接合。许多水生细菌产生一种酸性粘多糖固着物,使它们能够紧紧地附着在岩石或其他表面。
细胞质
虽然细菌在表面结构上有很大的不同,但它们的内部内容物非常相似,显示出相对较少的结构特征。
所有细胞的遗传信息都存在于DNA超长分子的含氮碱基序列中。与真核细胞中的DNA不同的是,细菌细胞中的DNA并没有被隔离在膜结合的细胞器中,而是呈长螺旋状分布在细胞质中。
在许多细菌中,DNA是以单个环状染色体的形式存在的,尽管有些细菌可能含有两条染色体,而且在某些情况下DNA是线性的而不是环状的。可变数量的较小的,通常是圆形的(虽然有时是线性的)DNA分子,称为质粒,可以携带辅助信息。
DNA中的碱基序列已经为数百种细菌所确定。细菌染色体的DNA含量从生殖支原体的580000碱基对到大肠杆菌的4700000碱基对,再到黄色粘球菌的9450000碱基对。粘液杆菌纤维素(Sorangiumcellulosum),拥有最大的细菌基因组之一,包含超过1300万个碱基对。大肠杆菌染色体的长度,如果从细胞中取出并拉伸到最大限度,约为1.2毫米,考虑到细胞的长度约为0.001毫米,这蛮惊人的。
与所有生物体一样,细菌DNA含有四种含氮碱基腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T)。双链DNA分子碱基配对的规则要求腺嘌呤和胸腺嘧啶碱基的数目相等,胞嘧啶和鸟嘌呤碱基的数目也相等。
G和C碱基对的数量与A和T碱基对的数量之间的关系是生物体内进化和适应性遗传变化的重要指标。
G+C的比例或摩尔比可以用G+C除以所有碱的总和(A+T+G+C)乘以100%来测量。生物体之间G+C比率的变化程度可能是相当大的。在动植物中,G+C的比例约为50%。在原核生物中,G+C的比例范围更广,从大多数支原体的约25%到大肠杆菌中的约50%,到微球菌,放线菌和结实的粘菌中的近75%。但是,单个属中某个物种内的G+C含量非常相似。
细菌的细胞质包含高浓度的酶,代谢产物和盐。另外,细胞的蛋白质是在分散在整个细胞质中的核糖体上制造的。细菌核糖体与真核细胞中的核糖体不同之处在于它们更小,具有更少的成分(由三种类型的核糖体RNA和55种蛋白质组成,而真核生物中则由四种类型的rRNA和78种蛋白质组成)并且与作用于真核核糖体的抗生素相比,它们受到不同抗生素的抑制。
细菌的生物类型
致病细菌不断地与宿主的免疫系统搏斗,这一事实可能解释了属于同一物种但可通过血清学试验加以区分的不同菌株或类型的细菌数量之多,令人困惑。微生物学家通常通过细胞表面的特定分子来识别细菌,这些分子是用特定的抗体检测出来的。抗体是一种血清蛋白,在免疫反应中与外来分子(抗原)紧密结合,以清除或破坏抗原。抗体具有显着的特异性,蛋白质中甚至一个氨基酸的取代都可能阻止该蛋白质被抗体识别。
对于许多细菌种类,有成千上万种不同的菌株(称为血清变异体,用于血清学变异体),它们主要或仅在其脂多糖、鞭毛或荚膜的抗原特性上彼此不同。例如,肠内细菌的不同血清型,如大肠杆菌和沙门氏菌,常常被发现与栖息在不同宿主动物或引起不同疾病的能力有关。这些众多血清型的形成反映了细菌对免疫系统强烈的防御行为作出有效反应的能力。
生殖过程
二分裂法
大多数原核生物通过二分裂过程进行繁殖,细胞体积不断增大,直至分裂成两半,产生两个完全相同的子细胞。每个子细胞可以继续以与父细胞相同的速度生长。为了实现这一过程,细胞必须在其整个表面生长,直到细胞分裂时,在细胞中部的分裂隔膜处形成一个新的半球形极。
在革兰氏阳性细菌中,隔膜沿着细胞的中点从质膜向内生长;在革兰氏阴性细菌中,细胞壁更具弹性,当侧壁向内挤压时形成分裂隔膜,将细胞一分为二。为了使细胞分裂成两半,肽聚糖的结构必须在半球形帽中不同于在细胞壁的笔直部分,并且不同的壁交联酶必须在隔膜处比在其他地方更活跃。
出芽生殖
多形生丝单胞菌
图源:BiologicalPhotoService
在萌芽的多形性hyphomonas细菌中,芽长在称为prostheca的细丝末端。
孢子繁殖
许多环境细菌能够产生稳定的休眠或休眠形式,作为其生命周期的一个分支,以增强其在不利条件下的生存能力。这些过程不是细胞生命周期的一个强制性阶段,而是一种中断。这种休眠形式被称为内生孢子、胞囊或异胞囊(主要见于蓝藻),这取决于孢子形成的方法,而孢子形成的方法因细菌群而异。
在许多属的细菌中都发现了形成内生孢子的能力,这些细菌主要是革兰氏阳性菌,包括需氧芽孢杆菌(aerobicrodBacillus),微需氧菌芽孢杆菌(microaerophilicrodSporolactobacillus),厌氧菌梭状芽孢杆菌(anaerobicrodsClostridium)和脱硫芽孢杆菌(Desulfotomaculum),球菌孢子菌(coccusSporosarcina)和丝状嗜热放线菌(filamentousThermoactinomyces)。
孢子的形成是对营养缺乏的反应。因此,在营养物质可用之前,内生孢子不具有代谢活性,这时它们能够从孢子分化为营养细胞。在孢子形成过程中,每个细菌细胞内部仅形成一个孢子。孢子的形成始于细菌染色体拷贝周围细胞质膜的内陷,从而使较小细胞的内容物与母细胞分离。
母细胞的膜吞噬了其细胞质内的较小细胞,有效地提供了两个同心的单元膜来保护正在发育的孢子。薄的孢子膜和厚的肽聚糖皮质位于两个单元膜之间。皮质外部形成坚硬的孢子皮,包围整个孢子结构。孢子皮具有类似于角蛋白的特性,能够抵抗热,干燥(脱水),冷冻,化学药品和辐射的致死作用。内生孢子抵抗这些有害物质的能力可能来自于孢子内部极低的水含量。甲基肌球菌属中的甲烷氧化细菌(Methylosinus)也会产生耐干燥性的孢子,称为外孢子。
包囊是由固氮菌(Azotobacter),蛭弧菌(Bdellovibrio,蛭包囊)和粘球菌(Myxococcus,粘孢子)的休眠成员产生的厚壁结构。它们对干燥和其他有害条件有抵抗力,但程度低于内生孢子。在固氮固氮菌的包囊中,细胞分裂后形成一层厚厚的多层细胞壁和外壳,包围着静息细胞。
丝状放线菌产生两类生殖孢子:分生孢子,是在地上或基质菌丝体上形成的多个孢子链;孢子囊孢子,是在称为孢子囊的特殊囊中形成的。
遗传信息交流
此外,转移的DNA量通常只是染色体的一小部分。发生这种情况有几种机制。在转化过程中,细菌吸收漂浮在培养基中的游离DNA片段。为了有效地吸收DNA,细菌细胞必须处于一种有能力的状态,这是由细菌结合DNA自由片段的能力来定义的,并且仅在有限数量的细菌中自然形成,例如嗜血杆菌(Haemophilus)、奈瑟菌(Neisseria)、链球菌(Streptococcus)和芽孢杆菌(Bacillus)。在实验室条件下,例如通过暴露于氯化钙(CaCl2)溶液,可以使许多其他细菌,包括大肠杆菌,变得人为地具有竞争力。转化是重组DNA技术中的一个主要工具,因为来自一个生物体的DNA片段可以被另一个生物体摄取,从而使第二个生物体获得新的特性。
细菌之间交换遗传物质
图源:Encyclopdia
细菌DNA可以通过结合和转导过程从一个细胞传递到另一个细胞。
转导是指通过一种称为噬菌体的细菌感染病毒将DNA从一种细菌转移到另一种细菌。转导是在细菌之间转移DNA的有效手段,因为封闭在噬菌体中的DNA受到保护,免受物理降解和环境中酶的攻击,并通过噬菌体直接注入细胞中。然而,通过转导的广泛基因转移具有有限的意义,因为将细菌DNA包装到病毒中效率低下,并且噬菌体通常在它们可感染的细菌种类范围内受到高度限制。因此,通过转导进行种间转移的DNA很少。
接合是通过质粒(非染色体DNA分子)介导的细胞间直接接触的DNA转移。接合质粒编码一种极其有效的机制,它介导自己从供体细胞到受体细胞的转移。因为仅供体细胞包含结合质粒,所以该过程在一个方向上发生。在革兰氏阴性细菌中,供体细胞产生特定的质粒编码菌毛,称为性菌毛,该菌毛将供体细胞附着到受体细胞上。连接后,两个细胞将直接接触,并形成一个偶联桥,DNA通过该桥从供体转移到受体。许多接合质粒可以在大量不同的革兰氏阴性细菌之间转移,并在其中繁殖。质粒的大小不等,从几千个到超过100,000个碱基对。后者有时被称为巨质粒。
巴氏杀菌如何保护食物
细菌可能是致病的(引起疾病),并可能产生毒素,使食物变质并引起食物中毒。细菌引起的某些疾病包括肉毒杆菌中毒,伤寒和肺炎。
细菌的种群增长
枯草芽孢杆菌生长周期
细菌菌落通过生长的四个阶段进行:滞后阶段,对数阶段,静止阶段和死亡阶段。
细菌生长曲线
广义细菌生长曲线显示了细菌菌落生长的各个阶段。
当细菌被放置在一个能提供其生长所需的所有营养物质的培养基中时,菌群表现出四个生长阶段,这四个阶段代表了典型的细菌生长曲线。一旦接种到新的培养基中,细菌不会立即繁殖,种群大小保持不变。在这一时期,称为滞后期,细胞代谢活跃,只增加细胞大小。它们还在新的环境条件下合成细胞分裂和种群增长所需的酶和因子。
枯草芽孢杆菌
枯草芽孢杆菌的细菌菌落在37℃下进入生长的对数期培养18-24小时后,(98.6°F;放大约6倍)
大自然中的分布
原核生物在地球表面无处不在。从极地冰到冒泡的温泉,从山顶到海底,从动植物到森林土壤,都可以找到它们。有些细菌可以在接近冰点的温度下在土壤或水中生长,而另一些细菌则可以在接近沸腾(100°C的温度下繁殖。每种细菌都适合生活在特定的环境环境中,无论是海洋表面,泥浆沉积物,土壤还是其他生物的表面。空气中的细菌含量很低,但是当灰尘被悬浮时含量会升高。在未受污染的自然水体中,细菌数可以是每毫升数千。在肥沃的土壤中,细菌数可以达到每克数百万。在粪便中,细菌数量可能超过每克数十亿。
细菌在有机分解中的作用是从垃圾填埋场和水中去除不需要的生物材料的过程的一部分。
细菌是其栖息生态系统中的重要成员。尽管它们的体积很小,但它们的数量之多意味着它们的新陈代谢在外部环境中的元素转化中起着巨大的作用,有时有益,有时有害。可能每一种自然产生的物质,以及许多人工合成的物质,都能被某些种类的细菌降解(代谢)。奶牛最大的胃——瘤胃是一个发酵室,细菌在其中消化草料和饲料中的纤维素,将其转化为脂肪酸和氨基酸,这是奶牛使用的基本营养素,也是奶牛产奶的基础。污水或堆肥堆中的有机废物被细菌转化为适合植物新陈代谢的营养物质,或转化为气态甲烷(CH4)和二氧化碳。包括动植物在内的所有有机物质的残余物最终通过细菌和其他微生物的活动转化为土壤和气体,从而可供进一步生长。
许多细菌生活在溪流和其他水源中,它们在水样中的低种群密度并不一定表明水不适合饮用。然而,含有大肠杆菌等细菌的水,是人类和动物肠道的正常居民,表明污水或粪便物质最近污染了该水源。这类大肠菌群本身可能是病原体(致病生物),它们的存在表明其他不太容易检测到的细菌和病毒病原体也可能存在。净水厂中使用的沉淀、过滤和氯化程序旨在去除这些以及任何其他可能存在于人类饮用水中的微生物和传染源。水中微生物分解有机物质消耗氧气(生化需氧量),导致氧气水平下降,这对接收废水的溪流和湖泊中的水生生物非常有害。污水处理的一个目标是在有机物排放到水系统之前尽可能地氧化它们,从而降低废水的生化需氧量。为此,污水消化池和曝气装置专门利用细菌的代谢能力。
土壤细菌通过转化土壤的各种物质、腐殖质和矿物质,在影响生物化学变化方面极为活跃。对生命至关重要的元素,如碳、氮和硫,被细菌从无机气态化合物转化为可供植物和动物使用的形式。
土壤中的根瘤菌生物识别并侵入其特定植物宿主的根毛,进入植物组织,并形成根瘤。这个过程导致细菌失去许多自由活动特性。它们变得依赖于植物所提供的碳,并且作为碳的交换,它们将氮气转化为氨,氨被植物用于其蛋白质的合成和生长。另外,当硝酸盐用作电子受体时,许多细菌可以将硝酸盐转化为胺,以合成细胞材料,或将其转化为氨。反硝化细菌将硝酸盐转化为氮气。氨或有机胺向硝酸盐的转化是通过需氧生物硝化单胞菌和硝化细菌的联合活动来完成的,它们利用氨作为电子供体。
固氮细菌(右)豌豆植物(Pisumsativum)的根部,其根瘤内藏有固氮细菌(Rhizobium)。(左)根瘤是根瘤菌与植物根毛之间共生关系的结果。细菌识别根毛并开始分裂(A),通过感染线(B)进入根部,使细菌进入根细胞,然后分裂成结节(C)
在碳循环中,二氧化碳被植物和自养原核生物转化为细胞物质,有机碳通过异养生物返回大气。微生物分解的主要分解产物是二氧化碳,它是由呼吸需氧生物而形成的。
甲烷是碳代谢的另一种气体最终产物,是全球碳循环中相对次要的组成部分,但在当地情况下具有重要意义,是供人类使用的可再生能源。甲烷的产生是由高度专业化和专性厌氧产甲烷原核生物进行的,它们都是古细菌。产甲烷菌利用二氧化碳作为末端电子受体,从氢气(H2)中接收电子。其他一些物质可以被这些生物转化为甲烷,包括甲醇、甲酸、乙酸和甲胺。
尽管产甲烷菌可利用的物质范围极窄,但在许多有机物质(包括纤维素、淀粉、蛋白质、氨基酸、脂肪、醇和大多数其他底物)的厌氧分解过程中,甲烷的生成非常普遍。从这些物质中生成甲烷需要其他厌氧菌将这些物质降解为醋酸盐或二氧化碳和氢气,然后由产甲烷菌(methanogens)使用。产甲烷菌通过去除甲烷代谢活动中产生的氢气来支持混合物中其他厌氧菌的生长。消耗氢气会刺激其他细菌的新陈代谢。
尽管产甲烷菌的代谢能力非常有限,而且对氧非常敏感,但它们在地球上很普遍。大量的甲烷是在厌氧环境中产生的,比如沼泽和沼泽,但是土壤和反刍动物也会产生大量的甲烷。大气中至少80%的甲烷是由产甲烷菌作用产生的,其余的则是从煤层或天然气井中释放出来的。
食物中的细菌
健康奶牛的牛奶最初含有很少的细菌,这些细菌主要来自奶牛的皮肤和处理牛奶的程序。牛奶是许多细菌的极好生长介质,除非牛奶经过适当加工,否则细菌的数量会迅速增加。如果存在致病菌,细菌生长会破坏牛奶,甚至对健康造成严重危害。可以从被感染的牛传播的疾病包括结核病(结核分枝杆菌,Mycobacteriumtuberculosis),不发烧的发热(流产的布鲁氏菌Brucellaabortus)和发热的病原体(柯氏杆菌Coxiellaburnetii)。
此外,伤寒可通过受感染的牛奶处理者的牛奶传播。巴氏杀菌程序将牛奶的温度升高30分钟至63°C(145°F)或15秒升高至71°C(160°F),这可以杀死可能存在的任何病原菌,尽管这些程序不能杀死所有微生物。
某些细菌将牛奶转化成有用的乳制品,如酪乳、酸奶和奶酪。商业培养的酪乳是从接种了乳酸菌(Lactococcus)发酵剂(通常是乳酸乳杆菌或乳酪乳杆菌)的牛奶中制备的。酸奶和其他发酵乳制品是用不同的细菌培养物以类似的方式生产的。许多奶酪也是通过细菌的作用制成的。产酸细菌如乳乳酸杆菌在牛奶中的生长会使酪蛋白沉淀成凝乳。除去水分和加盐后,凝乳在其他微生物的作用下成熟。不同的细菌赋予食物不同的风味和特性;例如,干酪乳杆菌、嗜热链球菌和舍曼丙酸杆菌的混合物负责瑞士奶酪的成熟,并产生其特有的味道和大气泡。其他类型的细菌长期以来被用于制备和保存通过细菌发酵生产的各种食品,包括腌制产品、泡菜和橄榄。
在食物中传播的许多致病菌的毒素在摄入时会引起食物中毒。其中包括一种由金黄色葡萄球菌(Staphylococcusaureus)产生的毒素,这种毒素能引起迅速、严重但有限的胃肠道不适,或者肉毒梭菌(Clostridiumbotulinum)的毒素,这种毒素通常是致命的。在密封前未完全煮熟的罐装非酸性食品中可能产生肉毒杆菌毒素。肉毒梭菌形成耐热孢子,可以发芽为营养细菌细胞,在厌氧环境中茁壮成长,这有利于产生其极强的毒素。其他食源性感染实际上是由受感染的食物处理者传播的,包括伤寒、沙门氏菌病(沙门氏菌属)和志贺氏菌病(痢疾志贺氏菌属)。
工业中的细菌
各种细菌的厌氧糖发酵反应会产生不同的最终产物。用酵母生产乙醇已经被酿酒工业开发了几千年,并被用于燃料生产。在醋的生产过程中,特定的细菌将酒精氧化成醋酸。其他的发酵过程可以制造出更有价值的产品。有机化合物,如丙酮、异丙醇和丁酸,是由各种梭状芽孢杆菌(Clostridium)在发酵过程中产生的,可以在工业规模上制备。在极端环境的生物中也发现了其他细菌产物和反应。从嗜热细菌中分离出的酶引起了极大的兴趣,在这些酶中,由于可以在较高的温度下进行反应,因此可以以较高的速率进行反应。
烃类氧化细菌和真菌对石油产品的微生物分解具有重要的生态学意义。石油的微生物分解是一个好氧过程,如果石油沉淀到底部的厌氧沉积物层(厌氧环境中的天然石油沉积物有数百万年的历史),那么这一过程就会被阻止。碳氢化合物氧化细菌附着在水面上漂浮的油滴上,它们的作用最终将油分解为二氧化碳。将此类细菌及其生长因子喷洒到溢油上以提高非挥发性脂族和芳族烃的降解速度已成为一种常见的做法。
医学中的细菌
菌性疾病在人类历史上起着主导作用。霍乱和鼠疫的广泛流行使世界上某些地区的人口减少了三分之一以上。细菌性肺炎可能是老年人死亡的主要原因。也许有更多的军队被伤寒,痢疾和其他细菌感染击败,而不是被武力击败。随着管道和卫生设备的现代发展,细菌疫苗的发展以及抗菌素的发现,细菌性疾病的发生率已降低。然而,细菌没有继续作为传染因子消失,因为它们继续进化,产生了越来越强的毒株并获得了对许多抗生素的抗性。
尽管大多数细菌对地球上的生命都是有益的,甚至是生命所必需的,但少数细菌却对人类有害。目前,没有一种古细菌被认为是病原体,但是包括人类在内的动物不断遭到大量细菌和各种细菌的轰击和居住。与动物接触的大多数细菌都可以通过宿主的防御系统迅速消除。口腔,肠道和皮肤被大量特定类型的细菌定殖,这些细菌适应这些栖息地的生活。这些生物在正常情况下是无害的,并且仅在它们以某种方式穿过身体的屏障并引起感染时才变得危险。
一些细菌擅长入侵宿主,被称为病原体或疾病产生者。一些病原体作用于人体的特定部位,例如脑膜炎球菌(Neisseriameningitidis),它会侵袭并刺激脑膜,大脑和脊髓周围的膜,并刺激脑膜。白喉细菌(Corynebacteriumdiphtheriae),最初感染喉咙;以及在肠道中繁殖的霍乱细菌(霍乱弧菌),其产生的毒素导致该霍乱的大量腹泻。其他能感染人类的细菌包括葡萄球菌(主要是金黄色葡萄球菌),它能感染皮肤引起疖子(疖子),血液引起败血症(血液中毒),心脏瓣膜引起心内膜炎,或骨头引起骨髓炎。
人体中的细菌
人体屏障(例如皮肤和肠道内壁)中的天然细菌在正常的人类生理过程中起着重要的作用。
侵入动物血液的病原菌可以利用多种机制中的任何一种来逃避宿主的免疫系统,包括形成长的脂多糖链,从而对一组血清免疫蛋白(称为补体)产生抵抗力,补体通常会抑制细菌的生长。细菌表面蛋白的致病性重组阻止动物产生的抗体识别病原体,在某些情况下使病原体能够在吞噬性白细胞中存活和生长。许多病原菌产生毒素,协助它们入侵宿主。这些毒素包括蛋白酶,分解组织蛋白质的酶,以及脂肪酶,分解脂质(脂肪)并通过破坏细胞膜来损伤细胞的酶。其他毒素通过在细胞膜上形成孔或通道来破坏细胞膜。一些毒素是修饰参与蛋白质合成或控制宿主细胞代谢的特定蛋白质的酶;例如白喉、霍乱和百日咳毒素。
补体激活途径
补体蛋白的主要功能是通过刺穿病原体的外膜(细胞裂解)或使它们对吞噬细胞(例如巨噬细胞)更具吸引力来帮助破坏病原体(这一过程称为调理作用)。一些补体成分还通过刺激细胞释放组胺和将吞噬细胞吸引到感染部位来促进炎症。
一些病原细菌在宿主体内形成区域,在这些区域中它们被封闭并不受免疫系统的保护,例如葡萄球菌形成的皮肤疖子和结核分枝杆菌形成的肺部空洞。脆弱拟杆菌(Bacteroidesfragilis)大量存在于人体肠道中,但是一般不会对宿主造成任何困难。如果这种细菌通过损伤进入体内,细菌囊会刺激身体将细菌隔离成脓肿,从而减少细菌的传播。在许多情况下,细菌感染的症状实际上是免疫系统过度反应的结果,而不是细菌产生毒性因子的结果。
对抗致病性细菌感染的其他方法包括使用生物治疗剂或益生菌。这些无害的细菌会干扰病原菌的定殖。另一种方法是利用噬菌体,即杀死细菌的病毒,来治疗特定细菌病原体的感染。此外,20世纪80年代发展起来的重组DNA技术使细菌合成几乎任何蛋白质成为可能,大肠杆菌是这一过程中常见的宿主。重组DNA技术用于廉价、大规模生产极为稀缺和有价值的动物或人类蛋白质,如激素、凝血因子,甚至抗体。
关于生命起源所涉及的原始祖先的性质,人们有相当多的猜测。有人认为原始细胞可能使用RNA作为其遗传物质,因为研究表明RNA分子可以具有多种催化功能。在这个时期,细菌和古菌很早就从它们共同的前体中分化出来。这两类原核生物倾向于栖息在不同类型的环境中,并以不同的速度产生新的物种。许多古菌喜欢高温生态位。古细菌树的一个主要分支仅由嗜热物种组成,而另一个主要分支中的许多产甲烷菌可以在高温下生长。相反,没有一个主要的真细菌分支仅仅由嗜热菌组成。细菌和古细菌都含有能够在高温下生长的成员,以及其他能够在低温下生长的物种。另一个显著的区别是细菌广泛地适应好氧条件,而许多古细菌是专性厌氧菌。没有古细菌是专性光合作用的。也许古细菌是一种较原始的生物体,对变化的环境条件的遗传反应受损。适应新情况的能力有限可能会将古细菌限制在恶劣的环境中,与其他生命形式的竞争较少。
根据三域系统的生命之树
有机体必须不断进化或适应不断变化的环境,很明显,突变,即有机体DNA中核苷酸序列的变化,在所有有机体中不断发生。DNA序列的变化可能会导致该DNA片段编码的蛋白质的氨基酸序列发生变化。因此,改变后的蛋白质可能更适合或不太适合在当前条件下发挥功能。尽管DNA中可能发生的许多核苷酸变化对细胞的适应性没有影响,但如果核苷酸变化能促进细胞的生长,哪怕是很小的程度,那么突变型细胞就能够增加其在群体中的相对数量。然而,如果核苷酸的改变阻碍了细胞的生长,那么突变形式就会被其他细胞所取代而丧失。
在生物体之间传递遗传信息的能力是适应环境变化的一个主要因素。DNA交换是高等真核生物生命周期的重要组成部分,在所有真核生物中都有发生。基因交换也发生在整个细菌世界,虽然转移的DNA量很小,但这种转移可以发生在远缘生物之间。携带在质粒上的基因可以进入细菌染色体,成为细菌遗传的稳定部分。生物体通常拥有称为转座子的可移动遗传元件,可以重新排列染色体上任何基因的顺序和存在。转座子可能在帮助加快进化速度方面发挥作用。
影响细菌生长的因素
铜绿假单胞菌
除了碳,细菌还需要能量,能量几乎总是通过电子从电子供体转移到电子受体来获得的。有三种基本的能源:光、无机化合物和有机化合物。光营养细菌利用光合作用从光能中产生三磷酸腺苷(ATP)形式的细胞能量。化学营养体从化学物质(有机和无机化合物)中获取能量;化学石营养体从与无机盐的反应中获取能量;化学异养体从有机化合物中获取碳和能量(能量源也可作为这些生物体的碳源)。
在大多数情况下,细胞能量是通过电子转移反应产生的,其中电子通过一种途径从电子或有机供体分子移动到受体分子,从而保留了电子在转移过程中释放出的能量,其形式为电子俘获细胞可用于其化学或物理工作的物质。从电子传输中捕获的主要能量形式是ATP。分解有机分子以产生能量的代谢过程称为分解代谢反应。相反,合成分子的代谢过程称为合成代谢反应。
许多细菌可以使用大量的化合物作为碳和能源,而其他细菌的代谢能力受到很大限制。尽管碳水化合物是真核生物的常见能源,但是由于大多数细菌不具有代谢这些通常复杂的分子所必需的酶,因此这些分子仅通过有限数量的细菌进行代谢。相反,许多细菌都依赖于其他能源,例如氨基酸,脂肪或其他化合物。对细菌重要的其他化合物包括磷酸盐,硫酸盐和氮。由于许多细菌无法合成磷酸盐,因此在许多环境中,尤其是在水中,磷酸盐含量低可能是细菌生长的限制因素。另一方面,大多数细菌可以将硫酸盐或硫化物转化为蛋白质合成所需的有机形式。生命有机体从氨中吸收氮的能力是广泛存在的,细菌将其他形式的氮(例如土壤中的硝酸盐或大气中的二氧化氮转化为细胞物质的能力也有所不同。
对于不同的细菌类型来说,最适合细菌生长的物理条件有很大的不同。作为一个群体,细菌在不同环境中的生存能力在所有生物中表现出最大的差异。
氧气
细菌之间最显著的区别之一是它们对大气氧(O2)的需求和反应。实际上,所有的真核生物都需要氧气才能茁壮成长,而许多种类的细菌可以在厌氧条件下生长。需要氧气才能生长的细菌称为专性需氧细菌。在大多数情况下,这些细菌需要氧气才能生长,因为它们产生能量和呼吸的方法依赖于电子向氧气的转移,而氧气是电子传递反应中的最终电子受体。
专性需氧菌包括枯草芽孢杆菌(Bacillussubtilis)、铜绿假单胞菌(Pseudomonasaeruginosa)、结核分枝杆菌(Mycobacteriumtuberculosis)和氧化亚铁硫杆菌(cidithiobacillusferrooxidans)。
只有在缺氧条件下才能生长的细菌,如梭状芽孢杆菌、类杆菌和产甲烷的古细菌(产甲烷菌)被称为专性厌氧菌,因为它们产生能量的代谢过程与氧气的消耗相无关。事实上,氧气的存在实际上会毒害它们的一些关键酶。有些细菌(肺炎链球菌)是微需氧或耐氧厌氧菌,因为它们在低浓度的氧气中生长得更好。在这些细菌中,氧气通常会刺激微小的代谢过程,从而增强能量产生的主要途径。兼性厌氧菌可以根据氧气的存在改变其代谢过程,在氧气存在时使用更有效的呼吸过程,在缺氧时使用效率较低的发酵过程。兼性厌氧菌包括大肠杆菌和金黄色葡萄球菌。
破伤风梭状芽胞杆菌
细菌对氧的反应不仅仅取决于它们的代谢需要。氧是一种非常活泼的分子,会形成一些有毒的副产物,如超氧物(O2-)、过氧化氢(H2O2)和羟基自由基(OH·)。有氧生物产生的酶可以使这些氧气产物解毒。
温度
细菌已适应多种温度。在低于约15°C(59°F)的温度下生长的细菌是嗜冷菌。细菌在低温下生长的能力并不意外,因为温带土壤的平均地下温度约为12°C(54°F),90%的海洋温度为5°C(41°F)或更低。专性嗜冷菌是从北极和南极海水和沉积物中分离出来的,其最适生长温度约为10℃(50℉),如果暴露在20℃(68℉)下,则无法存活。
大多数嗜冷细菌属于革兰氏阴性菌属假单胞菌属、黄杆菌属、无色杆菌属和产碱菌属。中温细菌是指在20至45°C(68至113°F)之间发生最佳生长的细菌,尽管它们通常可以在10至50°C(50至122°F)的温度下存活和生长。动物病原体一般是嗜中性的。
嗜热原核生物可以在高于60°C(140°F)的温度下生长。这些温度在腐烂的堆肥堆、温泉和海洋地热喷口中都会遇到。在温泉的径流中,在温度下降到70℃左右的源头附近发现了嗜热菌,如水热菌(生长的最适温度为70℃[158℉];最高温度为79℃[174℉])。
蓝藻合成球藻和光营养滑动细菌氯曲菌的厚席在径流较冷的部分发育。古生酸硫菌对酸性条件有很高的耐受性,允许在pH值约为1.0至6.0的范围内生长,最适温度为80°C(176°F)。许多细菌和古细菌适应于50至70°C(122至158°F)的温度范围,包括芽孢杆菌属、热放线菌属、甲烷杆菌属、甲基球菌属和硫菌属的一些成员。
最引人注目的是上世纪80年代中期在深海海底营养丰富、温度极高的热液喷口中发现了细菌和古细菌。焦菌属的古细菌在80到110°C(176到230°F)的温度范围内繁衍生息,在这种温度下,水只有在极高的压力下才能保持液态。
pH值
大多数细菌在中性pH值范围内(5-8之间)生长,尽管有些物种已经适应了酸性或碱性极端条件下的生活。嗜酸细菌的一个例子是氧化铁曲霉。当煤层通过采矿作业暴露于空气中时,黄铁矿硫化物沉积物会受到A.ferrooxidans的攻击而生成硫酸,从而将pH值降低至2.0甚至0.7。但是,铁氧化农杆菌的耐酸性仅适用于硫酸,因为这些细菌在暴露于等浓度的其他酸(例如盐酸)时会死亡。许多细菌不能耐受酸性环境,特别是在厌氧条件下,结果,植物聚合物在酸性沼泽(pH值在3.7和5.5之间),松树林和湖泊中会缓慢降解。与嗜酸菌相反,嗜碱菌能够在高达10至11的pH值的碱性浓度下生长。嗜碱菌已从土壤中分离出来,大多数是革兰氏阳性芽孢杆菌属。
盐和水
水是生命的基本需求。有些细菌喜欢咸的环境,因此被称为嗜盐菌。极端嗜盐菌,如嗜盐杆菌,在含盐量为20%至30%的条件下表现出最佳生长,如果盐含量降低,它们会溶解(破裂)。这种细菌存在于死海、盐水池中,有时也存在于咸鱼和兽皮上。中度嗜盐细菌在含盐量为5%至20%的条件下生长,在盐卤和泥浆中也有发现。
死海中的盐柱
细菌代谢
异养代谢
如上所述,异养(或有机营养)细菌需要有机分子来提供它们的碳和能量。产生能量的分解代谢反应可以有许多不同的类型,尽管它们都涉及电子转移反应,其中电子从一个分子到另一个分子的运动与产生ATP的能量捕获反应相耦合。一些异养细菌可以代谢糖或复杂的碳水化合物来产生能量。这些细菌必须产生许多特定的蛋白质,包括将多糖降解为其组成糖单位的酶,在细胞内积累糖的运输系统,以及将糖转化为代谢中间产物之一的酶,如葡萄糖-6-磷酸。糖酵解的Embden-Meyerhof途径和磷酸戊糖途径都存在于真核细胞中。有些细菌拥有Entner-Doudoroff途径,主要将葡萄糖转化为丙酮酸,还有一些途径可以用较少的酶催化步骤将葡萄糖转化为较小的化合物。
糖代谢通过发酵和呼吸两个不同的过程为细胞产生能量。发酵是在没有任何外部电子受体的情况下进行的厌氧过程。有机化合物,如糖或氨基酸,被分解成更小的有机分子,这些分子接受在能量源分解过程中释放的电子。
这些分解代谢反应包括几个步骤,直接形成ATP。当葡萄糖被分解成乳酸时,就像某些乳球菌和乳酸杆菌以及高等真核生物的肌肉细胞中发生的那样,每个葡萄糖分子只产生两个ATP分子,相当数量的葡萄糖必须被降解以提供足够的能量供细菌生长。由于有机分子在发酵过程中仅被部分氧化,发酵细菌的生长会产生大量的有机终产物,而消耗的每个葡萄糖分子的能量输出相对较小。
很少有细菌只产生乳酸,乳酸对细菌毒性很大,限制了菌落的生长。特定细菌利用多种额外的发酵途径分解葡萄糖;这些途径的特征性终产物有助于细菌的鉴定。这些最终产物通常比乳酸毒性小,或者是利用额外的代谢能量形成的。例如,大肠杆菌混合酸发酵的产物包括乳酸、琥珀酸、乙酸、甲酸、乙醇、二氧化碳和氢气。产气肠杆菌能产生大部分相同的发酵产物,以及大量的2,3-丁二醇,它是非酸性的,允许更多的细菌生长。
细胞可以从呼吸中获得相当多的能量,在这个过程中,糖分子的电子不是转移到另一个有机分子,而是转移到一个无机分子上。最常见的呼吸过程(有氧呼吸)使用氧气作为最终的电子受体。糖被完全分解成二氧化碳和水,每分子葡萄糖最多产生38个ATP分子。
电子通过电子传递链转移到氧中,电子传递链是位于细胞膜上的酶和辅助因子系统,其排列方式使电子沿着链的传递与质子(氢离子)穿过膜并离开细胞的运动相耦合。电子传输引起带正电荷的氢离子向细胞外移动,带负电荷的离子向细胞内移动。这种离子梯度导致外部介质的酸化和带电的质膜,其电荷为150至200毫伏。离子梯度的产生,包括质子动力(质子梯度),是所有生物能量产生和储存的一个共同方面。
质子的梯度被细胞直接用于许多过程,包括营养物质的主动运输和鞭毛的旋转。质子还可以通过一种被称为F1F0质子转位ATP酶的膜酶从细胞外部进入细胞质,该酶将质子运动与ATP合成结合,其过程与真核细胞线粒体中发生的过程相同。
能够利用呼吸作用的细菌每一个糖分子产生的能量比发酵细胞多得多,因为能量源的完全氧化(分解)可以完全提取所有可用的能量,如呼吸生物的ATP产量比发酵细菌的ATP产量大得多所示。呼吸有机体利用一定量的营养物质获得更高的细胞物质产量;它们也产生更少的有毒最终产品。然而,氧在水中的溶解度是有限的,需氧菌群的生长和存活与可用的氧供应量成正比。只有与空气接触的细菌才能获得连续的氧气供应,当细菌能够漂浮在暴露在空气中的表面上时,或者当细菌所在的介质被剧烈搅拌时,就会发生这种情况。
在厌氧条件下,呼吸也可以通过称为厌氧呼吸的过程发生,其中最终的电子受体是无机分子,如硝酸盐(NO3-)、亚硝酸盐(NO2-)、硫酸盐(SO42-)或二氧化碳(CO2)。在硫酸盐和二氧化碳的情况下,使用这些受体的细胞可获得的能量产量比氧气的呼吸低得多,但它们仍然比发酵可获得的能量产量高得多。一些细菌利用无机分子进行无氧呼吸的能力可能具有环境意义。大肠杆菌可以使用氧气,硝酸盐或亚硝酸盐作为电子受体,斯图氏假单胞菌在反硝化,硝酸盐转化为亚硝酸盐和氮气(N2)方面具有重要的全球意义。脱硫弧菌和脱硫单胞菌分别还原硫酸盐和元素硫,产生硫化物(S2-),而木醋杆菌和产甲烷古细菌,如嗜热甲烷杆菌,将二氧化碳还原为乙酸盐和甲烷。古细菌通常使用氢作为电子供体,使用二氧化碳作为电子受体以产生甲烷,或者使用硫酸盐作为电子受体以产生硫化物。
自养代谢
自养细菌以二氧化碳为碳源合成所有的细胞成分。从二氧化碳合成有机化合物的最常见途径是还原性戊糖磷酸(Calvin)循环,还原性三羧酸循环和乙酰辅酶A途径。由美国生物化学家梅尔文·卡尔文(MelvinCalvin)阐明的卡尔文循环是这些途径中分布最广泛的途径,在植物,藻类,光合细菌和大多数需氧自养细菌中起作用。
卡尔文循环的关键步骤是核酮糖1,5-二磷酸与二氧化碳的反应,产生两个分子的3-磷酸甘油酯,葡萄糖的前体。这种循环在能量方面对细胞来说是极其昂贵的,因此一个甘油醛-3-磷酸分子的合成需要消耗九个ATP分子和六个电子供体分子的氧化,即烟酰胺腺嘌呤二核苷酸磷酸(NADPH)的还原形式。自养行为取决于细胞进行光合作用或有氧呼吸代谢的能力,这是唯一能够提供足够能量来维持碳固定的过程。
卡尔文循环
细菌使用加尔文循环来合成有机化合物。核糖1,5-二磷酸(RuBP)与二氧化碳的反应导致生成3-磷酸甘油酸酯(PGA)分子,该分子通过多次中间反应转化为一分子3-磷酸甘油醛(Gal3P)。然后可以将3-磷酸甘油醛转化为其他分子,包括糖或淀粉。
需氧非光合自养菌是指不仅以二氧化碳为唯一碳源,而且以氧为电子受体的无机化合物(电子供体)为能源的细菌。这些细菌在分类上是多样的,通常由它们使用的电子供体来定义。例如,欧洲亚硝基单胞菌将氨(NH4+)氧化为亚硝酸盐,而Nitrobacterwinogradskyi将亚硝酸盐氧化为硝酸盐。硫杆菌将硫代硫酸盐和元素硫氧化为硫酸盐,而氧化铁曲霉将亚铁离子氧化为三价铁。
这种不同的氧化能力使氧化亚铁杆菌能够耐受高浓度的许多不同离子,包括铁、铜、钴、镍和锌。所有这些类型的细菌似乎都是专性的岩性滋养菌,不能在很大程度上利用有机化合物。一氧化碳(CO)被寡糖carboxidovorans氧化成二氧化碳,而氢气(H2)被真核产碱杆菌(Alcaligeneseutrophus)氧化,在较小程度上也能被其他许多细菌氧化。
代谢能是由这些电子供体的氧化提供的,其方式基本上与呼吸异养生物相同,异养生物将电子从有机分子转移到氧气中。当电子沿着电子传递链传递到氧时,质子在细胞膜上产生梯度。这个梯度被用来产生ATP分子。岩石自养生物中存在的其他反应是用于从无机供体中去除电子和固定二氧化碳的反应。
光营养代谢
地球上的生命依靠光合作用将太阳能转化为细胞能量。光合作用的一般过程是利用叶绿素来吸收来自太阳的光能,并释放出一个能量更高的电子。这种电子通过电子传递链,通过形成质子梯度和伴随的ATP合成产生能量。电子最终返回叶绿素。这种循环反应路径可以满足电池的能量需求。
然而,为了使细胞生长,二氧化碳固定的卡尔文循环必须被激活,电子必须转移到辅助因子NADP以形成NADPH,这是循环运行所需要的大量的NADPH。因此,光营养细胞的生长需要一个电子源来取代生物合成反应中消耗的电子。
据认为,到18亿年前,蓝藻的前身已经在全球产生了足够的氧气,开始允许更高形式的生命的发展。析氧光合作用需要两个独立的光吸收系统的作用,将水中电子的能量提高到足以转移到NADP的水平。因此,在这些生物体中存在两个不同的光反应中心,一个用于产氧反应,另一个用于能量产生的循环过程。
在蓝藻中,两个光反应中心都含有叶绿素a。它们的光合器官还含有其他光吸收色素,这些色素作为触角来捕获光能并将其转移到反应中心。蓝藻触角包括额外的叶绿素a分子和藻胆体,叶绿素a分子将能量转移到循环反应中心,藻胆体是一种蛋白质色素,它们吸收短、高能波长的光,并将能量传递到析氧反应中心。在几乎所有的蓝藻中,光合器都包含在一个广泛的细胞内扁平膜囊系统中,称为类囊体,其外表面布满规则排列的藻胆体颗粒。这种色素聚集体存在于类囊体表面的排列称为光系统。
其他光合细菌只含有一种不同色素的单一反应中心,称为细菌叶绿素,它能吸收长而低能波长的光。这些生物需要除水以外的电子供体,并且不释放氧气。绿色细菌(绿藻科)和紫色硫细菌(藻科)使用元素硫、硫化物、硫代硫酸盐或氢气作为电子供体,而紫色非硫细菌使用氢或有机基质中的电子。这些细菌需要厌氧条件才能进行光合作用。绿色细菌的光系统与高等植物的光系统Ⅰ有关,而紫色细菌的光系统Ⅱ则与光系统Ⅱ有关,后者提供了从细菌到植物的进化轨迹。
细菌的生物合成途径
许多原核生物能够将任何给定的碳源转化为生物合成的组成部分,例如氨基酸、嘌呤、嘧啶、脂类、糖和酶辅因子。在这些生物合成途径中,每种酶的数量和活性都受到严格的调节,因此细胞在任何时候只产生所需的任何化合物。
在进化过程中,一些细菌失去了编码某些生物合成反应的基因,因此可能需要营养补充。例如,支原体的DNA含量约为大肠杆菌的四分之一,它有许多营养需求,甚至丧失了形成细胞壁的能力。
支原体
革兰氏阴性人型支原体和在琼脂培养基上生长的常见机会性T株支原体的分离株。
细菌是肉眼看不到的单细胞微生物,是地球上最古老的生物之一,它们无处不在且数量惊人,难以逃避。由于我们看不到它们并且对它们的了解相对较少,因此细菌的世界对我们来说是神秘的,并且通常不为大众所重视。
人类每天使用细菌。细菌可用于保存食物,为农作物增添养分,制作奶酪和酸奶以及消除固体废物。这些用途有益于人类的日常生活。一些细菌在生物研究以及药物和疫苗的开发中非常有用。有的细菌帮助管理化粪池系统和清理漏油,或制作酸奶,奶酪和葡萄酒。人体中的细菌可以使身体受益,这取决于它们是细菌的类型。一些细菌有助于训练免疫系统,并有助于预防过敏。其他的则可以保护人体免受有害的致病细菌的侵害。细菌负责帮助我们消化食物,有些细菌会产生对人体非常有用的酶,激素和维生素。
细菌还会导致人患病或死亡。当人打喷嚏或咳嗽时,传染病(例如普通感冒和流感)可能会从细菌中传播。粪便中的细菌也会使人生病。如果一个人上完洗手间后没有正确洗手,他们可能会感染大肠杆菌和自己。这些特性使人类需要花更大精力来研究和重视细菌。
客观全面认识细菌,是我们正确管理和利用它们的第一步。
附录:
常见革兰氏阳性菌属:
常见革兰氏阴性菌属:
以上信息整理来自谷禾健康,若需转载,请备注出处。
主要参考资料:
RobertJ.Kadner,KaraRogers,YaminiChauhanSwati,YaminiChauhan,SwatiChopra,AakankshaGaur,ParulJain,RobertLewis,GloriaLotha,DeeptiMahajan,RichardPallardy,ChelseyParrott-Sheffer,MarcoSampaolo,VeenuSetia,ShivetaSingh,GraceYoung.ScienceBiologyArchaea&BacteriaBacteria.(1999-2020)
GEORGEM.GARRITYetal.(eds.),Bergey’sManualofSystematicBacteriology,5vol.,2nded.(2001–12)
MICHAELT.MADIGANetal.,BrockBiologyofMicroorganisms,14thed.(2015)
JOANNEM.WILLEY,LINDAM.SHERWOOD,andCHRISTOPHERJ.WOOLVERTON,Prescott’sMicrobiology,10thed.(2015)
LUCYSHAPIROandRICHARDLOSICK(eds.),CellBiologyofBacteria(2011)
THOMASD.BROCK,TheEmergenceofBacterialGenetics(1990)
LARRYSNYDERetal.,MolecularGeneticsofBacteria,4thed.(2013)
CLIVEEDWARDS(ed.),MicrobiologyofExtremeEnvironments(1990)
CHARLESGERDAYandNICOLASGLANSDORFF(eds.),PhysiologyandBiochemistryofExtremophiles(2007)
不仅如此,还和微量元素、维生素缺乏有关。
1.微量元素篇
Petrilli等人研究发现抑郁症和精神病患者的锌含量低。在患有帕金森氏病,阿尔茨海默氏病,唐氏综合症和多动症的患者中也发现了锌缺乏。
对于缺锌的患者,补锌已被证明有助于改善抑郁症状,是“自然的抗抑郁药”。
一项研究表明,与仅接受SSRI治疗的患者相比,补充锌和SSRI可以更有效地改善重度抑郁症。对实验动物进行锌的长期治疗具有与抗抑郁药相同的作用。
注:SSRI是一类新型的抗抑郁药
当然,在评估锌水平和补充需求时,还需要考虑许多其他因素(例如炎症,其他微量元素的吸收等)。
碘缺乏,特别是在早年间缺乏,会阻碍身体和大脑的发育。碘是甲状腺激素必不可少的组成部分,这对大脑的发育和维持至关重要。碘缺乏症困扰着非常多人,但实际上因碘缺乏引起的智力障碍是可预防的。
大多数植物性食品的碘含量都非常低。素食主义者通常相对容易缺碘。
大脑非常需要铁。铁是产生神经递质(血清素,多巴胺和去甲肾上腺素),脑能量生成,海马功能(记忆),细胞信号传导和婴儿大脑发育所必需的。
许多植物性食物中的铁含量低于动物性食物,且更难吸收。素食者血液中铁的含量与杂食者差不多,但是他们体内的总铁存储量(储备量)较低。
2.维生素篇
维生素B在调节我们的心理健康方面也起着重要作用。
“B族维生素”是指有助于人体细胞正常运作的八种必需营养素。B族维生素们既可以一起协同工作,又可以发挥各自的独特功能。
B维生素的八种类型包括:
B1,B2,B3,B5,B6,B7,B9,B12
某些与心理健康有关的疾病也可能与维生素B缺乏症并存。例如,早期研究表明,自闭症儿童的B6偏低,补充B6后,有些儿童表现出明显的改善,并且是第一次开始说话。
维生素B1,B3,B6
已成功用于治疗许多患有焦虑症和其他心理疾病的患者。在小鼠研究中,实际上发现VB3与苯二氮卓类和巴比妥类具有共同的特性。
维生素B12
有抑郁症患者存在B12缺乏症,而B12缺乏症的人比非缺乏症的人更容易患严重抑郁症。B12缺乏的其他症状可包括疲劳,嗜睡,躁狂等。
素食主义者饮食中几乎不含维生素B12,长期严重缺乏B12会致命。素食主义者可以服用补品或食用强化酵母(未经强化的天然酵母不包含维生素B12)。
维生素B12缺乏很普遍。一些研究发现,多达86%的成年人(无论选择哪种饮食)都缺乏。研究人员报告说,其价值范围很广,总的来说,素食主义者的B12含量往往较低。
B类维生素包括B2,B6,B9,B12也已被证明有助于治疗精神分裂症的症状。
维生素D——“阳光”维生素,对我们的心理健康也至关重要。大约50-90%的维生素D是由阳光照射产生的,其余的来自饮食。
维生素D缺乏症的人数众多,一些专家认为维生素D缺乏症是“全球健康问题”。
目前还不清楚维生素D与精神障碍之间的确切关系,但发现存在维生素D缺乏症风险的人群患抑郁症的风险增加,而维生素D含量较低可能会导致或加剧抑郁症状。
神经退行性疾病,肥胖,糖尿病,高血压,纤维肌痛,慢性疲劳综合症和骨质疏松症也与维生素D缺乏症有关。
维生素D3
维生素D3是我们身体需要的维生素D形式。在大脑的生长和发育中很重要,调节大脑中的钙水平,帮助保护脑细胞免受有害的氧化作用,并支持海马体(大脑记忆中心)的健康。
大多数研究发现,纯素食者的血液中维生素D3含量较低,并且在冬季,素食者更有可能出现维生素D3不足。
维生素K1在许多植物性食品中都丰富,但是维生素K2同样重要,而且常常被忽略。
维生素K2有多种形式,但我们需要的基本形式称为MK-4。在大脑中,需要MK-4来构建鞘脂的关键细胞膜成分,以及维持脑细胞的整体健康和功能。
维生素K2的MK-4形式仅存在于动物性食品中。
那么,是不是这些微量营养素补充越多越好呢?
国际自闭症研究会议上,约翰·霍普金斯大学研究人员提出:怀孕期间叶酸和维生素B12含量过高的女性,孩子患自闭症风险较高。
我们看看研究人员是如何得出这样的结论:
研究人员分析了1391名母亲及其子女的数据。在孩子出生时招募志愿者,然后追踪长达15年。
在分娩的头几天检查母亲的血液中叶酸和维生素B12的水平。所有母亲均在怀孕期间进行了有关产前维生素和其他补充剂使用情况的调查。
发现
在1391名儿童中有107名被诊断出患有自闭症谱系障碍,但这种自闭症的风险并不是在所有母婴中平均分布的。
·每周服用三至五次产前复合维生素的母亲,孩子患自闭症的可能性较小。
·在头三个月服用这些补充剂的母亲生自闭症孩子的可能性要低67%
·在中晚期服用,其孩子自闭症可能性要低62%
·在妊娠中期服用,孩子患病的可能性要低57%
至此,服用产前维生素听起来很不错吧,问题来了:
在1391名母亲中,有95名母亲的VB12血液水平被世界卫生组织认为过高。在这些母亲中,有15个孩子被诊断出患有自闭症谱系障碍,这一风险是其他母亲的三倍。
同样,140名母亲的血液中叶酸水平“过高”,其中16名儿童患有自闭症谱系障碍。
而这其中有21位母亲两种维生素都“过量”。
更夸张的是,这21位母亲,有10个孩子被诊断出患有自闭症。换句话说,维生素水平过高的人中有将近一半有自闭症儿童。
当然,此研究也存在缺陷。
缺点之一是血样是在孩子出生后立即采集的,而不是在怀孕期间采集的。
此外也有猜测,是否因为她们知道正在接受研究而服用较大剂量的维生素?这些不得而知。
综上,如果您或者您家人现在正在孕育新的生命,需要考虑维生素服用的剂量以及评估相应风险。
换句话说,可以服用,但不宜过量。
NaeemZ.(2010).Vitaminddeficiency-anignoredepidemic.Internationaljournalofhealthsciences,4(1),V–VI.
Penckofer,S.,Kouba,J.,Byrn,M.,&EstwingFerrans,C.(2010).VitaminDanddepression:whereisallthesunshine.Issuesinmentalhealthnursing,31(6),385–393.doi:10.3109/01612840903437657
Ranjbar,E.,Kasaei,M.S.,Mohammad-Shirazi,etal.,(2013).Effectsofzincsupplementationinpatientswithmajordepression:arandomizedclinicaltrial.Iranianjournalofpsychiatry,8(2),73–79.
Petrilli,M.A.,Kranz,T.M.,Kleinhaus,K.,Joe,P.,Getz,,etal.,(2017).TheEmergingRoleforZincinDepressionandPsychosis.Frontiersinpharmacology,8,414.doi:10.3389/fphar.2017.00414
GrabruckerA.M.,RowanM.,GarnerC.C.(2011).Brain-deliveryofzinc-ionsaspotentialtreatmentforneurologicaldiseases:minireview.DrugDeliv.Lett.1,13–23.